
Received July 12, 2021, accepted July 31, 2021, date of publication August 3, 2021, date of current version August 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3102280

Automated and Secure Onboarding for
System of Systems
SILIA MAKSUTI 1,2, ANI BICAKU 1,2, MARIO ZSILAK1, IGOR IVKIC 1,3,
BÁLINT PÉCELI4, GÁBOR SINGLER4, KRISTÓF KOVÁCS4, MARKUS TAUBER1,5,
AND JERKER DELSING 2, (Member, IEEE)
1Cloud and Cyber-Physical Systems Security, University of Applied Sciences Burgenland, 7000 Eisenstadt, Austria
2Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
3Department of Computing and Communications, Lancaster University, Lancaster LA1 4YW, U.K.
4evopro Innovation Ltd., 1116 Budapest, Hungary
5Research Studios Austria FG, 1090 Vienna, Austria

Corresponding author: Silia Maksuti (silia.maksuti@forschung-burgenland.at)

This work was supported in part by European Union (EU) Electronic Components and Systems for European Leadership (ECSEL) Joint
Undertaking under Agreement 737459, Productive4.0 Project, and under Agreement 826452, Arrowhead Tools project, and in part by
Investitionen in Wachstum und Beschäftigung–Europäischer Fonds für regionale Entwicklung (IWB-EFRE) (2014-2020), Measurement of
IT-Security in Industry (MIT) 4.0 (FE02) Project.

ABSTRACT The Internet of Things (IoT) is rapidly changing the number of connected devices and the way
they interact with each other. This increases the need for an automated and secure onboarding procedure for
IoT devices, systems and services. Device manufacturers are entering the market with internet connected
devices, ranging from small sensors to production devices, which are subject of security threats specific
to IoT. The onboarding procedure is required to introduce a new device in a System of Systems (SoS)
without compromising the already onboarded devices and the underlying infrastructure. Onboarding is the
process of providing access to the network and registering the components for the first time in an IoT/SoS
framework, thus creating a chain of trust from the hardware device to its hosted software systems and their
provided services. The large number and diversity of device hardware, software systems and running services
raises the challenge to establish a generic onboarding procedure. In this paper, we present an automated
and secure onboarding procedure for SoS. We have implemented the onboarding procedure in the Eclipse
Arrowhead framework. However, it can be easily adapted for other IoT/SoS frameworks that are based on
Service-oriented Architecture (SoA) principles. The automated onboarding procedure ensures a secure and
trusted communication between the new IoT devices and the Eclipse Arrowhead framework. We show its
application in a smart charging use case and perform a security assessment.

INDEX TERMS Internet of Things, System of Systems, Service-oriented Architecture, secure onboarding.

I. INTRODUCTION
Experts estimate that more than 64 billion devices will be
part of the Internet of Things (IoT) by 2026 [1]. The diver-
sity of these devices, their operating systems and running
applications raises the challenge of providing generic security
solutions either for the devices or the network where they are
connected. Security of IoT devices, especially in industrial
environments is of utmost importance since these devices
interact with the physical world and have the potential to
sabotage or even cause harm [2]. Addressing security is even
more challenging when considering System of Systems (SoS)
operating in different regions or platforms.

The associate editor coordinating the review of this manuscript and

approving it for publication was Kashif Sharif .

SoS are large-scale integrated systems that are indepen-
dently operable on their own but are networked together for a
period of time to achieve a higher goal [3]. To take advantage
of SoS, several industries are adopting existing technologies
such as Service-oriented Architecture (SoA) to increase pro-
ductivity, reduce operational costs and automatically carry
out processes. To ensure that such systems are not compro-
mised upon the arrival of new IoT devices, an onboarding
procedure is needed.

In industrial environments device onboarding is usually
done manually. The device ownership is transferred, config-
ured on the network, and registered with the device owner in
the IoT/SoS framework, which is costly and time consuming.
The large number of devices and their complexity make the
process of onboarding a challenging task, which can result

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 111095

https://orcid.org/0000-0003-0422-4215
https://orcid.org/0000-0003-2477-3692
https://orcid.org/0000-0003-3037-7813
https://orcid.org/0000-0002-4133-3317
https://orcid.org/0000-0001-7214-6568


S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

in high security risks and vulnerabilities, e.g. device cloning,
data tampering, etc. This process should be automated in
order to reduce the effort to set up the device for onboard-
ing and should fulfil security requirements defined by inter-
national security standards and best practice guidelines to
mitigate these risks.

To address this issue, in this paper we present an automated
onboarding procedure for IoT/SoS frameworks to design and
build automation solutions. The aim of this procedure is to
provide secure onboarding by establishing a chain of trust
between a new hardware device, its hosted software systems
and their provided services.

The onboarding procedure is implemented and evalu-
ated using the Eclipse Arrowhead framework [4], which is
based on SoA principles and facilitates the creation of local
automation clouds. However, it can be easily adapted for
other IoT/SoS frameworks that are based on SoA principles.
The large number of devices, systems and services inter-
acting with the Arrowhead local cloud raise security con-
cerns, which require a specific solution for each device [5].
To ensure that the cloud is not compromised upon the arrival
of new devices, the proposed onboarding procedure should be
performed. The onboarding procedure introduces a process
where devices, systems and services can be securely regis-
tered and automatically connected into the Arrowhead local
cloud, allowing them to produce new services and consume
already registered ones. One reason for this is to get reliable
and trustworthy data, which can be used to make applications
‘‘smart’’, e.g. allowing them to respond to unsatisfactory
situations [6]. The automated onboarding procedure ensures
a secure and trusted communication between the new device
and the Arrowhead local cloud.

In our previous work [7] we have provided an initial con-
cept of the onboarding procedure. In this paper we provide an
update of the existing systems involved in the onboarding pro-
cedure and present two additional systems, the Onboarding
Contoller and the Certificate Authority (CA). The Onboard-
ing Controller system is part of the local cloud chain of
trust and is the first entry point to the local cloud. It accepts
all the devices to connect with Hypertext Transfer Protocol
Secure (HTTPS) protocol with the Onboarding service and
on success provides: (i) the Arrowhead issued ‘‘onboarding’’
certificate, and (ii) the endpoints of other services needed
for the onboarding procedure. The CA system is responsible
for signing any descendant certificates in an Arrowhead local
cloud. All parties must trust the CA registered with the com-
mon name of its hosting local cloud. Thus, the onboarding
procedure is extended to improve security and to address the
complexity of devices and their needs.

We show the application of the automated and secure
onboarding procedure in a smart charging use case. We per-
form a security assessment: (i) to identify potential threats,
and (ii) assess the automated onboarding procedure against
IEC 62443-3-3 standard to show how it can fulfil the secu-
rity requirements of the standard for mitigating the identi-
fied threats. The results show that the proposed solution is

compliant with the investigated security requirements and
improves the performance by reducing the running time of
the use case compared with manual onboarding.

The main contributions of this work are:

• Design and implementation of an automated onboarding
procedure for establishing a chain of trust from the
hardware device, to its hosted application systems and
their provided services by creating a chain of certificates.
A service cannot be registered without properly regis-
tering a system, a system cannot be registered without
properly registering a device, and a device cannot be
registered without a valid preloaded Arrowhead certifi-
cate, manufacturer certificate or shared key. The device,
system and service unique identifiers and certificates are
separately stored in the respective registries to increase
security.

• Update of existing onboarding systems and introduction
of two additional systems (Onboarding Controller, CA).

• Security assessment and time measurement of the
proposed procedure in a representative industrial use
case.

The remainder of this paper is structured as follows.
Section II presents a number of surveys addressing IoT secu-
rity and existing onboarding approaches and their limita-
tions. Section III provides the necessary background for IoT
security considerations. Section IV introduces the SoA basic
principles. Section V introduces the automated and secure
onboarding procedure, including a detailed description of
involved systems. In section VI, we show the application
of the onboarding procedure in a smart charging use case
and perform a security assessment. Section VII outlines the
findings and the future work.

II. RELATED WORK
Several survey papers have been published addressing IoT
domain. In [8] the authors evaluate a number of IoT frame-
works against criteria such as architectural approach, indus-
try support, standard-based protocols and interoperability,
security, hardware requirements, governance and support for
rapid application development. This evaluation can support
academia and industry to identify the most suitable frame-
works for their future projects. Another evaluation of IoT
industrial frameworks is performed by authors in [9]. The
IoT frameworks evaluated in this work include Arrowhead,
Automotive Open System Architecture (AUTOSAR), BaSys,
FIWARE, Industrial Data Space (IDS), Open Connectivity
Foundation (OCF) and IoTivity. The evaluation highlights
the general effort to solve problems such as security and
interoperability. The authors emphasize the lack of industrial
and automation requirements in some of the frameworks.
In [10] the authors evaluate the security of IoT frameworks.
They provide an introduction of somewell-known IoT frame-
works and conduct a comparative analysis of them based on
security requirements, e.g. authentication, authorization and
secure communication. The surveys presented in [11], [12],

111096 VOLUME 9, 2021



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

summarize the security threats and privacy concerns of IoT.
In [12] the authors explore the most relevant limitations of
IoT devices and their solutions, present the classification of
IoT attacks, presentmechanisms and architectures for authen-
tication and access control, and analyze the security issues in
different layers.

