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ABSTRACT In this third paper, the fundamental mechanism of individual-machine transient stability is
explained through Newtonian mechanics. The original Newtonian system with variant gravity is developed.
This system is formed by a ball and the Earth. It is found that the Newtonian energy conversion strictly holds
inside the system, and the equal area criterion can be considered a reflection of the Newtonian work. Based on
these features, the stability characterizations of the system are given. Then, the original Newtonian system is
extended to a generalized Newtonian system with multiple balls. It is found that this generalized Newtonian
system can be decomposed into each two-ball-based subsystem, and the Newtonian energy conversion inside
each subsystem is unique and different. This decomposition also ensures the independent parallel stability
characterization of the generalized system. Finally, the strict mappings between Newtonian system stability
and individual-machine transient stability are systematically analyzed. All these strict mappings fully reveal
that the theoretical foundation of the individual-machine transient stability should be Newtonian mechanics.

INDEX TERMS Transient stability, transient energy, equal area criterion, individual machine.

NOMENCLATURE
KE Kinetic energy
PE Potential energy
RM Reference machine
COI Center of inertia
DLP Dynamic liberation point
DSP Dynamic stationary point
EAC Equal area criterion
MPP Maximum potential energy point
NEC Newtonian energy conversion
SEP Stable equilibrium point
TSA Transient stability assessment
UEP Unstable equilibrium point
IMKE Individual-machine kinetic energy
IMPE Individual-machine potential energy
IMTE Individual-machine transient energy
IMTR Individual-machine trajectory
IVCS Individual-machine-virtual-COI-SYS

machine system
RUEP Relevant UEP
IMEAC Individual-machine EAC
IMPES Individual-machine potential energy surface
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I. INTRODUCTION
A. LITERATURE REVIEW
Newtonian mechanics is crucial in classic physics. Con-
ventionally, energy conversion is explained through the
Newtonian system that is formed by a ball rolling inside
a basin. The movement of the ball is depicted by using
the equation of motion, and the conversion between kinetic
energy (KE) and potential energy (PE) can be found through
the motion of the ball. The ball will escape from the basin
once it possesses residual KE at the edge of the basin.
Essentially, the fierce motion of the ball is visually depicted
through this Newtonian energy conversion (NEC).

In early transient stability studies, Athay discovered that
transient behaviors of a power system cannot be explained
effectively through Lyapunov theory [1]. Interestingly, Athay
found that transient stability showed very strong similarities
with Newtonian mechanics. That is, the mechanism of
the trajectory stability of a multimachine system can be
described through the conversion between ‘‘transient kinetic
energy’’ and ‘‘transient potential energy’’. In this way,
the transient stability is expressed as an energy ball rolling
in an ‘‘energy basin’’, i.e., a potential energy surface [1].
Based on this visible Newtonian-mechanical description, the
instability of the system is depicted as the ball escaping from
the stability boundary, i.e., the potential energy boundary.
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Furthermore, the Newtonian-like energy-type function,
i.e., the transient energy function, is developed in the transient
stability assessment (TSA). Following the thinking behind the
transient energy function, the relevant-unstable-equilibrium-
point (RUEP) method and the sustained fault method were
developed [1]–[3]. However, the defect of the early transient
energy function is that it is defined in a ‘‘superimposed’’
global manner. Under this superimposed definition, the NEC
always fails because residual KE exists at the maximum
potential energy point [4], [5]. To solve this problem, the KE
correction technique [6], [7] and equivalent machine-based
equal-area-criterion (EAC) methods [8], [9] were developed.
Following this machine equivalence, the stability of the
system is characterized precisely by using the EAC, and in
this way, the residual KE problem is completely addressed.
In brief, the thinking behindNEC unleashes transient stability
studies from the restrictions of Lyapunov theory.

Motivated by the NEC in global methods, transient energy
conversion can also be found inside each machine in a
multimachine system [10], [11]. The partial energy function
was developed, and the EAC of an individual machine
was studied [12], [13]. It was conjectured that a distinctive
individual-machine potential energy boundary might exist
in the system [14]. Recently, a novel hybrid individual-
machine-EAC method (IMEAC) was proposed [15]–[17].
The effectiveness of the method is further explained through
the individual-machine-transient-energy (IMTE) [18]. The
precise modeling of the individual-machine potential energy
surface (IMPES) is also established [19]. The thinking behind
NEC greatly inspires modern individual-machine transient
stability studies.

Originally, power system transient stability is a trajectory
stability problem [15]. However, historical global works and
recent individual-machine studies indicate that the precise
transient energy conversion inside each machine, the mod-
eling of the IMPES, and the equivalence between transient
energy conversion and the EAC inside each machine cannot
be treated as a coincidence. Instead, all these phenomena
reveal that the power system transient stability should be
explained through Newtonian mechanics. In fact, Newtonian-
like models, such as the Kuramoto-like model [20] and the
ball-on-concave-surface model [21], were developed to assist
the transient stability evaluation. However, thesemodels were
generally equivalent or abstract, and thus, they cannot be
used to establish strict mappings between the Newtonian-
mechanical model and the multimachine power system
model. Against this background, the strict mappings between
the individual machine transient stability model and the
Newtonian mechanical model become of value, because they
may essentially establish the theoretical foundation of the
individual-machine transient stability from the perspective of
Newtonian mechanics.

B. SCOPE AND CONTRIBUTION OF THE PAPER
Following Refs. [18], [19], this paper is the theoretical
exploration of the individual-machine transient stability from

the perspective of Newtonian mechanics. In this paper,
the original Newtonian system is formed by a concrete ball
and the Earth with variant gravity. The Newtonian energy
conversion (NEC) inside the system is precisely characterized
by using the occurrence of the residual KE. The EAC can
be considered a reflection of the Newtonian work and it
is identical to the NEC. Based on these features, the sta-
bility characterizations of the Newtonian system are given.
Furthermore, a generalized Newtonian system with multiple
balls is developed. The generalized Newtonian system can
be decomposed intomultiple two-ball-based subsystems. The
force of each subsystem reflects the complicated interactions
among all balls in the entire generalized system. Most
importantly, the stability of each subsystem is characterized
independently in parallel through its corresponding NEC
after decomposition. Finally, strict mappings between the
Newtonian system stability and individual-machine transient
stability are established. Based on all these strict mappings,
the authors state that the theoretical foundation of individual-
machine thinking should be Newtonian mechanics.

The contributions of this paper are summarized as follows:
(i) The precise modeling of the original Newtonian system

with two balls is established. This modeling explains the
mechanisms of the NEC and EAC through Newtonian
mechanics.

(ii) The precise modeling of the generalized Newtonian
system with multiple balls is established. The decomposition
of the system explains the mechanisms of independent
parallel stability characterization.

(iii) Strict mappings between individual-machine transient
stability andNewtonian system stability are discovered. New-
tonian mechanics is finally set as the theoretical foundation
of individual machine transient stability.

The remainder of the paper is organized as follows.
In Section II, the modeling of the original Newtonian system
is given, and NEC is analyzed. In Section III, the original
Newtonian system is extended to a generalized Newtonian
system with multiple balls. In Section IV, strict mappings
between Newtonian system stability and individual-machine
transient stability are analyzed. In Section V, simulation
cases are provided to show the NEC inside each machine.
In Section VI, further discussions about the Newtonian
system are provided. Conclusions are given in Section VII.

The generalized Newtonian system that is developed
in this paper will show extremely strict mappings with
the multimachine power system. However, the authors
emphasize that the generalized Newtonian system is not
used to assist transient stability analysis. This is because the
individual-machine transient stability analysis is fully based
on the IMEAC [15]–[17]. In fact, this Newtonian-mechanical
system is only used to validate that the theoretical foundation
of the individual-machine transient stability is Newtonian
mechanics.

The fault types for the transient stability analysis in this
paper are defined the same as those in Refs. [15]–[19].
The test systems, i.e., TS-1 to TS-5, can be found in
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FIGURE 1. Formation of the original Newtonian system.

FIGURE 2. Structure of the original Newtonian system.

Refs. [15]–[19]. All faults are three-phase short-circuit faults,
which occur at 0 s. The fault is cleared without line switching.

II. ORIGINAL NEWTONIAN SYSTEM
A. NEWTONIAN ENERGY CONVERSION
This section first focuses on the mechanism of the original
Newtonian system with two balls.

The original Newtonian system is formed by two balls,
i.e., a concrete ball and an infinitely large Earth. The two
balls interact through the internal force between them. A
demonstration of the original Newtonian system is shown
in Fig. 1.

In the original Newtonian system, each ball has its own
equation of motion. The motion of the ball is given as

dh
dt
= v

m
dv
dt
= Fnet

(1)

In Eq. (1), Fnet and h are the ‘‘net force’’ and the altitude of
the ball, respectively. Other parameters are shown in Fig. 2.

In the original Newtonian system, the Earth remains
stationary (mearth = ∞, hEarth = 0). The equation of motion
of the Earth is given as

dhEarth
dt
= vEarth = 0

dvEarth
dt
=

FEarth
mEarth

= 0
(2)

Following Eq. (2), the stationary Earth is set as the ‘‘motion
reference’’ of the system.

Based on Eqs. (1) and (2), the relative motion between the
ball and Earth is given as

d(h− hEarth)
dt

= v− vEarth = v

m
d(v− vEarth)

dt
= Fnet −

m
mEarth

FEarth = Fnet
(3)

Eq. (3) describes the separation between the ball and Earth
inside the original Newtonian system. Since the Earth is
stationary, the altitude (h) and the velocity (v), as in Eq. (1)
also describe the relative motion between the ball and Earth.
The altitude is named the ‘‘trajectory’’ of the ball by using the
Earth as the motion reference.

In the following analysis, the dynamic behavior of the
Newtonian system is visually depicted through a ball rolling
inside a basin. The structure of the original Newtonian system
is shown in Fig. 2. The basin in the system depicts the position
of the ball. Note that the original Newtonian system is defined
as a ‘‘gravity-variant’’ system. That is, the gravitational field
is assumed to reverse once the ball goes over the edge of the
basin. This is different from the constant gravity environment.
In addition, the ‘‘velocity’’ in this paper specifies the velocity
along the altitude in the system.

From Fig. 2, at first, the ball remains stationary at the
bottom of the basin (P1). At t0, an ‘‘external force’’ imposes
on the ball. This external force is given as

Fext = Facc + G (4)

Following Eq. (4), the net force at P1 becomes Facc. Fext
overcomes gravity and causes the ball to accelerate.

Assume the energy reference point of the system is set
as P1. Following the Newtonian kinetic energy theorem,
the acceleration of the ball from P1 to P2 is calculated as∫ h(P2)

h(P1)
Faccdh =

1
2
mv(P2)2 − 0 (5)

At P2, the total energy of the ball is calculated as

V (P2)
=

1
2
mv(P2)2 +

∫ h(P2)

h(P1)
Gdh (6)

From Eq. (6), the total energy comprises two components,
i.e., the KE and PE. Since the total energy increases from
zero to V (P2) at P2, the period from P1 to P2 is named the
‘‘disturbance-on’’ period.