Many solutions already exist for IoT device onboarding.
However, some of them are limited to the number of devices,
type of devices or other dependencies (e.g. manufacturing or
distribution). In this section we evaluate the most popular
ones based on how they handle secure onboarding. Gupta
and van Oorschot [13] have investigated onboarding and soft-
ware update architectures for IoT devices. They highlight the
need for an automatic procedure for secure software update.
They explore the possibility of secure software update using
public-key cryptography on a 8-bit micro-controller with
16MHz clock. As an example, a simple architecture with four
components (IoT device, gateway device, smartphone appli-
cation and software update provider) is considered. To build
trust between all components, a secure onboarding protocol
using key management is used. Also, they show the software
update flow chart for the selected architecture. However, they
consider only one possible scenario (shared key) and they do
not investigate other scenarios such as, IoT devices with man-
ufacturer certificates. In this work, we propose an onboard-
ing procedure that shows this scenario and other possible
scenarios in an industrial environment. In [14] the authors
show the importance of device onboarding by proposing
an onboarding approach for medical devices and healthcare
services. They use the term ‘tag’ to extract information for the
specific devices by providing three types of tags: (i) type I -
device designer to provide hardware information, algorithm
and data states, (ii) type II - signal analyzer to show the
signal character and statistics, and (iii) type III - end user
tags to check signal viability in the data steam, alerts and data
quality. To illustrate the functionality, an onboard tagging use
case considering a pulse oximeter is shown and tags type
II are embedded in the data stream. However, they do not
show the onboarding process of these tags in details or how
other devices or medical services in a system of systems
will benefit from this technology. Several studies, such as
[15]–[17], etc., have been carried out for enabling efficient
and secure onboarding for IoT devices. The authors in [15]
noted that the device type is important when dealing with IoT
devices in order to identify specific security vulnerabilities.
Knowing the type and the vulnerabilities can help decide if
the device will join or not the network. This approach can
mitigate or reduce the impact of attacks, but in an industrial
environment is not always possible. The secure onboarding
procedure presented in this work will categorize the device
type based on the credentials they use to interact with the
local cloud and this will determine if they are allowed to
join the network. Kumar et al. [16] propose a software based
solution that can be used to securely onboard devices with
microphone. This procedure is done via a voice command
to onboard multiple IoT devices. Other automatic solutions

such as Intel zero touch device onboarding [17] already exist,
but these are solutions that depends on specific capabilities of
the device. In [16] the device should have a microphone and
in [17] the device should have an embeddedmicrochip named
EPID (Enhanced Privacy ID) that needs to be installed during
manufacturing.

The automated onboarding procedure proposed in this
paper supports devices with three credential types: (i) device
with Arrowhead issued certificate, (ii) device with manufac-
turer certificate, and (iii) device with shared key. However,
the procedure itself is not device dependent, any device
having an Arrowhead issued certificate, a manufacturer
certificate, or a shared key can be securely onboarded.

III. BACKGROUND
The rapid growth of connected devices, ranging from small
sensors to production devices, increases the risk of security
threats. In this section we introduce a number of security
requirements, e.g. identity management, authentication and
authorization, secure communication protocols and secure
elements, which should be considered in IoT/SoS frame-
works. Additionally, we provide an insight how existing
frameworks address these security requirements.

A. SYSTEM OF SYSTEMS
As defined by ISO/IEC/IEEE 21839, the System of Systems
(SoS) are ‘‘ a set of systems or system elements that interact
to provide a unique capability that none of the constituent
systems can accomplish on its own. Note: Systems elements
can be necessary to facilitate the interaction of the constituent
systems in the system of systems’’ [18]. They are distributed
systems composed of several components and have several
characteristics that distinguish them from traditional sys-
tems, such as: (i) operational independence, (ii) managerial
independence, (iii) evolutionary development, (iv) emergent
behaviour, (v) geographic distribution and other character-
istics including autonomy, belonging, connectivity, diversity
and emergence [19]. These characteristics should be taken
into consideration when designing an SoS. Since these sys-
tems evolve during the time, security is a major challenge
since a SoS can integrate systems with different security
requirements where systems with a low security level can
compromise systems requiring a high level of security.

B. INTERNET OF THINGS
As defined by ISO/IEC JTC 1, the Internet of Things (IoT)
is ‘‘an infrastructure of interconnected objects, people, sys-
tems and information resources together with intelligent ser-
vices to allow them to process information of the physical and
the virtual world and react’’ [20]. Thus, IoT is a platform used
to connect heterogeneous and distributed things embedded
with electronics, software and sensors to the internet enabling
them to collect and exchange vast amounts of data. These
data are then analyzed to build business intelligence and
new business models to improve user experience. Currently,
there is no standardised architecture for IoT that is agreed

VOLUME 9, 2021 111097



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

universally, because different users have different require-
ments. However, a basic architecture includes the perception
layer, where sensors are used to sense and gather information
from the environment, the network layer, which is responsible
for connecting things and for transmitting and processing
sensor data, and the application layer, which is responsi-
ble for delivering application specific service to the users.
Some well-known IoT frameworks are Eclipse Arrowhead,
Amazon Web Services (AWS) IoT, Azure IoT Suite, Kura,
etc. IoT allows the creation of System of Systems (SoS),
which are independently operable on their own, but are net-
worked together for a period of time to achieve a higher
goal, e.g. costs, performance, robustness. Since these systems
evolve during time, security is a major challenge because
in a SoS can be integrated systems with different security
requirements.

C. IDENTITY MANAGEMENT
In ISO/IEC 24760-1, identitymanagement is defined as ‘‘pro-
cesses and policies involved in managing the life cycle and
value, type and optional metadata of attributes in identi-
ties known in a particular domain’’ [21]. In IoT, identity
management should be able to identify devices, systems and
services and their access to confidential data, rather than
identifying only people. Thus, it is of utmost importance
to establish a naming system for IoT devices, systems and
services, as well as to create a process for registering these
entities in a secure way. Additionally, the focus in SoA
changes from traditional systems to reusable services, thus
identity management is a cross-cutting concern. In [22] the
authors present a blueprint for a service-oriented identity
management architecture featuring interoperability by apply-
ing existing standards. An authentication service is used to
issue security tokens, which enables the web services for
single sign-on, and an authorization service is used for sep-
aration of concerns. In [23] the authors propose an approach
for identity and access management in the context of SoA
by defining a domain-specific language (DSL) for role-based
access control (RBAC) that allows for the definition of iden-
tity and access management policies for SoA. In [24] the
authors propose a model to manage the integration of identity,
authentication and authorization modules based on formal
policy-basedmethods. In [25] is presented a new naming con-
vention for the Eclipse Arrowhead framework following the
requisites and characteristics defined in the system of systems
integration. The naming convention represents a renovated
vision of the identification of devices, systems and services.
Thus, provides a trusted chain of connections, describing
who is hosting what information and enabling security policy
implementation. Identity management in IoT is performed
by exchanging identifying information between the enti-
ties for first time connection. This process is susceptible to
eavesdropping, which can lead to man-in-the-middle attack,
and thus can jeopardize the whole IoT framework. Hence,
security techniques such as authentication and authorization
should be integrated in this process.

D. AUTHENTICATION AND AUTHORIZATION
Authentication ensures that a person, device, system or ser-
vice is the one claimed. Authentication factors include some-
thing you know, e.g. password, PIN code, something you
have, e.g. tokens, certificates, debit cards, and something
you are, e.g. bio-metrics. The certificate based authentication
works via asymmetric cryptography. Each party needs to have
a valid certificate, which is signed by a trusted and known
parent certificate. The trusted certificate confirms the identify
of the presented certificate, known also as the chain of trust
concept. Figure 1 shows a chain of trust with three certifi-
cates. The certificate with the highest authority is known
as root certificate. The root certificate signs its descending
certificates, confirming their identity. Any certificate between
the root certificate and the end-entity certificate is called an
intermediate certificate.

FIGURE 1. Chain of trust including root certificate, intermediate
certificate and end-entity certificate.

In Arrowhead framework the Certificate Authority system,
which will be introduced later on in the paper, is used to
sign any descendent certificate in an Arrowhead local cloud.
Amazon Web Services (AWS) IoT [26], a cloud platform
for IoT released by Amazon, provides three ways of veri-
fying identity, X.509 certificates, AWS Identity and Access
Management (IAM) users, groups, and roles, AWS Cog-
nito identities. Thus, each device, connected to the AWS
IoT, is authenticated using one of these methods chosen
by the end-user. Azure IoT Suite [27], a platform released
by Microsoft, is composed of a set of services that enable
end-users to interact with their IoT devices. In order to estab-
lish a secure connection between devices and Azure IoT Hub,
the handshake process is encrypted using Transport Layer
Security (TLS). An identity proof in terms of X.509 certifi-
cate is sent to the targeted device, which has a unique identity
key at deployment time. The device then authenticates itself
to Azure IoT Hub by sending a token, which contains a
HMAC-SHA256 signature string that is a combination of
the generated key along with a user-selected device identity.
Kura, an Eclipse IoT project, provides a framework for IoT
gateways that run M2M applications [28]. Kura uses secure
sockets and Eclipse Paho clients to handles the majority of
data communication via MQTT protocol.

111098 VOLUME 9, 2021



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

According to NIST SP 800-82, authorization is ‘‘the right
or a permission that is granted to a system entity to access
a system resource’’ [29]. Thus, it is the process of grant-
ing access privileges and is determined by applying policy
rules, e.g. access control mechanism, to the authenticated
person, device, system or service. In Arrowhead framework
the Authorization system, which will be introduced later on
in the paper, is used to provide authentication, authorisation
and optionally accounting of service interactions. In AWS
IoT, the authorization process is policy-based. Thus, it can
be applied by either mapping rules and policies to each cer-
tificate or by applying IAM policies. Azure IoT uses Azure
ActiveDirectory (AAD) [30] to provide a policy-based autho-
rization model for data stored in the cloud. Kura has a service
component, which manages security policies.

E. SECURITY IN ECLIPSE ARROWHEAD
In this section we briefly explain how identity management,
authentication and authorization is handled in the Eclipse
Arrowhead framework and the corresponding systems.
Paniagua et al. [25] propose a naming convention for the
Arrowhead framework, which is used as a guideline for entity
identification within the local cloud. The naming conven-
tion provides a trusted chain of connections, describing who
is hosting what information and enabling security policy
implementation. The naming convention covers services to
local clouds. The Arrowhead local cloud can contain many
devices. Each device can contain one or more systems. Each
systems can contain one or more services. Thus, identifiers
will be used to connect the hosted device/system/service with
the hosting local-cloud/device/system. Identifiers used in the
Arrowhead naming convention follow the same structure as
identifiers in DNS-SD and RFC-6335 recommendations [31].

The local cloud name is important in a SoS scenario.
The identifier of a local cloud should be connected to its
Gatekeeper system, which is the system in charge of the
connection with other local clouds [32].

The local cloud identifier is as follows:
_gatekeepersystemname._InterCloudNegotiations._protocol._transport.