Once the ball reaches P2, the external force (Fext) is cleared
at the moment. Under this circumstance, the only force that
imposes on the ball becomes the ‘‘internal force’’, i.e., gravity
(Fnet = G). Then, the ball starts decelerating with only
gravity acting on it.

For the period after P2, one can obtain the following:

dV
dt
= mv

dv
dt
+ G

dh
dt
= 0 (7)

Eq. (7) indicates that the total energy of the ball remains
‘‘conserved’’ after P2 because only the internal force, i.e.,
gravity, acts on the ball. The period after the disturbance
clearing is named the ‘‘post-disturbance’’ period.
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In the post-disturbance period, the maximum potential
energy of the ball is calculated as

V cr
PE = V (P4)

PE =

∫ h(P4)

h(P1)
Gdh (8)

From Eq. (8), the ball reaches the edge of the basin at
P4 with the maximum PE.

In the original Newtonian system, P4 is named the
‘‘dynamic liberation point’’ (DLP). From the energy conver-
sion perspective, the condition that the ball goes through the
DLP is given as

V (P2) > V cr
PE (9)

FromEq. (9), physically, the ball will escape from the basin
once it accumulates very high KE at P2, and this amount of
KE cannot be fully absorbed at the DLP.

Following Eq. (9), the energy conversion at the DLP is
given as

V RE
KE = V (P2)

− V cr
PE =

1
2
mv(P2)2 −1VPE (10)

where

1VPE = V cr
PE − V

(P2)
PE =

∫ h(DLP)

h(P2)
Gdh

In Eq. (10), the residual KE is of key value because it
finally causes the ball to escape from the basin at the DLP.

Assume gravity becomes reversed once the ball goes
through the DLP. Against this background, the internal force
is given as

G =

{
mg h ≤ h(DLP)

−mg h > h(DLP)
(11)

Following Eq. (11), the DLP describes the point where the
ball becomes unstable. Once the ball goes through the DLP,
it starts accelerating again and separates from the Earth with
reverse gravity, as shown in Fig. 2.

Compared with the unstable case, if the accumulated KE
at P2 is low, this KE will be completely absorbed before
reaching the DLP. Under this circumstance, the PE will also
reach a maximum at P3. The energy conversion at P3 is given
as

V RE
KE =

1
2
mv(P2)2 −1VPE = 0 (12)

where

1VPE = V (P3)
PE − V

(P2)
PE =

∫ h(P3)

h(P2)
Gdh

Following Eq. (12), the residual KE is completely
exhausted at P3, and thus, the ball inflects back. P3 is named
the ‘‘dynamic stationary point’’ (DSP). It represents the point
where the ball maintains stable.

From the analysis above, clear energy conversion between
KE and PE can be found in the original Newtonian system.
The characteristics of this energy conversion are summarized
as follows:

(i) The total energy keeps increasing during the
disturbance-on period, and it remains conservative during the
post-disturbance period.

(ii) The PE may reach a maximum during the post-
disturbance period.

In this paper, this energy conversion is named the
‘‘Newtonian energy conversion’’ (NEC). In particular, for (ii),
the occurrence of the maximum PE along time horizon is
analyzed as below.

1) UNSTABLE CASE
dh is always positive during the post-disturbance period.
However, because G changes from positive to negative when
the ball goes through the DLP, the integral of Gdh is first
positive and then becomes negative. Therefore, the PE will
reach a maximum when the ball becomes unstable.

2) STABLE CASE
G is always positive during the post-disturbance period.
However, because dh changes from positive to negative when
the ball inflects back at the DSP, the integral of Gdh is first
positive and then becomes negative. Therefore, the PE will
also reach a maximum when the ball remains stable.

From the analysis above, in the original Newtonian system,
the PE of the ball may reach a maximum at the DLP or DSP
regardless of whether the system becomes unstable. The DLP
or DSP is also the ‘‘maximum potential energy point’’ (MPP)
of the system. However, if we observe only the variation in the
PE of the ball, one problem is that we cannot confirmwhether
theMPP is a DSP or DLP because the PE reaches a maximum
at the two points. Against this background, the stability of
the system cannot be evaluated only through the variance in
the PE. To solve this problem, the residual KE of the ball at the
MPP should be used as the stability characterization of the
system.

B. RESIDUAL KINETIC ENERGY
Following Eqs. (10) and (12), the residual KE can be given in
a general form:

V RE
KE = V (P2)

KE −1VPE (13)

where

V (P2)
KE =

1
2
mv(P2)2

1VPE =
∫ hMPP

h(P1)
Gdh−

∫ h(P2)

h(P1)
Gdh =

∫ hMPP

h(P2)
Gdh

In Eq. (13), V RE
KE is the residual KE at the MPP. The ball

will become unstable if V RE
KE is positive at the MPP (the MPP

would be the DLP), and the ball will remain stable if V RE
KE is

zero at the MPP (the MPP would be the DSP).
Based on NEC, the stability characterization of the system

is summarized below.
The ball will go unstable if residual KE occurs at the MPP.
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FIGURE 3. EAC of a ball becoming unstable.

This statement reveals that the NEC is ‘‘perfect’’ because
the stability state of the ball is precisely identified through the
occurrence of residual KE at the MPP.

C. NEWTONIAN WORK AND EQUAL AREA CRITERION
If we observe the NEC in the F-h space rather than the t-V
space, the ‘‘areas’’ can be found in this space. For the unstable
case, the motion of the unstable ball is shown in Fig. 3.