_InterCloudNegotiations:port

The device identifier is as follows:
_devicename._localcloudname._interface._macprotocol._macaddress

The system identifier is as follows:
_systemname._devicename._protocol._transport._domain

The service identifier is as follows:
_servicename._sysname._protocol._transport_domain:port

In order to connect a new device to the Arrowhead local
cloud, the device has to be authenticated. The technique used
for authentication in Arrowhead is X.509 certificates [33].
They are digital certificates, which should be issued by a
trusted party, a certificate authority. These certificates are
SSL/TLS-based to ensure secure authentication. In this paper
we introduce a new Arrowhead core system, the Certificate
Authority (CA), which is part of the certificate hierarchy in
the Arrowhead framework shown in Figure 2. The CA system
is the highest authority in the local cloud and is responsible

for signing any descending certificates, e.g. onboarding cer-
tificates, device certificates, and system certificates, which
are needed for the onboarding procedure. All services in the
local cloud must trust the CA of the local cloud. The CA
itself may be signed by a central Arrowhead consortium,
establishing a chain of trust and allowing different Arrowhead
local clouds to interconnect with each other.

FIGURE 2. Certificate hierarchy in Arrowhead. The Certificate Authority
system is the highest authority in the local cloud and is responsible for
signing any descending certificates needed for the automated onboarding
procedure.

The authorization process is policy-based. The Authoriza-
tionControl service, produced by the Authorization system,
is responsible for enforcing all authorization related policies.
A policy may define that no systems with a specific operating
system may be allowed in the cloud. Another policy may
define that a service (e.g. temperature collector service) may
only query the ServiceRegistry about existing temperature
services but not e.g. power regulating services.

F. SECURE COMMUNICATION PROTOCOLS
In industrial IoT environments, there is a need to con-
nect legacy devices and sensors. Thus, not only IP- and
Ethernet-based protocols, but also serial-based protocols
must be connected. This adds integration complexity and
security concerns. Some of the most used IoT application-
layer protocols include Hypertext Transfer Protocol (HTTP),
ConstrainedApplication Protocol (CoAP) andOpen Platform
Communications United Architecture (OPC-UA). HTTP is
used for distributed, collaborative, hypermedia information
systems [34]. It is defined as a request-response protocol in
the client-server computing model. HTTP Secure (HTTPs) is
an extension of the HTTP, which is used for secure communi-
cation on the Internet. In HTTPS, the communication proto-
col is encrypted using TLS. CoAP is a web transfer protocol
based on REpresentational State Transfer (REST) [35]. CoAP
is often used as a lightweight alternative to HTTP for use with
constrained devices. CoAP does not provide security in itself,
but it uses Datagram Transport Layer Security (DTLS) at the
transport layer, in order to secure all CoAP messages. DTLS
provides data confidentiality and integrity, authentication,
non-repudiation and anti-replay protection for CoAP com-
munication. CoAP with DTLS support is known as secure
CoAP (CoAPs) [36]. OPC-UA is the new standard of the OPC

VOLUME 9, 2021 111099



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

Foundation providing interoperability in process automation
and beyond. By defining abstract services, OPC-UA provides
SoA for industrial applications – from factory floor devices
to enterprise applications [37]. Since OPC-UA runs over
Transmission Control Protocol (TCP), with optional HTTPs
encoding, it is not suitable for low-power devices. Instead,
User Datagram Protocol (UDP) uses fewer resources and
provides low-power operation.

Messaging protocols such as Message Queue Telemetry
Transport (MQTT), Advanced Message Queuing Protocol
(AMQP), and Extensible Messaging and Presence Protocol
(XMPP) are also used. To ensure communication secu-
rity MQTT, AMQP and XMPP, are used over TLS. Some
application-layer protocols, such as CoAP and MQTT,
are more appropriate for running on constrained devices.
Others, like XMPP, are recommended for the communication
between gateways and servers over the Internet [38].

However, industrial IoT environments continue to use
more industry-specific protocols. IEC 61850-9-2 Sampled
Values (SV) [39], IEC 61850-8-1 Generic Object Oriented
Substation Event (GOOSE) [40], Manufacturing Message
Specification (MMS) [41], Modbus [42], etc., provide the
core communication mechanisms for industrial environments
such as power utilities, manufacturing, and transportation.

G. HARDWARE ROOT OF TRUST
Above mentioned software-based security mechanisms are
not sufficient to protect against security threats, since data
may be collected by potentially untrusted devices. Thus, it is
important to add an additional hardware-based security layer.
Each device should have a hardware ‘‘secure element’’. The
secure elements provide tamper resistant storage for holding
and protecting the key from any kind of attack, even includ-
ing physical access to the device. One example is Trusted
Platform Module (TPM) [43], which is a hardware chip
designed to enable commodity computers to achieve greater
levels of security and is specified by the Trusted Computing
Group (TCG) industry consortium. TPMs are manufactured
by chip producers, including Atmel, Broadcom, Infineon,
STMicroelectronics, Winbond, etc. TPMs provide integrity
protection and a root of trust for the devices. Furthermore,
TPMs provide a standardized interface, which makes it very
easy to integrate them in any device.

IV. SERVICE-ORIENTED ARCHITECTURE
The continuous growth of IoT and its benefits in multiple
industries will require emerging tools and technologies to
meet organizations and consumers needs. To take advantage
of IoT, several industries are adopting existing technologies
such as Service-oriented Architecture (SoA) to increase pro-
ductivity, reduce operating costs and automatically carry out
processes. The automated and secure onboarding procedure
is implemented and evaluated using the Eclipse Arrowhead
framework, which is based on SoA principles. Thus, in this
section we provide an overview of this technology.

SoA is a technology that allows applications to be reg-
istered as services. Thus, it is about information exchange
between a service producer and a service consumer as shown
in Figure 3. SoA provides automation of industrial systems
based on the following principles: (a) loose coupling, which
supports autonomy and distributed services, (b) late binding,
which makes possible to use the information any time by
connecting to the correct resources, and (c) lookup, which
can be used to discover already registered services.

FIGURE 3. Service-oriented Architecture. SoA is about information
exchange between a service producer and a service consumer.

a: LOOSE COUPLING
Two SoA systems do not need to know about each other at
design time to allow a run time data exchange. The identifi-
cation of available services is established at run time making
use of a service registry system and its discovery mechanisms
as shown in Figure 4. A new SoA service will register itself
in the service registry and it will be discoverable by any other
service in the network.

FIGURE 4. SoA loose coupling supports autonomy and distributed
services.

b: LATE BINDING
The exchange of data between two systems is established
in run time as shown in Figure 5. The run time coupling is
initiated by an orchestration mechanism, which provides the
endpoint of the selected producer to the requesting consumer.
If necessary, the authorization mechanisms is consulted to
check if the service consumer system can be authenticated
and authorized to consume the requested service.

FIGURE 5. SoA late binding makes possible to use the information any
time by connecting to the correct resources.

111100 VOLUME 9, 2021



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

c: LOOKUP
In a SoA environment the data exchange can be initiated by
a service consumer requesting data, which is known as pull
behaviour. A pull behaviour can be controlled by a timer at the
service consumer by creating data pulling of a sensor every
100ms. The data exchange can also be initiated by a producer
that knows about conditional data request, which is known
as pull behaviour. This is initiated by a data subscription
under certain criteria. For e.g. a pressure sensor will push its
pressure reading service to a consumer whenever the pressure
reading is higher than 2 bar, data is then pushed from the
producer to the consumer.

However, the principles of SoA have not been designed to
primarily address security. Originally, SoA implementation
was associated with SOAP (Simple Object Access Protocol).
More recently, developers prefer to use lightweight REST
services instead. REST uses HTTP to obtain data and perform
operations, and supports SSL authentication to achieve secure
communication. REST is a stateless protocol, e.g. each HTTP
request contains all necessary information, which means that
neither the service producer nor the service consumer are
required to retain any data to satisfy the request.

Despite the benefits, REST application programming inter-
faces (APIs) are prone to known API attacks such as Man In
The Middle (MITM) attacks, API injections (e.g. cross site
scripting (XSS), SQL injection (SQLi)), Distributed Denial
of Service (DDoS) attacks. To protect against such threats,
security best practices, such as authentication and authoriza-
tion, should be in place. It is important to know who is using
the services of a SoA-based environment in order to control
access. This can be done using a variety of standards, some
established such as X.509 certificates, and some new such
as WS-Security [44]. To ensure that IoT devices, systems
and services are authenticated and authorized to connect
to a SoA-based IoT/SoS framework, we propose a secure
onboarding procedure, which is described in the next section.

V. AUTOMATED ONBOARDING PROCEDURE
The automated and secure onboarding procedure is needed
when a new device produced by any vendor (e.g. Siemens,
Infineon, Bosch, etc.) wants to interact with an IoT frame-
work, as shown in Figure 6.

FIGURE 6. Automated onboarding procedure ensures that devices,
systems and services are properly authenticated and authorized to
connect to the Arrowhead local cloud. In the first step, the new device
communicates via https with the Onboarding Controller system.

To assure that the framework is not compromised upon the
arrival of this new device, it is important to establish a chain of

trust from the new hardware device, containing a secure ele-
ment (e.g. TPM), to its hosted application systems and their
services. Thus, the onboarding procedure makes possible
that IoT devices, systems and services are authenticated and
authorized to connect to an IoT/SoS framework. Low-level
IoT devices have low processing power and small memory
sufficient for dedicated tasks. It is challenging to deploy
public-key cryptography and to deliver software updates
through the internet for these constrained devices [45].

The onboarding procedure is validated using the Eclipse
Arrowhead framework,1 which facilitates the creation of
local automation clouds used to enable local real time per-
formance and security, interoperability, simple and cheap
engineering and scalability through multi cloud interaction.
The source code of the onboarding systems and their docu-
mentation can be found in the open-source ArrowheadGithub
repository.2 The results should easily be adapted for other IoT
frameworks, which are based on SoA principles.

A. ONBOARDING PROCEDURE SYSTEMS
In the following we provide an overview of the systems
involved in the onboarding procedure.