From Fig. 3, the area from P1 to P2 and that from
P2 to P4 form the ‘‘acceleration area’’ and the ‘‘deceleration
area’’, respectively. Observing this phenomenon from the
perspective of Newtonian mechanics, this ‘‘area’’ is identical
to the ‘‘Newtonian work’’. In particular, the work on the ball
from P1 to P2 is Facch(P1−P2) (the net force is Facc during
the disturbance-on period), while the work from P2 to P4 is
Gh(P2−P4) (the net force is G during the post-disturbance
period).

From the analysis above, the NEC can also be described
in an ‘‘equal-area-criterion’’ (EAC) manner. Based on
Newtonian mechanics, the following theorem is given.
Theorem: The NEC is identical to the EAC in the original

Newtonian system.
Proof: For the case in which the ball becomes unstable,

following Eq. (5), the acceleration area from P1 to P2 is
calculated as

Aacc =
∫ h(P2)

h(P1)
Faccdh =

1
2
mv(P2)2 (14)

The deceleration area from P2 to DLP is expressed as

Adec =
∫ h(DLP)

h(P2)
Gdh =

∫ h(DLP)

h(P1)
Gdh−

∫ h(P2)

h(P1)
Gdh (15)

Following Eqs. (13-15), one can obtain the following
equation:

V RE
KE = Aacc − Adec (16)

Eq. (16) reveals that the NEC and EAC are identical. Thus,
the theorem holds.

Based on the EAC, the stability characterization of the
system is summarized below.

FIGURE 4. Three-dimensional EAC in the original Newtonian system.

The ball will become unstable if the acceleration area is
larger than the deceleration area.

Additionally, based on the EAC, the critical state for the
ball to maintain stability should be calculated as∫ hcr

h(P1)
Faccdh =

∫ h(P4)

hcr
Gdh (17)

In Eq. (17), hcr describes the critical clearing point of the
external force. Once the altitude of the disturbance clearing
point (h(P2)) is higher than hcr , the acceleration area will
be larger than the deceleration area, and the ball becomes
unstable.

To demonstrate the relationship between the EAC and the
trajectory of the ball, a 3-dimensional EAC in t-h-F space is
proposed, as shown in Fig. 4.

From Fig. 4, the 3-dimensional EAC is obtained from the
equation of motion of the ball. Against this background, the
trajectory and EAC of the ball can be considered the two
projections of the three-dimensional EAC in t-h space and
h-F space, respectively. The EAC in the h-F space is just a
‘‘characterizationwindow’’ tomeasure the trajectory stability
of the ball.

D. FREE SETTING OF THE ENERGY REFERENCE POINT
In classic Newtonianmechanics, as analyzed in SectionA, the
energy reference point of the PE is always set as P1 by default.
In fact, a distinctive characteristic of the original Newtonian
system is that the NEC is independent of the energy reference
point. In the following analysis, the energy reference point
will be set as a random point (Pf) along the trajectory of
the ball, regardless of whether Pf occurs before or after the
disturbance clearing.

Using the randomly selected Pf, the TE at the fault clearing
point is calculated as

V (P2)
=

1
2
mv(P2)2 +

∫ h(P2)

h(Pf)
Gdh (18)

The maximum PE that occurs at the DLP is given as

VDLP
PE =

∫ h(DLP)

h(Pf)
Gdh (19)
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TABLE 1. Parameters of the original Newtonian system.

Based on Eqs. (18) and (19), we have

V RE
KE = V (P2)

− VDLP
PE

= V (P2)
KE −1VPE = Aacc − Adec (20)

Eq. (20) indicates that the residual KE is determined only
by the acceleration area and the deceleration area, which is
completely independent of the setting of the energy reference
point.

The free setting of the energy reference point shows that it
is the ‘‘energy conversion’’ (also the Newtonian work) rather
than the ‘‘energy’’ that finally determines the stability of the
ball. This finding also validates the equivalence between the
NEC and EAC, as analyzed in Section C.

E. STABILITY CHARACTERIZATIONS OF THE ORIGINAL
NEWTONIAN SYSTEM
Following theNEC and EAC as analyzed in SectionsA andC,
the stability characterizations of the original Newtonian
system are given below.

(i) From the perspective of NEC, the system is evaluated
to be unstable if residual KE occurs at the MPP.

(ii) From the perspective of the EAC, the system is
evaluated to become unstable if the acceleration area is larger
than the deceleration area.

Note that (i) and (ii) are identical.
A tutorial example is given to demonstrate the NEC inside

the original Newtonian system. The parameters are shown
in Table 1. The external force occurs at 0.000 s and is cleared
at 0.400 s. The energy reference point is set as P1 in this case.

Following Newtonian mechanics, the motion of the ball
during the disturbance-on period (t ≤ tc) is given asvt = v0 + at

h = hP1 +
1
2
at2

(21)

With 0.400 s acceleration, the ball reaches P2, and the
height becomes 0.596 m. At this moment, the velocity of the
ball is 2.480 m/s.

Then, the external force is cleared, and the ball starts
decelerating until it reaches the DLP. The motion of the ball
during the post-disturbance period (tc < t < tDLP) is given
as vt = vP2 − g(t − tc)

h = hP2 + vP2(t − tc)−
1
2
g(t − tc)2

(22)

FIGURE 5. Net force along the time horizon.

FIGURE 6. Trajectory of the ball.

FIGURE 7. NEC in the unstable original Newtonian system.

At 0.600 s, the ball reaches the DLP, and the altitude is
0.896 m. The velocity of the ball reaches 0.520 m/s.

Once the ball goes through the DLP, the gravity becomes
reversed. The net force and trajectory of the ball along time
horizon are shown in Figs. 5 and 6, respectively. The NEC
and EAC are shown in Figs. 7 and 8, respectively.
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FIGURE 8. EAC in the unstable original Newtonian system.

Stability evaluations of the system are shown below

1) NEC ANGLE
From Fig. 7, during the post-disturbance period, the PE
reaches a maximum at the DLP with residual KE (0.137 J).
Furthermore, this residual KE forces the ball to fall into
the reverse gravitational field, and thus, the ball starts
accelerating again. Against this background, the KE of the
ball becomes positive infinite. The altitude of the ball also
becomes infinite along the time horizon, as shown in Fig. 6.
The ball finally becomes unstable.

2) EAC ANGLE
From Fig. 8, the acceleration area, i.e., the work from P1 to
P2, is 3.078 J, while the deceleration area, i.e., the work
from P2 to the DLP, is 2.941 J. The acceleration area and the
deceleration area are identical to the VKE at P2 and 1VPE,
respectively. Since the acceleration area is larger than the
deceleration area, the ball becomes unstable. Note that the
difference between the two areas is just the residual KE
(0.137 J).

This simulation case visually demonstrates the equivalence
between the NEC and EAC in the original Newtonian system.

F. CONTINUOUS VARIANCE IN GRAVITY
In the predefined original Newtonian system, a sudden
change in gravity will occur once the ball goes through the
DLP, as shown in Fig. 5. In fact, the reverse procedure of
gravity can also be depicted in a ‘‘continuous’’ manner.

Assume the gravity of the ball is modified as

G = G(h) (23)

From Eq. (23), gravity after disturbance clearing is
decided by the ‘‘continuous’’ trajectory of the ball. Against
this background, the variance in gravity will also become
‘‘continuous’’ without any sudden changes.

Taking the case in Section E as an example, assume gravity
is given as

G =

{
mg h ≤ h(P2)

mg cos[k(h− hP2)] h > h(P2)
(24)

FIGURE 9. EAC in the unstable system.

Following Eq. (24), the EAC with the continuous variance
in gravity is shown in Fig. 9. k is set as 4 for this case.
From Fig. 9, after the disturbance clearing, the ‘‘value’’ of

gravity decreases with increasing h until it reaches zero. After
that, the ‘‘direction’’ of gravity smoothly reverses, and its
value also gradually increases with increasing h. The variance
in gravity becomes continuous without any sudden changes.

Following the continuous variance in gravity, the occur-
rence of the DLP can be regiven as

GDLP = 0 (25)

Mathematically, the occurrence of the DSP is given as

vDSP = 0 (26)

From Eqs. (25) and (26), the occurrences of the DLP and
DSP are described by gravity and velocity reaching zero,
respectively. Eq. (25) also indicates that the DLP can be
obtained through the occurrence of ‘‘zero gravity’’.

G. ADVANTAGES OF NEC
Following the analysis in Sections B andC, the characteristics
of the MPP are summarized as follows:

(i) From the perspective of NEC, the DLP is the MPP with
positive residual KE, while the DSP is the MPP with zero
residual KE.

(ii) From the perspective of the EAC, the DLP is the point
where gravity reverses, while the DSP is the point where
gravity remains normal.

Following (i) and (ii), MPP is just the reflection of NEC
by using the stability boundary point, and thus it can also be
used as the trajectory description of the ball. The depiction of
the trajectory by using the MPP is given as follows:

(i) The DLP is the point where the trajectory starts
separating (d2h/dt2 = GDLP = 0).
(ii) The DSP is the point where the trajectory inflects back

(dh/dt = vDSP = 0).
Based on the analysis above, the two advantages of the

NEC are summarized as follows:
Stability-characterization advantage: The trajectory sta-

bility of the ball is characterized precisely at MPP.
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Trajectory-depiction advantage: The trajectory variance
of the ball is depicted clearly at MPP.

Based on the two advantages, if a physical system shows
strict mappings with the original Newtonian system, it is
clear that the two advantages will naturally be inherited in
this physical system. In the following paper, the original
Newtonian system will be extended to a more complicated
multi-ball case.

III. GENERALIZED NEWTONIAN SYSTEM
A. SYSTEM MODELING
Following the previous definition of the original Newtonian
system, the generalized Newtonian system is formed by
multiple balls and the Earth. Note that each ball still uses the
stationary Earth as the motion reference in the generalized
system.

The equation of motion of the ith ball in the system is given
as 

dhi
dt
=
d(hi − hEarth)

dt
= vi

mi
dvi
dt
= mi

d(vi − vEarth)
dt

= Fnet,i

(27)

In Eq. (27), Fnet,i is the ‘‘net force’’ that imposes on the
ith ball. hi represents the altitude between the ith ball and the
Earth.

We go a step further. Assume thatFnet, i in the ith subsystem
is affected by the trajectories of ‘‘all’’ balls in the system.
In this way, Fnet,i is given as

Fnet,i = Fnet,i(h) (28)

In Eq. (28), h is defined as the ‘‘system trajectory’’ that is
formed by the trajectories of all the balls in the system. Fnet,i
reflects the effect on the ith ball from all balls (including the
ith ball itself) in the system.

Based on the equation of motion of the ball as in Eqs. (27)
and (28), the Newtonian energy of the ith ball is defined as

Vi =
1
2
miv2i +

∫ hi

h(P1)i

Gi(h)dhi (29)

In Eq. (29), the energy reference point of the ith ball is set
as P1. The energy conversion reflects the relative motion of
the ball with respect to the Earth.

From the analysis above, the generalized Newtonian sys-
tem is also a ‘‘gravity-variant’’ system. Since the trajectory
of each ball (hi) is continuous, the system trajectory is
also continuous, and thus, the variance in the net force
on each ball (Fnet,i(h)) will be continuous during the
post-disturbance period. This situation fully indicates that
the gravity of each ball in the generalized Newtonian
system will become reversed smoothly without any sudden
changes.