1) ONBOARDING CONTROLLER SYSTEM
The Onboarding Controller system has to be part of every
local cloud where trust at device, system and service level is
required. Thus, it is a core system and belongs to the Arrow-
head local cloud chain of trust. The Onboarding Controller
system: (i) is the first entry point to the local cloud, e.g.
accepts all devices to connect via the Onboarding service,
(ii) has a certificate for the https communication with the
device, and (iii) (optionally) the certificate is provided by
a public CA (e.g. Verisign).On success, the system pro-
vides: (i) an Arrowhead issued ‘‘onboarding’’ certificate,
and (ii) the endpoints of the DeviceRegistry, SystemRegistry,
ServiceRegistry and Orchestrator systems.

FIGURE 7. Onboarding Controller is a support core system in Arrowhead
framework. It produces the Onboarding service, which grants onboarding
with an Arrowhead issued certificate, manufacturer certificate or a shared
secret.

The Onboarding Controller system shown in Figure 7
consumes the ServiceDiscovery, Orchestration, Authoriza-
tionControl and SignCertificate services and provides the
Onboarding service. Its functionalities are shown in Table 1.

1https://www.arrowhead.eu/
2https://github.com/eclipse-arrowhead/core-java-spring

VOLUME 9, 2021 111101



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

TABLE 1. Onboarding Functions.

The OnboardingWithCsr input contains a Base64 encoded
Certificate Signing Request as required by the CA system
of the local cloud. The OnboardingWithName input contains
a common name that will be in the certificate. Authenti-
cation of the client will be done through a shared secret
(e.g. a password without user id as defined in RFC2617 [46]
Basic Authentication) or through mutual authentication of
a trusted manufacturer certificate (see RFC5246 [47]). The
OnboardingResponse contains a number of fields e.g. the
indication if the operation is successful, the URIs of the end-
points of DeviceRegistry, SystemRegistry, ServiceRegistry
andOrchestrator systems, Base64 encoded signed certificates
returned by CA system, the algorithm of the key e.g. RSA,
the format of the key e.g. X.509, etc.

Figure 8 shows the use cases that represent the actors and
their interaction with the Onboarding Controller system.

FIGURE 8. Onboarding Controller supports three use cases:
(i) onboarding with preloaded Arrowhead certificate, (ii) onboarding with
manufacturer certificate, and (iii) onboarding with a shared secret.

The actors can be devices with different credentials:
(i) preloaded Arrowhead certificate, (ii) manufacturer
certificate, and (iii) shared secret.

2) DeviceRegistry SYSTEM
The DeviceRegistry system is used to provide a local cloud
storage holding the information on which devices are reg-
istered within a local cloud, meta-data of these registered
devices, including a list of the systems that are deployed

in each of them. The DeviceRegistry system holds for
the Arrowhead local cloud unique device identities. The
DeviceRegistry system shall be accessible using differ-
ent SoA protocols (e.g. REST, CoAP, MQTT). As shown
in Figure 9, the DeviceRegistry system consumes the three
mandatory core services of Arrowhead, the SignCertificate
service provided by CA and provides the DeviceDiscovery
service.

FIGURE 9. DeviceRegistry is a support core system in Arrowhead
framework. It consumes the Arrowhead mandatory core services,
the SignCertificate service, and produces the DeviceDiscovery service.

The DeviceDiscovery service provides the functionalities
shown in Table 2.

TABLE 2. DeviceDiscovery Functions.

The register function is used to register a device, which
contains a symbolic name as well as a physical endpoint.
The instance parameter represents the endpoint information
that should be registered. The unregister function is used
to unregister a device that no longer should be used. The
instance parameter contains information necessary to find the
device to be removed. The query function is used to find and
translate a symbolic device name into a physical endpoint,
IP address and a port. The query parameter is used to request
a subset of all the registered devices in the DeviceRegistry
system based on a specified criteria. The onboard function
is an extension of the register function and is used during
the onboarding of a device. It is the only function which
accepts the ‘‘onboarding’’ certificate. Homogeneously to the
Onboarding Controller system, the onboard function con-
sumes the SignCertificate and returns an Arrowhead device
certificate. The DeviceRegistryEntry contains a number of
fields e.g. the Arrowhead device object that is provided,
the name and the mac address of the Arrowhead device,

111102 VOLUME 9, 2021



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

endofValidity e.g. an ISO 8601 format date-time, and meta-
data. Metadata should be provided using key pairs such as,
encode=syntax, e.g. encode=xml, compress=algorithm, e.g.
compress=exi, semantics=XX, e.g. semantics=senml.

Figure 10 shows the use cases that represent the actors and
their interaction with DeviceRegistry system.

FIGURE 10. DeviceRegistry supports four use cases: (i) device onboarding,
(ii) device registration, (iii) device deregistration, and (iv) device lookup.

3) SystemRegistry SYSTEM
The SystemRegistry system is used to provide a local cloud
storage holding the information on which systems are reg-
istered within a local cloud, meta-data of these registered
systems and the services these systems are designed to con-
sume. The SystemRegistry holds for the Arrowhead local
cloud unique system identities for systems deployed within
it. As shown in Figure 11, the SystemRegistry system con-
sumes the three mandatory core services of Arrowhead,
the SignCertificate service produced by CA, and produces the
SystemDiscovery service.

FIGURE 11. SystemRegistry is a support core system in Arrowhead
framework. It consumes the Arrowhead mandatory core services,
the SignCertificate service, and produces the SystemsDiscovery service.

The SystemDiscovery service provides the functionalities
shown in Table 3.

The register function is used to register a system, which
contains a symbolic name as well as a physical endpoint.
The instance parameter represents the endpoint information
that should be registered. The unregister function is used

TABLE 3. SystemDiscovery Functions.

to unregister a system that no longer should be used. The
instance parameter contains information necessary to find the
system to be removed. The query function is used to find and
translate a symbolic system name into a physical endpoint,
IP address and a port. The query parameter is used to request
a subset of all the registered systems in the SystemRegistry
system based on a specified criteria. The onboard function is
an extension of the register function and is used during the
onboarding of a system. It is the only function which accepts
the device certificate. Homogeneously to the Onboarding
Controller and DeviceRegistry systems, the onboard func-
tion consumes the SignCertificate and returns an Arrowhead
system certificate.

The SystemRegistryEntry contains a number of fields e.g.
the Arrowhead system object that is provided, the name and
IP address of the Arrowhead system, the port where the
provided system can be consumed, authentication informa-
tion e.g. if the communication is secure provides the public
key of the systems’ certificate, the Arrowhead device that is
providing the system, endOfValidity, metadata, etc.

Figure 12 shows the use cases that represent the actors and
their interaction with SystemRegistry system.

FIGURE 12. SystemRegistry supports four use cases: (i) system
onboarding, (ii) system registration, (ii) system deregistration, and (iv)
system lookup.

VOLUME 9, 2021 111103



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

4) ServiceRegistry SYSTEM
The ServiceRegistry system provides the database, which
stores information related to the currently actively offered
services within the local cloud. In this generation of the
framework, this system is implemented twice, using two dif-
ferent database technologies: (i) DNS-SD BIND server with
a Java-bases REST interface, and (ii) MySQL database using
the same Java-based REST interface. The purpose of this
system is therefore to allow application systems to register
the services they offer at the moment, making this announce-
ment available to other application systems on the network,
to remove or update their entries when it is necessary, and to
utilize the lookup functionality of the registry to find public
core system service offerings in the network, otherwise the
Orchestrator has to be used. As shown in Figure 13, the Ser-
viceRegistry system produces the ServiceDiscovery service.

FIGURE 13. ServiceRegistry is a mandatory core system in Arrowhead
framework. It produces the Service Discovery service.

The ServiceDiscovery service provides the functionalities
shown in Table 4.

TABLE 4. ServiceDiscovery Functions.

The register function is used to register services. The
services will contain various metadata as well as a phys-
ical endpoint. The various parameters are representing the
endpoint information that should be registered. The unreg-
ister function is used to unregister service instances that were
previously registered in the ServiceRegistry. The instance
parameter is representing the endpoint information that
should be removed. The query function is used to find and
translate a symbolic service name into a physical endpoint,
for example an IP address and a port. The query parameter is
used to request a subset of all the registered services fulfilling
the demand of the user of the service. The list contains service
endpoints that fulfill the query.

In the latest generation of the framework, the lookup func-
tionality of services is integrated within the orchestration
process. Therefore, when an application system is looking
for a service to consume, it shall ask the Orchestrator system
via the Orchestration service to locate one or more suitable
service providers and help establish the connection based
on metadata submitted in the request. Direct lookup from
application systems within the network is not advised in
this framework generation, due to security reasons. However,
the lookup of other application systems and services directly
is not within the primary use, since access will not be given
without the Authorization JSON Web Token. The use of the
Token Generation is restricted to the Orchestrator for general
system accountability reasons.

Figure 14 shows the use cases that represent the actors and
their interaction with ServiceRegistry system.

FIGURE 14. ServiceRegistry supports three use cases: (i) service
registration, (ii) service deregistration, and (iii) service lookup.

The above mentioned registries, use a basic three-tier
architecture: (i) The presentation tier named *Controller.java,
which transforms the view into domain specific objects and
vice versa. Each RegistryController contains three functions,
query, which searches for an entity with e.g. a specific
name (common name as shown in its certificate), register,
which stores an entity in the database, and unregister, which
removes an entity from the database. (ii) The application
tier is named *Service.java, which is responsible for any
business logic and extensive validation. (iii) The data tier is
taken from the Arrowhead common project and is named
*Repository.java. The Repository classes are generic inter-
faces using Spring Boot Data for implementation, They allow
to deal with any entity in the Arrowhead code. Arrowhead
uses OpenAPI (formerly known as swagger [48]) to enrich
the documentation of its REST methods.

5) AUTHORIZATION SYSTEM
The Authorization system has a database that describes
which application system can consume what services from

111104 VOLUME 9, 2021



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

which application systems, intra-cloud access rules, and a
database that describes which other local clouds are allowed
to consume what services from this cloud, inter-cloud autho-
rization rules. The Authorization system provides the Autho-
rizationControl service and the Token Generation service for
allowing session control within the local cloud, as shown
in Figure 15. The purpose of the Token Generation func-
tionality is to create session control functionality through
the core systems. The output is JSON Web Token that
validates the service consumer system, when it wants to
access the service from another application system. This
token shall be primarily generated during the orchestration
process and only released to the service consumer when
all affected core systems are notified and agreed to the to-
be-established service connection. The AuthorizationControl
service provides two different interfaces to look up autho-
rization rights: (i) intra-cloud authorization, which defines
an authorization right between a consumer and provider
system in the same local cloud for a specific service, and
(ii) inter-cloud authorization, which defines an authorization
right for an external cloud to consume a specific service from
the local cloud.

FIGURE 15. Authorization is a mandatory core system in Arrowhead
framework. It produces two services, AuthorizationControl and Token
Generation.

The AuthorizationControl service provides one functional-
ity as shown in Table 5.Get Public Key returns the public key
of the Authorization core service as a Base64 encoded text.
This service is necessary for service providers if they want to
utilize the token based security.

TABLE 5. AuthorizationControl Functions.

The Authorization system, in line with all core systems,
utilizes the X.509 certificate Common Name naming conven-
tion in order to work.

6) ORCHESTRATOR SYSTEM
The Orchestrator system provides run-time binding between
application systems. The purpose of the Orchestrator sys-
tem is to provide application systems with orchestration
information, where they need to connect to. The outcome
of the Orchestration service includes rules that will tell
the application system what service provider system(s) it
should connect to and how. Such orchestration rules include

accessibility information details of a service provider
(e.g. network address and port), details of the service
instance within the provider system (e.g. base URL, Inter-
face Design Description specification and other metadata),
authorization-related information (e.g. access token and sig-
nature) and additional information that is necessary for estab-
lishing connection. As shown in Figure 16, the Orchestrator
system provides two core services, the Orchestration service
and the OrchestrationStoreManagement service, and should
consume at least the two mandatory core services.

FIGURE 16. Orchestrator is a mandatory core system in Arrowhead
framework. It produces OrchestrationStrore and
OrchestrationStroreManagement services.

The Orchestrator system can be used in two ways: (i) using
predefined rules coming from the Orchestrator Store database
to find the appropriate providers for the consumer, and
(ii] dynamic orchestration, in which the core service searches
the whole local cloud to find matching providers.

7) CERTIFICATE AUTHORITY (CA) SYSTEM
The CA is responsible for signing any descendant certificates
in an Arrowhead local cloud. All parties must trust the CA
registered with the common name of its hosting local cloud.
The certificate of the CAmay be signed by a central authority
(e.g. Arrowhead Consortium), so, the chain of trust can be
established allowing different local clouds to interconnect
with each other in a secure manner. The Certificate Authority
system consumes the mandatory core services and provides
the SignCertificate service, as illustrated in Fig. 17.

FIGURE 17. CertificateAuthority is a support core system in Arrowhead
framework. It consumes the Arrowhead mandatory core services and
produces the SignCertificate service.

VOLUME 9, 2021 111105



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

The SignCertificate service issues signed certificates for
requester entities inside a local cloud. The requester entity
has to construct a Certificate Signing Request (CSR) in com-
pliance with [49] and send it to the CA. The CA verifies
the signature inside the CSR. If the signature verification is
successful, then the CA generates and sends back a signed
certificate for the requester entity. Using this certificate,
the requester entity is able to communicate in secure manner
with the systems inside the local cloud. The SignCertificate
service consists of a single function as shown in Table 6.

TABLE 6. SignCertificate Functions.

B. ONBOARDING PROCEDURE SEQUENCE DIAGRAM
As shown in Figure 18, the use cases in which an external
actor (e.g. new device) interacts with the Arrowhead local
cloud during the onboarding procedure include: (i) initialize
device onboarding via the Onboarding service, (ii) onboard
and register a device in the DeviceRegistry system via the
DeviceDiscovery service, (iii) onboard and register a system
in the SystemRegistry system via the SystemDiscovery ser-
vice, (iv) (optionally) register a service in the ServiceRegistry
system via the ServiceDiscovery service, and (v) start normal
operation (e.g. service lookup, service consumption).

The sequence diagram in Figure 19 shows the interaction
of a new device with the Arrowhead local cloud during the
onboarding procedure. This a valid procedure once the device
has been connected to the private network of the local cloud.
Thus, the new device must be connected to the Onboarding
Controller system from outside the local cloud or from a
demilitarized zone (DMZ) within the local cloud. The device
hosting the Onboarding Controller needs to have two network
interfaces, one connected to the private network and one
connected to the DMZ or the open internet. Once allowed
to be part of the private network, the device a) can phys-
ically be connected to the private network by an operator,
or b) if in DMZ, a reconfiguration of the firewall can be made
by the Onboarding Controller system. As mentioned above,
the device can have different credentials e.g. a preloaded
Arrowhead certificate, a manufacturer certificate or a shared
secret. However, in this paper we show only the sequence
diagram of a device with a manufacturer certificate stored
on a TPM, which provides the highest security as its private
key cannot be read from outside. Following is provided a
step-by-step description of the onboarding procedure:

1) We are assuming that the new device has a manufac-
turer certificate, which is stored in a secure element,
e.g. TPM. The device sends an onboarding request to
the Onboarding Controller system, which contains the
manufacturer certificate. The communication with the
Onboarding service is done using https protocol.

FIGURE 18. Onboarding use cases. During the automated onboarding
procedure the new device interacts with a number of Arrowhead systems
for initializing device onboarding and for registering device, systems and
services.

2) The Onboarding Controller system verifies the manu-
facturer certificate with the CA system, which, on suc-
cess, sends the Arrowhead ‘‘onboarding’’ certificate.

3) The Onboarding Controller system gets the endpoints
of DeviceRegistry, SystemRegistry, and
ServiceRegistry from Orchestrator system.

4) The Onboarding Controller system returns the Arrow-
head ‘‘onboarding’’ certificate and the endpoints of
DeviceRegistry, SystemRegistry, ServiceRegistry and
Orchestrator to the device.

5) Using the obtained endpoints the new device begins the
registration with the DeviceRegistry system through
the DeviceDiscovery ‘‘onboard’’ interface authenticat-
ing itself with the Arrowhead onboarding certificate.

6) The DeviceRegistry either: (i) stores intermediate cer-
tificates issued by CA and based on them authenticates
the device without using any CA service, or (ii) verifies
the received Arrowhead onboarding certificate with the
local cloud CA.

7) On success, the Arrowhead local cloud CA issues the
Arrowhead ‘‘device’’ certificate.

8) The DeviceRegistry registers the device and returns the
Arrowhead ‘‘device’’ certificate to the device.

9) The system on the new device begins the regis-
tration with the SystemRegistry system through the
SystemDiscovery ‘‘onboard’’ interface authenticating
itself with the Arrowhead device certificate. This pro-
cedure is repeated for each system hosted on the device.

111106 VOLUME 9, 2021



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

FIGURE 19. The sequence diagram of the automated onboarding procedure for a new device with a manufacturer certificate.

10) The SystemRegistry either: (i) stores intermediate cer-
tificates issued by CA and based on them authenticates
the systemwithout using any CA service, or (ii) verifies
the received Arrowhead ‘‘device’’ certificate with the
local cloud CA.

11) On success, the local cloud CA issues Arrowhead
‘‘system’’ certificates for each registered system.

12) The SystemRegistry registers the system and returns
the Arrowhead ‘‘system’’ certificate.

13) The system begins the registration of its produced ser-
vice in the ServiceRegistry using the ‘‘register’’ inter-
face of the ServiceDiscovery, authenticating it with the
Arrowhead system certificate. Since a system owns its
own data the acceptance of the system certificates will
transfer the right to manage consumption of produced
services to the Authorization system. This procedure is
repeated for each service produced by the system.

From this point normal operation can start, e.g. service
lookup can be performed by the application system. In the
latest generation of the framework, the lookup functionality

of services is integrated within the orchestration process.
This onboarding procedure provides a chain of trust from
the new hardware device, to its hosted software systems and
their services by using a chain of certificates, manufacturer
certificate, Arrowhead onboarding certificate, Arrowhead
device certificate and Arrowhead system certificate.

VI. SMART CHARGING USE CASE
The Arrowhead local cloud can be considered as a specific
corporate sub-network, to which increased security and QoS
requirements apply. As such, connecting any new devices to
the local cloud means a use case for the onboarding pro-
cedure. Trivial use cases include the deployment of intelli-
gent actuators to production lines or new sensor nodes to
data acquisition networks. Here, the automated onboarding
procedure shall eliminate the need for any manual installation
and configuration efforts.

A different scenario is the administration and authenti-
cation of mobile devices, which may enter and leave local
clouds on an ad-hoc basis. An example for that is the

VOLUME 9, 2021 111107



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

interaction of a charging station and an electrical vehicle
(e-vehicle) arriving to charge. The use case setup shown
in Figure 20 is composed of a charging station, an e- vehicle
and an Arrowhead local cloud.

FIGURE 20. Smart charging use case setup. Secure onboarding of
charging station and e-vehicle in the Arrowhead local cloud.

The Arrowhead framework defines three maturity levels
(ML) for application systems: ML3, the application system
implements the consumption/production of services without
external components, ML2, the application system imple-
ments the consumption/production of services by using a
software adapter, and ML1, the application system uses dedi-
cated hardware with software responsible for wrapping the
application system with Arrowhead framework compliant
services. In our use case, dedicated hardware is used to
implement the consumption/production of services.

The charging station (service provider) is composed of:
(i) an inductive charger used to refuel the battery and simu-
late the charging of the e-vehicle, (ii) a voltcraft measuring
device to control when the charger is supplied with power,
(iii) a RFID reader to identify the service consumer, and
(iv) a Raspberry Pi that runs Arrowhead, controls the voltcraft
and the RFID reader. The e-vehicle (service consumer) is
composed of: (i) a Fischertechnik TXT controller to control
the engine and sensors of the e-vehicle, (ii) a battery, which
is used to power the Raspberry Pi and will be charged by the
charging station, (iii) a RFID chip card to identify the service
consumer to the service provider, and (iv) a Raspberry Pi
that runs Arrowhead. TheArrowhead local cloud, including
mandatory core systems and onboarding systems, runs in a
Raspberry Pi. An info-screen is used to display information
regarding Arrowhead and status of the use case and a WiFi
router is used for the communication.