The formation of the generalized Newtonian system is
shown in Fig. 10. Note again that the Earth is also a
component of the system.

FIGURE 10. Formation of the generalized Newtonian system.

FIGURE 11. Formation of the decomposed subsystem.

From Fig. 10, the characteristics of the generalized system
are given as follows:

(i) Fnet,i on each ball is affected by the system trajectory
(h), and thus Fnet,i varies continuously along the system
trajectory, as in Eq. (28).

(ii) The variance in Fnet,i will further change the trajectory
of the ith ball (hi), as in Eq. (27).

(iii) Each Fnet,i is unique and different, although it
corresponds to the same system trajectory (h).

(iv) hi of each ball is unique and different because each
Fnet,i is different.

(i) to (iv) indicate that Fnet,i and hi ‘‘cause and effect’’ each
other.

Considering that each ball is a fundamental component in
the generalized Newtonian system, the stability state of the
entire system is naturally decided by the stability state of each
ball. Therefore, the stability principle of the system can be
defined as follows:
(I) The generalized Newtonian system can be considered to

be stable if all balls are stable.
(II) The generalized Newtonian system can be considered

to be unstable as long as any ball is found to become unstable.
The two principles substantially illustrate the stability

mechanism of the generalized Newtonian system. In partic-
ular, Principle II reveals that the entire generalized system
becoming unstable can be decided by any one ball becoming
unstable.

B. INDEPENDENT PARALLEL STABILITY
CHARACTERIZATION
Following the analysis in Section A, crucial characteristics of
the generalized Newtonian system are depicted as follows.
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FIGURE 12. Independent parallel stability characterization of the generalized Newtonian system.

(i) The Earth is set to the same motion reference of each
ball in the generalized system.

(ii) Fnet,i is the ‘‘one and only’’ force that acts on the ith

ball, although it is determined through the trajectories of all
balls in the system (h).

The two characteristics of the generalized Newtonian
system strongly indicate that the entire system can be
decomposed into multiple two-ball-based subsystems. Each
subsystem is formed by an individual ball and the Earth with
the net force on the ball. The structure of each subsystem is
also completely the same as that of the original Newtonian
system.

The decomposition of the generalized Newtonian system
is shown in Fig. 11.

Following the analysis of the original Newtonian system
as analyzed in Section II, by using the Earth as the
motion reference, the formation of each sub-system after
decomposition fully indicates the following
The stability of each ball can be characterized indepen-

dently, although all balls interact with each other.
The NEC inside each subsystem is unique and different

because the net force inside each ball is different.
This independence after decomposition further ensures the

following attribute.
The stability of each ball after decomposition can be

monitored in parallel.
Essentially, the ‘‘independent & parallel’’ stability charac-

terization’’ can be considered the key feature of the stability
characterizations of a generalizedNewtonian system. Follow-
ing the NEC inside each subsystem, the stability principle of

the generalized system in Section A can also be redefined in
an NEC manner, as given below:
(I) The generalized Newtonian system can be considered

stable if the residual KE of each ball is strictly zero at its
MPP.
(II) The generalized Newtonian system can be considered

to become unstable as long as the residual KE of any ball
occurs at its MPP.

Based on the advantages of NEC as analyzed in
Section II G, one can naturally obtain the following attributes.
The stability of each ball is characterized precisely at its

corresponding MPP.
The trajectory of each ball is depicted clearly at its

corresponding MPP.
A demonstration of the independent parallel stability

characterization is shown in Fig. 12.
From Fig. 12, three subsystems are formed after decompo-

sition. All these subsystems have the same motion reference,
i.e., the Earth. The net force on each ball (Fnet,i(h)) is unique
and different, and thus, the NEC of each ball is unique
and different. The stability of each ball is characterized
independently in parallel through its corresponding NEC.
The MPP (DLP or DSP) of each ball occurs one after
another along the time horizon. According to the advantages
of the NEC as analyzed in Section II G, the stability
of each ball is characterized precisely at its MPP, and
the trajectory of each ball is depicted clearly at its MPP.
In the end, the stability of the entire system is characterized
through the stability of each ball, according to the stability
principle.
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FIGURE 13. Parallel monitoring.

C. A TUTORIAL EXAMPLE
A tutorial example is given below to demonstrate the NEC
inside the generalized Newtonian system. In this case,
the generalized system is formed by three balls and the Earth.
The net force of each ball follows the structure of fi as given
in the TS-4 test bed [19].

The net force of each ball is given as

Fnet,i = fi(h) (30)

where

fi = Pmi − Pei −
mi
mT

∑n

i=1
(Pmi − Pei(h))

mT =
∑n

i=1
mi

In Eq. (30), fi is computed according to the structures of the
power system during the fault-on period and postfault period,
as given in Ref. [19]. Note that fi can also be defined in other
forms.

Assume the disturbance is set as [TS-4, bus-1, 0.40 s].
After decomposition, the generalized system becomes three
subsystems, and each subsystem is formed by a ball and the
Earth.

The system trajectory obtained by using the Earth as the
motion reference is shown in Fig. 13. The trajectory (altitude)
and EAC of each ball are shown in Figs. 14 and 15,
respectively.

From Figs. 14 and 15, after decomposition, the stability
of each subsystem is characterized independently, and each
subsystem is monitored in parallel. Since the Fnet,i(h) of each
ball is different, the NEC (and EAC) of each ball is unique
and different. The gravity of each ball is reversed smoothly
at its DLP when zero gravity occurs. Once the ball goes
through its DLP, the ball falls in its reverse gravitational
field and becomes unstable. The DLP of each ball occurs
one after another, as shown in Fig. 13. The instability of
each ball is characterized precisely at its DLP, and the
trajectory separation of each ball is also depicted clearly at
its DLP. Following the stability principle, the entire system is
evaluated to become unstable once Ball 2 becomes unstable
at DLP2.