Figure 21 extends Figure 6 by showing the devices,
application systems and services specific to the use case.

The charging Station system running on charging station
device produces three services: charging-station-register ser-
vice, which allows other systems to register in the station,
charging-station-unregister service, which allows other sys-
tems to unregister from the station, and charge service, which
allows other systems to request charging from the station. The
charge service contains the consumers RFID as parameter.
The eVehicle system running on e-vehicle device produces

FIGURE 21. Smart charging use case devices, application systems and
services. Secure onboarding of charging station and e-vehicle in the
Arrowhead local cloud.

the get-rfid service, which is consumed by the charging
station to verify the RFID.

Both, charging station and e-vehicle shall be securely
onboarded on the Arrowhead local cloud to communicate
with each other. Once the e-vehicle gets into the WiFi range,
it sends an onboardingRequest to the onboarding service of
theOnboardingController system. If succeeded, the e-vehicle
goes through the automated onboarding procedure steps
described in Section V-B. It receives an onboarding certifi-
cate to register the device (e-vehicle), a device certificate to
register its hosted system (eVehicle) and a system certificate
to register the corresponding service (get-rfid).

After onboarding is completed, the e-vehicle registers itself
with the charging station by consuming the charging-station-
register service. Then it drives to the charging station. Once
the e-vehicle is in close proximity, the RFID reader of the
charging station reads the RFID of the e-vehicle. The charg-
ing station triggers its own charge service with the e-vehicles’
RFID and charges it on success. The charge has a fixed
duration. The registered application system reports battery
data from the CAN bus of the e-vehicle, which is used to indi-
vidualize the charging session. The e-vehicle disengages once
the charge is done and unregisters itself from the charging
station.

In our use case a RFID reader and chip is used to trig-
ger the charging of the e-vehicle. However, in real-world
scenarios such a trigger can be realized through distance
sensors, weight sensors or even cameras. The onboarding
procedure enables fully-automated user authentication at the
charging station making any type of manual identification
(RFID, mobile app) unnecessary. A short video of this use
case can be found in YouTube (www.youtube.com/watch?v=
F-mG9s2ttT8&ab_channel=EclipseArrowhead).

A. TIME MEASUREMENT
The Eclipse Arrowhead framework relies on certificates and
mutual authentication as one of its security concepts. Thus,
every device, system and service must have an individual

111108 VOLUME 9, 2021



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

certificate issued by the local cloud. Creating and deploying
those certificates can be seen as mandatory setup costs. The
onboarding procedure reduces such costs through its built-in
automated certificate creation.

To measure the time it takes to perform the automated
onboarding procedure, the smart charging use case is divided
into threemain parts: (i) onboarding, which consists of initial-
izing device onboarding, persisting the certificate to the flash
drive, and device and system registration, (ii) charging, which
consists of starting/initializing the service, preparing the use
case and executing the use case, and (iii) deregistration, which
deregisters the service, system, and device from the Arrow-
head local cloud. We have executed the smart charging use
case several times to extract the average duration of each part.
The onboarding part took on average 14.9 seconds (35.91%
of total time). The charging part, which contains a fixed
10 seconds charge in the execution phase, took on average
23.2 seconds (55.84% of total time). The deregistration part
took on average 3.4 seconds (8.25% of total time). Thus,
the total time needed for running the use case when using
automated onboarding procedure is on average 41.5 seconds.

These results are compared with the time needed for run-
ning the use case when using manual onboarding. We have
measured the time of manual certificate creation based on
the official development procedure available in Arrowhead
Github repository3 and the deployment to their respective
devices. In order to compare the execution of the automated
onboarding procedure with the manual one, we mapped the
manual certificate creation to the initialize device onboarding
part and the certificate deployment to the persisting the cer-
tificate part. The certificate creation and deployment time for
the manual onboarding took on average 205 seconds. Device
and system registration of the onboarding part, as well as the
charging and deregistration parts, took the same time as with
the automated onboarding procedure. The total time needed
for running the use case when using manual onboarding
procedure is on average 233 seconds.

Thus, the automated onboarding procedure improves the
performance since it reduces the time needed to run the smart
charging use case. The results can be seen in Figure 22.

FIGURE 22. Time Measurement. Time needed for running the smart
charging use case when using automated and manual onboarding
procedure. Standard deviation is negligible, thus not included in the
graph.

Generated certificates, independent thereof if they are
manually created or through the automated onboarding

3https://github.com/eclipse-arrowhead/core-java-spring/blob/master/
documentation/certificates/create_client_certificate.pdf

procedure are valid for a long period of time. The certificate
creation guide recommends a validity of 10 years, while the
automated onboarding procedure, in its default configuration,
produces a validity of 1 year. It is expected that the onboard-
ing time is negligible compared to repeated executions of the
use case throughout the validity of the certificates.

B. SECURITY ASSESSMENT
In this section, we present the security assessment of the smart
charging use case. The security assessment is performed
to determine how effectively the automated onboarding
procedure meets specific security requirements.

To identify and mitigate potential security threats, we have
used Microsoft STRIDE as a threat modeling tool. STRIDE
categorizes different types of threats into Spoofing (S),
Tampering (T), Repudiation (R), Information Disclosure (I),
Denial of Service (D), and Elevation of Privilege (E) [50].
The process of threat modeling according to STRIDE can
be divided into a number of steps: (i) creating an application
diagram to identify the assets and their interactions, (ii) iden-
tifying threats, and (iii) mitigating threats. Thus, as a first step
we have created an application data flow diagram for the use
case, shown in Figure 23.

FIGURE 23. Data Flow Diagram (DFD) of the smart charging use case.

Based on the data flow diagram, 88 threats are identified.
In Table 7, for each threat category is shown the affected
security objective and the number of the identified threats.

TABLE 7. Threat modeling results using Microsoft STRIDE.

According to the results, the most affected security objec-
tives in this use case are integrity and confidentiality since
the highest number of threats is detected in Tampering (T) and
Information Disclosure (I) categories. No threats are detected
in Denial of Service (D) category, one reason for this could
be that the services are not exposed in the Internet.

VOLUME 9, 2021 111109



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

In terms of the Eclipse Arrowhead framework, all involved
systems exchange information by means of services. Thus,
each interaction between the systems involved in the smart
charging use case provides the same threats. Since it would be
redundant to show how the proposed onboarding procedure
mitigates all 88 identified threats, where the only difference
would be the system producer and consumer, we show one
representative micro use case and its identified threats. The
micro use case, interaction between the charging station
(service provider) and the Onboarding Controller system,
is shown in Figure 24.

FIGURE 24. Data Flow Diagram. Interaction between the Charging Station
(Service Provider) and Onboarding Controller system.

Since the identified threats violate primary security objec-
tives, such as confidentiality and integrity, it is of utmost
importance to investigate security standards and best practice
guidelines for extracting security requirements that should
be in place for mitigating them. Several security standards
and best practice guidelines can be used to extract security
requirements such as ISO 27000 series, NIST SP 800 series,
ISA/IEC 62443 series.

We have selected ISA/IEC 62443 series, which are used
as de facto standards for cybersecurity in the industrial IoT
area. These standards are extensive and provide guidelines
and requirements for the entire life-cycle such as production
processes, systems, development processes, components and
device security. For the purpose of this assessment, only
one specific standard is considered, IEC 62443-3-3 Sys-
tem security requirements and security levels.4 The stan-
dard provides and groups System Requirements (SRs) into
seven Foundational Requirements (FRs): FR1 Identification
and Authentication Control, FR2 Use Control, FR3 System
Integrity, FR4 Data Confidentiality, FR5 Restricted Data
flow, FR6 Timely Response to Events, and FR7 Resource
Availability [51]. The identified threats are mapped with the
corresponding SRs in IEC 62443-3-3 to identify possible

4https://webstore.iec.ch/publication/7033

mitigations. Then, the automated onboarding procedure is
assessed against these SRs, to show how it can fulfil them
for mitigating the threats.

The mapping of threats, SRs, and mitigations provided by
the automated onboarding procedure is shown in Table 8.
The SRs are mitigated in compliance with the IEC 62443-3-3
standard. Conformance with established security standards
and best practice guidelines is essential for establishing a
security baseline. For example, our approach provides a chain
of trust from the hardware device, to its hosted application
systems and their provided services by creating a chain of
certificates to address [SR 1.2 RE 1],[SR 1.5],[SR 1.8], and
[SR 1.9]. A new hardware device cannot be registered in
DeviceRegistry without a valid manufacturer certificate and
Arrowhead onboarding certificate, a system cannot be reg-
istered in SystemRegistry without a valid device certificate,
and a service cannot be registered in ServiceRegistry without
a valid system certificate. The device, system and service
unique IDs and certificates are separately stored in the respec-
tive registries to increase security. Some specific threats, e.g.
[T03] and [E02], are not applicable for the onboarding sys-
tems because they depend on the service provider. The same
applies to the remaining 5 interactions shown in Figure 23,
so the onboarding procedure can mitigate approximately
76 threats out of 88 threats in total. However, other support
core systems of Eclipse Arrowhead can be integrated during
the onboarding procedure to check the fulfillment of these
requirements. For example, monitoring and standard compli-
ance verification (MSCV) system can be used to check if the
service provider prohibits the use of unnecessary functions,
ports, protocols, and services [SR 7.7] [52]. The results of
the security assessment show that the identified threats can
be mitigated by the automated onboarding procedure based
on the SRs defined in IEC 62443-3-3 standard.

VII. CONCLUSION
In this paper we have discussed existing IoT frameworks
and the security requirements that should be considered
to protect against cyber threats, e.g. identity management,
authentication and authorization, secure communication pro-
tocols. Since software-based security mechanisms are not
sufficient to protect against existing security threats because
data may be collected by potentially untrusted devices,
we propose to add an additional hardware-based security
layer via secure elements. We have proposed an automated
onboarding procedure, which is used to create a chain of
trust from the hardware device, to its hosted software systems
and their services, whenever a new device wants to interact
with an IoT/SoS framework. We implemented and evaluated
it using the Eclipse Arrowhead framework and extended the
initial concept presented in [7] to improve security and to
address the complexity of devices and their needs. We have
introduced the Onboarding Controller system, which is the
first entry point to the Arrowhead local cloud and on success
provides: (i) the Arrowhead issued ‘‘onboarding’’ certifi-
cate, and (ii) the endpoints of other services needed for the

111110 VOLUME 9, 2021



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

TABLE 8. Security Assessment. Mapping of threats, IEC 62443-3-3 SRs, and mitigations provided by the automated onboarding procedure for the
interaction between the charging station and Onboarding Controller system.

onboarding procedure. Additionally, we have introduced the
CA system, which is responsible for signing any descendant
certificates in an Arrowhead local cloud. All parties must
trust the CA system registered with the common name of
its hosting local cloud. We have shown the application of
the onboarding procedure in an industrial use case and have
performed a security assessment. The results have shown that
the proposed procedure is compliant with the IEC 62443-3-3
security requirements and it improves performance, since the
time required to run the use case is reduced compared with
manual onboarding.

As future work, we would like to implement a use case,
in which an application system interacts with the generic
autonomic management system (GAMS) [6] provided by
Arrowhead, using the proposed onboarding procedure. The
onboarding procedure allows to rely on the information on
which ‘‘smart’’ decisions are being based. This would sup-
port self-adaptation, while ensuring a secure and trusted
communication between the application system and the core
systems of Eclipse Arrowhead local cloud.

REFERENCES
[1] IoT Business Opportunities, Models & Ideas for 2020—Business Insider.

Accessed: Jun. 4, 2020. [Online]. Available: https://www.businessinsider.
com/iot-business-opportunities-models?r=DE&%IR=T

[2] V. Myllarniemi, ‘‘Security in service-oriented architectures:
Challenges and solutions,’’ Tech. Rep., 2007. [Online]. Available:
http://www.soberit.hut.fi/T-86/T-86.5165/2008/SOAsecurity.pdf

[3] M.W.Maier, ‘‘Architecting principles for systems-of-systems,’’ Syst. Eng.,
vol. 1, no. 4, pp. 267–284, 1998.

[4] J. Delsing, IoT Automation: Arrowhead Framework. Boca Raton, FL,
USA: CRC Press, 2017.

[5] I. Neild, M. Zoualfaghari, T. Stevens, R. Gedge, and P. Putland, ‘‘Col-
lection of sensor data from sensor devices,’’ U.S. Patent 16 337 479,
Jul. 25, 2019.

[6] S. Maksuti, M. Tauber, and J. Delsing, ‘‘Generic autonomic management
as a service in a SOA-based framework for industry 4.0,’’ in Proc. IECON
45th Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2019, pp. 5480–5485.

[7] A. Bicaku, S. Maksuti, C. Hegedus, M. Tauber, J. Delsing, and J. Eliasson,
‘‘Interacting with the arrowhead local cloud: On-boarding procedure,’’ in
Proc. IEEE Ind. Cyber-Phys. Syst. (ICPS), May 2018, pp. 743–748.

[8] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller, ‘‘A survey of commercial
frameworks for the Internet of Things,’’ in Proc. IEEE 20th Conf. Emerg.
Technol. Factory Autom. (ETFA), Sep. 2015, pp. 1–8.

[9] C. Paniagua and J. Delsing, ‘‘Industrial frameworks for Internet of Things:
A survey,’’ IEEE Syst. J., vol. 15, no. 1, pp. 1149–1159, Mar. 2021.

VOLUME 9, 2021 111111



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

[10] M. Ammar, G. Russello, and B. Crispo, ‘‘Internet of Things: A survey on
the security of IoT frameworks,’’ J. Inf. Secur. Appl., vol. 38, pp. 8–27,
Feb. 2018.

[11] J. SathishKumar and D. R. Patel, ‘‘A survey on Internet of Things: Security
and privacy issues,’’ Int. J. Comput. Appl., vol. 90, no. 11, pp. 20–26,
Mar. 2014.

[12] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, ‘‘A survey on security and
privacy issues in Internet-of-Things,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1250–1258, Oct. 2017.

[13] H. Gupta and P. C. van Oorschot, ‘‘Onboarding and software update
architecture for IoT devices,’’ in Proc. 17th Int. Conf. Privacy, Secur. Trust
(PST), Aug. 2019, pp. 1–11.

[14] K. Li and S. Warren, ‘‘Onboard tagging for smart medical devices,’’
in Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Aug. 2011,
pp. 2168–2171.

[15] M. Miettinen and A.-R. Sadeghi, ‘‘Keynote: Internet of Things or threats?
On building trust in IoT,’’ in Proc. Int. Conf. Hardw./Softw. Codesign Syst.
Synth. (CODES+ISSS), Sep. 2018, pp. 1–9.

[16] V. Kumar, S. Mohan, and R. Kumar, ‘‘A voice based one step solution for
bulk IoT device onboarding,’’ inProc. 16th IEEEAnnu. Consum. Commun.
Netw. Conf. (CCNC), Jan. 2019, pp. 1–6.

[17] Intel Secure Device Onboard, More Secure, Automated IoT Device
Onboarding in Seconds, Enabled By Intel, Santa Clara, CA, USA,
Oct. 2017, pp. 1–4.

[18] Systems and Software Engineering—System of Systems (SOS) Consider-
ations in Life Cycle Stages of a System, Standard ISO/IEC/IEEE 21839,
ISO/IEC/IEEE, Tech. Rep., 2019.

[19] V. Chiprianov, L. Gallon, M. Munier, P. Aniorte, and V. Lalanne, ‘‘Chal-
lenges in security engineering of systems-of-systems,’’ in Proc. Troisième
Conférence en IngénieriE du Logiciel, 2014, p. 143.

[20] I. Action, ‘‘ISO/IEC JTC 1 n8010 2005-11-30,’’ ISO/IEC, Switzerland,
Tech. Rep. JTC 1, 2005.

[21] It Security and Privacy—A Framework for Identity Management—
Part 1: Terminology and Concepts, Standard ISO–ISO/IEC 24760-1,
2019. Accessed: Apr. 8, 2020. [Online]. Available: https://www.iso.org/
standard/77582.html

[22] C. Emig, F. Brandt, S. Kreuzer, and S. Abeck, ‘‘Identity as a service–
towards a service-oriented identity management architecture,’’ in Proc.
Meeting Eur. Netw. Universities Companies Inf. Commun. Eng. Berlin,
Germany: Springer, 2007, pp. 1–8.

[23] W. Hummer, P. Gaubatz,M. Strembeck, U. Zdun, and S. Dustdar, ‘‘An inte-
grated approach for identity and access management in a SOA context,’’ in
Proc. 16th ACM Symp. Access Control Models Technol. (SACMAT), 2011,
pp. 21–30.

[24] G. Katsikogiannis, S. Mitropoulos, and C. Douligeris, ‘‘An identity and
access management approach for SOA,’’ in Proc. IEEE Int. Symp. Signal
Process. Inf. Technol. (ISSPIT), Dec. 2016, pp. 126–131.

[25] C. Paniagua, J. Eliasson, C. Hegedus, and J. Delsing, ‘‘System of systems
integration via a structured naming convention,’’ in Proc. IEEE 17th Int.
Conf. Ind. Informat. (INDIN), Jul. 2019, pp. 132–139.

[26] AWS. Aws IoT Services for Industrial, Consumer, and Commer-
cial Solutions. Accessed: Aug. 16, 2020. [Online]. Available: https://
aws.amazon.com/iot/

[27] Microsoft. Azure IoT Solution Accelerators. Accessed:
Aug. 16, 2020. [Online]. Available: https://azure.microsoft.com/en-us/
features/iot-accelerators/

[28] Eclipse. Kura: The Extensible Open Source Java/Osgi IoT Edge Frame-
work. Accessed: Jun. 16, 2020. [Online]. Available: https://www.eclipse.
org/kura/

[29] K. Stouffer, J. Falco, and K. Scarfone, ‘‘Guide to industrial control systems
(ICS) security,’’ NIST Special Publication, vol. 800, no. 82, p. 16, 2011.

[30] Microsoft. What is Azure Active Directory. Accessed: Aug. 16, 2020.
[Online]. Available: https://docs.microsoft.com/en-us/azure/active-
directory/fundamen%tals/active-directory-whatis

[31] M. Cotton, L. Eggert, J. Touch, M. Westerlund, and S. Cheshire, Internet
Assigned Numbers Authority (IANA) Procedures for the Management of
the Service Name and Transport Protocol Port Number Registry, docu-
ment RFC 6335, 2011, pp. 1–33.

[32] P. Varga and C. Hegedus, ‘‘Service interaction through gateways for inter-
cloud collaboration within the arrowhead framework,’’ in Proc. 5th IEEE
WirelessVitae, Hyderabad, India, Dec. 2015, pp. 1–6.

[33] R. Housley, W. Ford, W. Polk, and D. Solo, Internet X. 509 Public
Key Infrastructure Certificate and CRL Profile, document RFC 2459,
Tech. Rep., Jan. 1999.

[34] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, ‘‘Hypertext transfer protocol–http/1.1,’’ IETF, Switzer-
land, Tech. Rep. RFC 2616, 1999.

[35] Z. Shelby, K. Hartke, and C. Bormann, ‘‘The constrained application
protocol (coap),’’ IETF, Switzerland, Tech. Rep. RFC 7252, 2014.

[36] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt, ‘‘Lithe:
Lightweight secure CoAP for the Internet of Things,’’ IEEE Sensors J.,
vol. 13, no. 10, pp. 3711–3720, Oct. 2013.

[37] S.-H. Leitner andW. Mahnke, ‘‘OPC UA–service-oriented architecture for
industrial applications,’’ ABB Corporate Res. Center, vol. 48, pp. 61–66,
Oct. 2006.

[38] V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-Zarate,
‘‘A survey on application layer protocols for the Internet of Things,’’ Trans.
IoT Cloud Comput., vol. 3, no. 1, pp. 11–17, 2015.