FIGURE 14. Trajectory of each ball. (a) Ball 2. (b) Ball 3. (c) Ball 1.

FIGURE 15. Independent stability characterization. (a) EAC of Ball 2.
(b) EAC of Ball 3. (c) EAC of Ball 1.

The example above visually demonstrates the indepen-
dent parallel stability characterization of the generalized
Newtonian system. In the following section, eight strict
mappings between the Newtonian system stability and the
individual-machine transient stability will be given. Based
on all these mappings, we focus on the explanations of
the mechanisms of the individual-machine transient stability
from the perspective of Newtonian mechanics.

IV. MAPPINGS OF THE SYSTEM STABILITY
A. MAPPINGS BETWEEN THE ORIGINAL NEWTONIAN
SYSTEM AND IVCS
1) MAPPING OF THE SYSTEM STRUCTURE (MAP-I)
Following the analysis in Ref. [15], for an n-machine system
with rotor angle δi and inertia constant Mi, the motion of
Machine i in the synchronous reference is governed by the
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FIGURE 16. Motion of Machine-sys in the synchronous reference [TS-1,
bus-34, 0.202 s].

FIGURE 17. IVCS formed by machine i and Machine-sys.

differential equations
dδi
dt
= ωi

Mi
dωi
dt
= Pmi − Pei

(31)

In Eq. (31), all the parameters are already given
in Ref. [15].

The position of the center of inertia of the system (COI-
SYS) is given as

δsys =
1
MT

∑n

i=1
Miδi

ωsys =
1
MT

∑n

i=1
Miωi

Psys =
∑n

i=1
(Pmi − Pei)

(32)

whereMT =
∑n

i=1Mi
In Eq. (32), the COI-SYS can be considered an equivalent

machine with its own equation of motion. Note that this
motion represents the equivalent motion of all machines in
the system. This equivalent machine is named Machine-sys.
Notably, the motion of Machine-sys is given as

dδsys
dt
= ωsys

MT
dωsys

dt
= Psys

(33)

The trajectory of Machine-sys in the synchronous refer-
ence is shown in Fig. 16.

Because Machine i and Machine-sys are the two machines
with interactions, an individual-machine-virtual-COI-SYS
machine system (IVCS) can be formed, as shown in Fig. 17.
Machine-sys is set as the motion reference of the IVCS.

TABLE 2. Structure-mapping between the Newtonian system and IVCS.

The relative motion between Machine i and Machine-sys
is given as 

dθi
dt
= ω̃i

Mi
dω̃i
dt
= fi

(34)

where

fi = Pmi − Pei −
Mi

MT
Psys

θi = δi − δsys

ω̃i = ωi − ωsys

Eq. (34) gives the relative motion inside the IVCS.
Following the analysis in Section II A, strict mapping is

found between the structure of the original Newtonian system
and that of the IVCS. Detailed mapping is shown in Table 2.

From Table 2, the physically real machine and the
equivalent Machine-sys in the IVCS can be considered the
‘‘ball’’ and the ‘‘Earth’’ in the original Newtonian system,
respectively. The individual-machine trajectory (IMTR) of
the machine in the COI-SYS reference also corresponds to
the altitude of the ball in the original Newtonian system.

From the analysis above, the structure of the IVCS is fully
in accordance with the structure of the original Newtonian
system, as given in Section II A. Thus, strict mapping holds.
Note that the structure-mapping essentially ensures all the
following mappings.

2) MAPPING OF THE ENERGY DEFINITION (MAP-II)
The transient energy of an individual machine is defined
as [18]

Vi = VKEi + VPEi (35)

where

VKEi =
1
2
Miω̃

2
i

VPEi =
∫ θi

θ si

[
−f (PF)i (θ )

]
dθi
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In Eq. (35), the components in Vi (Mi, ω̃i, fi and θi) are
the parameters of an individual machine. Therefore, Vi is
the transient energy that is defined in a genuine individual-
machinemanner. The first and second terms on the right-hand
side of Eq. (35) represent the individual-machine-kinetic-
energy (IMKE) and the individual-machine-potential-energy
(IMPE) of the machine, respectively.

From the analysis above, the definitions of the IMKE
and IMPE are fully in accordance with the definition of
the Newtonian energy, as given in Section II A. Thus, strict
mapping holds.

3) MAPPING OF THE EQUIVALENCE BETWEEN ENERGY
CONVERSION AND EAC (MAP-III)
Following the analysis in Refs. [15], [18], for an unstable
critical machine, the acceleration area is calculated as

AACCi =
∫ θci

θ si

f (F)i dθi =
∫ ω̃ci

ω̃si

Miω̃idω̃i =
1
2
Miω̃

c2
i (36)

The deceleration area is expressed as

ADECi =
∫ θDLPi

θci

[
−f (PF)i

]
dθi

=

∫ θDLPi

θ si

[
−f (PF)i

]
dθi −

∫ θci

θ si

[
−f (PF)i

]
dθi (37)

The residual IMKE is expressed in an EAC manner [18]

V RE
KEi = AACCi − ADECi (38)

From the analysis above, the individual-machine tran-
sient energy conversion is fully identical to the IMEAC
of the machine. This result is fully in accordance with
the equivalence between the NEC and EAC, as given
in Section II C. Thus, strict mapping holds.

4) MAPPING OF THE FREE SETTING OF THE ENERGY
REFERENCE POINT (MAP-IV)
In Refs. [18], [19], the default energy reference point of IMPE
is set as the prefault point θ s. In fact, the energy reference
point of IMPE can be set freely along the system trajectory,
regardless of whether the point occurs before or after fault
clearing.