[39] M. Kanabar and T. S. Sidhu, ‘‘Performance of IEC 61850-9-2 process
bus and corrective measure for digital relaying,’’ IEEE Trans. Power Del.,
vol. 26, no. 2, pp. 725–735, Apr. 2011.

[40] C. Kriger, S. Behardien, and J.-C. Retonda-Modiya, ‘‘A detailed analysis
of the goose message structure in an IEC 61850 standard-based substation
automation system,’’ Int. J. Comput. Commun. Control, vol. 8, no. 5,
pp. 708–721, 2013.

[41] S. O. Johnsen and T. Sintef, ‘‘A description of the manufacturing message
specification (MMS),’’ SINTEF, Norway, Tech. Rep. 504064.20, 2007.

[42] I. N. Fovino, A. Carcano, M. Masera, and A. Trombetta, ‘‘Design and
implementation of a secure modbus protocol,’’ in Proc. Int. Conf. Crit.
Infrastruct. Protection. Berlin, Germany: Springer, 2009, pp. 83–96.

[43] G. Proudler, L. Chen, and C. Dalton, Trusted Computing Platforms—
TPM2.0 in Context. Springer, 2014.

[44] J. B. Rosenberg and D. L. Remy, Securing Web Services With WS-Security:
Demystifying WS-Security, WS-Policy, SAML, XML Signature, and XML
Encryption. Indianapolis, IN, USA: Sams, 2004.

[45] C. Bormann, M. Ersue, and A. Keranen, Terminology for Constrained-
Node Networks. Fremont, CA, USA: Internet Engineering Task Force
(IETF), 2014, pp. 1721–2070.

[46] J. Franks, P. M. Hallam-Baker, J. L. Hostetler, S. D. Lawrence,
P. J. Leach, A. Luotonen, and L. C. Stewart,Http Authentication: Basic and
Digest Access Authentication, document RFC Editor, RFC 2617, Internet
Requests for Comments, Jun. 1999. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc2617.txt. http://www.rfc-editor.org/rfc/rfc2617.txt

[47] T. Dierks and E. Rescorla, The Transport Layer Security (TLS)
Protocol Version 1.2, document RFC Editor, RFC 5246, Internet
Requests for Comments, Aug. 2008. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc5246.txt

[48] Swagger. Api Development for Everyone. Accessed: Aug. 16, 2020.
[Online]. Available: https://swagger.io/

[49] M. Nystrom and B. Kaliski, ‘‘RFC2986: Pkcs# 10: Certification request
syntax specification version 1.7,’’ IETF, Switzerland, Tech. Rep. RFC
2986, 2000.

[50] M. Howard and S. Lipner, The Security Development Lifecycle. Redmond,
WA, USA: Microsoft Press, 2006.

[51] System Security Requirements & Security Levels, document IEC,
62443-3-3, 2013.

[52] A. Bicaku, M. Tauber, and J. Delsing, ‘‘Security standard compliance and
continuous verification for industrial Internet of Things,’’ Int. J. Distrib.
Sensor Netw., vol. 16, no. 6, Jun. 2020, Art. no. 155014772092273.

SILIA MAKSUTI received the Dipl.-Ing. degree
in communication engineering from Carinthia
University of Applied Sciences, Klagenfurt,
Austria, and the B.Sc. degree in telecommunica-
tion engineering from the Polytechnic University
of Tirana, Albania. She is currently pursuing the
Ph.D. degree with Luleå University of Technology,
Sweden. She also works as a Researcher with the
Research Center for Cloud and Cyber Physical
Systems Security, University of Applied Sciences

Burgenland, Austria. Recently, she was working with Austrian Institute of
Technology (AIT) in the AIT’s ICT-Security Program. She has been part
of several EU projects, such as SECCRIT, SEMI40, PRODUCTIVE4.0,
ArrowheadTools, and Comp4Drones.

111112 VOLUME 9, 2021



S. Maksuti et al.: Automated and Secure Onboarding for System of Systems

ANI BICAKU received the B.Sc. degree in
telecommunication engineering from the Poly-
technic University of Tirana, Albania, in 2012,
the Dipl.-Ing. degree in communication engineer-
ing from Carinthia University of Applied Sci-
ences, Austria, in 2015, and the Ph.D. degree
in cyber-physical systems from Luleå University
of Technology, in 2020. From 2014 to 2016,
he worked with Austrian Institute of Technology
(AIT), in the AIT’s ICT-Security Program, and

responsible for evaluating data security, data privacy, and high-assurance
in cloud computing. In 2016, he joined the University of Applied Sciences
Burgenland, Austria, as part of the Cloud and Cyber-Physical Systems
Research Center. He is a member of Austrian Electrotechnical Commit-
tee (OEK) of the Austrian Electrotechnical Association (OVE) at IEC and
CENELEC standardization bodies within TC65-WG10 ‘‘Security for Indus-
trial Process Measurement and Control—Network and System Security.’’
He has been part of several EU projects, such as SECCRIT, SEMI40,
PRODUCTIVE4.0, ArrowheadTools, and Comp4Drones.

MARIO ZSILAK received the B.Sc. degree in
information and communication systems and ser-
vices from the University of Applied Sciences
Technikum Wien, in 2017. He is currently pursu-
ing M.Sc. degree in business process management
and engineering with the University of Applied
Sciences Burgenland. He also works as a Soft-
ware Engineer with the Center for Cloud and CPS
Security, Forschung Burgenland GmbH. He has
contributed to arrowhead in a number of projects.

IGOR IVKIC received the B.Sc. degree in
IT-infrastructure engineering and theM.Sc. degree
in business process management engineering from
the University of Applied Sciences Burgenland,
Austria, in 2015 and 2017, respectively. He is cur-
rently pursuing the Ph.D. degree with Lancaster
University, U.K. He also works as a Lecturer with
the University of Applied Sciences Burgenland.
He also works as a Researcher with the Research
Center for Cloud and Cyber-Physical Systems

Security (CCPSS), University of Applied Sciences Burgenland, in various
projects, including MIT 4.0 (Project Leader) and Productive 4.0.

BÁLINT PÉCELI received the M.Sc. degree in
electrical engineering from Budapest University
of Technology and Economics (BME), Hungary,
in 2016. Since 2015, he has been working with
evopro Innovation Ltd., as a Research Software
Engineer. He has been participated in European
research programs, such as REPARA, ARROW-
HEAD, PRODUCTIVE4.0, and GREENERNET.
His primary research interests include the IoT soft-
ware engineering and the architectural design of

modern industrial automation systems. He is also interested in the fields of
high-performance computing and control engineering.

GÁBOR SINGLER received the B.Sc. degree
in software system engineering from Széchenyi
István University, Győr, Hungary, in 2005. Earlier,
he was working mostly in process industry as
a Process Engineer and a Software Engineer in
SCADA system integration and software devel-
opment. Later, he was working with Siemens
A.G. MES Department, Genoa (system test), and
Nuremberg (MES project consultant). After that,
he worked with evopro Innovation Ltd., as a

Research Software Engineer and a Software Theme Leader of evopro’s AC

and DC charging station development project, and an Operative Project
Manager of a four year long reactor protection system testing software
development project for the Hungarian Nuclear Power Plant. He is cur-
rently the Leader of the Industrial Software Development Business Unit,
evopro Innovation Ltd. He participated in the ARROWHEAD European
Research Program. His main research interests include electro mobility,
energy management domain, the Internet of Things, and big physics.

KRISTÓF KOVÁCS received the M.Sc. degree
in electrical engineering from Budapest University
of Technology and Economics (BME), Hungary,
in 2016. Since 2015, he has been working with
evopro Innovation Ltd., as a Research Software
Engineer. He is currently working on Indus-
trial Software Solutions as the Competence Team
Leader. He participated in European research
programs, such as REPARA, ARROWHEAD,
and PRODUCTIVE4.0. He involved in embedded

development of a gas spectrometer and electric vehicle chargers, commu-
nication and real-time module for a reactor protection test system for the
Hungarian Nuclear Power Plant. His main interests include industrial embed-
ded and distributed systems, communication networks, the IIoT, software
architecting, and devops.

MARKUS TAUBER received the Ph.D. degree
in computer science with a focus on autonomic
management in distributed storage systems.
He currently works as a Chief Scientific Offi-
cer with Research Studios Austria Forschungsge-
sellschaft mbH. From 2004 to 2012, he worked
with the University of St Andrews, U.K., where
he worked as a Researcher on various topics in
the area of network and distributed systems. From
2012 to 2015, he coordinated the high assurance

cloud research topic with Austrian Institute of Technology (AIT) part
of AIT’s ICT-Security Program. From 2015 to 2021, he worked as a
FH-Professor with the University of Applied Sciences Burgenland, where
he held the position as the director of the M.Sc. program in cloud computing
engineering and led the Research Center Cloud and Cyber-Physical Systems
Security. Amongst other activities, he was the coordinator of the FP7 Project
Secure Cloud Computing for CRitical infrastructure IT—www.seccrit.eu,
and involved in the ARTEMIS Project Arrowhead.

JERKER DELSING (Member, IEEE) received
the M.Sc. degree in engineering physics from
Lund Institute of Technology, Sweden, in 1982,
and the Ph.D. degree in electrical measure-
ment from Lund University, in 1988. From
1985 to 1988, he worked part time at Alfa-Lava—
SattControl (now, ABB) with development of
sensors and measurement technology. In 1994,
he was promoted to an Associate Professor in
heat and power engineering with Lund University.

In early 1995, he was appointed as a Full Professor in industrial elec-
tronics with Lulea University of Technology, where he is currently the
Scientific Head of EISLAB—http://www.ltu.se/eislab. He and his EISLAB
Group has been a partner of several large EU projects in the field, such
as Socrades, IMC-AESOP, Arrowhead, FAR-EDGE, Productive4.0, and
Arrowhead Tools. His present research profile can be entitled the IoT and SoS
automation, with applications to automation in large and complex industry
and society systems. He is a Board Member of ARTEMIS, ProcessIT.EU,
and ProcessIT Innovations.

VOLUME 9, 2021 111113