Following Eq. (38), as analyzed in MAP-III, the residual
IMKE is identical to the difference between the acceleration
area and the deceleration area of the machine, which is
independent of the settings of the energy reference point.
This is fully in accordance with the free setting of the energy
reference point in the original Newtonian system, as analyzed
in Section II D. Thus, strict mapping holds.

5) MAPPING OF THE STABILITY CHARACTERIZATION
(MAP-V)
Following the analysis in Refs. [15], [18], the stability
characterizations of an individual machine are summarized
below.

(i) From the perspective of transient energy conversion,
a critical machine is evaluated to become unstable if the
residual IMKE occurs at its IMPP.

(ii) From the perspective of the EAC, a critical machine is
evaluated to become unstable if the acceleration area is larger
than the deceleration area.

From the statements above, the stability characterizations
of an individual machine are fully in accordance with the
stability characterizations of the original Newtonian system,
as given in Section II E. Thus, strict mapping holds.

In this section, strict mappings between IVCS and the
original Newtonian system are given. In the following
section, more mappings between the multimachine system
and the generalized Newtonian system will be validated.

B. MAPPINGS BETWEEN THE GENERALIZED NEWTONIAN
SYSTEM AND THE MULTI-MACHINE POWER SYSTEM
1) MAPPING OF THE SYSTEM STRUCTURE (MAP-VI)
We extend the transient characteristic of an individual
machine into the multimachine case.

Under the COI-SYS reference, Machine-sys is set as
the motion reference of all machines in a multimachine
power system. Therefore, Machine-sys is identical to the
‘‘Earth’’ in the generalized Newtonian system, as analyzed
in Section III A. Each machine shows correlations with
Machine-sys through the net force (fi) of the machine.
This is completely in accordance with the structure of the
generalized Newtonian system, as analyzed in Section III A.
Thus, strict mapping holds.

2) MAPPING OF THE INDEPENDENT PARALLEL STABILITY
CHARACTERIZATION (MAP-VII)
In the IVCS as analyzed in Ref. [15], each IVCS is formed
by an individual machine and Machine-sys. Furthermore,
because fi describes the ‘‘one-and-only’’ force between the
machine and Machine-sys, the stability of the IVCS can
be characterized ‘‘independently’’. This fully reveals that
the multimachine power system can be decomposed into
each subsystem, i.e., the IVCS. Additionally, based on this
independence, the transient behavior of each machine is
monitored in ‘‘parallel’’. This is fully in accordance with the
analysis in Section III B. Thus, strict mapping holds.

3) MAPPING OF THE STABILITY PRINCIPLE (MAP-VIII)
Following the analysis in Ref. [15], the unity principle of the
multimachine power system is given as follows.

(i) The system can be considered stable if all critical
machines are stable.

(ii) The system can be considered unstable as long as any
unstable critical machine is found to become unstable.

From the statements above, the unity principle is fully
in accordance with the stability principle of the generalized
Newtonian system, as given Section III A. Thus, strict
mapping holds.
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FIGURE 18. Mechanism of independent parallel stability characterization of the multimachine power system.

The mechanism of the independent parallel transient
stability characterization of the multimachine power system
is shown in Fig. 18.

From Figs. 12 and 18, strict mappings can be found
between the generalized Newtonian system and multima-
chine power system. In particular, the multimachine power
system is decomposed into multiple IVCSs. fi(θ ) of each
machine fully reflects the complicated interactions among all
machines in the system. Based on the 3DKC of the machine,
the trajectory and Kimbark curve of the machine can be
considered the two projections of the 3DKC of the machine
in t-θi space and θi-fi space, respectively. The stability of the
machine is evaluated independently in parallel through its
corresponding NEC. According to the advantages of the NEC
as analyzed in Section II G, the stability of each machine is
characterized precisely at the MPP, and the trajectory of each
machine is depicted clearly at the MPP. Finally, the stability
of the entire system is evaluated through the stability of each
machine, according to the unity principle.

From all the mappings in the two sections above, the fun-
damental mechanism of the individual-machine transient
stability can be explained effectively by using the Newtonian
system.

V. CASE STUDY
A. NEC INSIDE ONE CRITICAL MACHINE
Two cases are given below to demonstrate the strict mappings
between individual machine transient stability and original
Newtonian system stability. Case-1 is [TS-1, bus-34, 0.219 s].
Case-2 is [TS-1, bus-34, 0.180 s]. In the following two cases,
we only focus on the transient behaviors of Machine 5.
Machine 5 becomes unstable in Case-1, while it remains
stable in Case-2. IMTR5 in the two cases is shown in
Figs. 19 (a) and (b), respectively. The NEC and EAC of
Machine 5 in the two cases are shown in Figs. 20 and 21,
respectively.

From Figs. 20 and 21, following the mapping of the system
structure and energy definition as analyzed in Section IV
A (MAP-I and MAP-II), it is quite clear that the NEC and
EAC can be established inside a critical machine (MAP-III).
If residual IMKE5 occurs at DLP5, Machine 5 will become
unstable with IMTR5 going infinite in t-θ space, as shown
in Fig. 19 (a). If residual IMKE5 is strictly zero, Machine
5 will remain stable with IMTR5 bounded in t-θ space,
as shown in Fig. 19 (b). Therefore, the stability of Machine
5 is precisely depicted through its corresponding NEC and
EAC (MAP-V).
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FIGURE 19. System trajectories. (a) Case-1: Machine 5 becomes unstable
[TS-1, bus-34, 0.219 s]. (b) Case-2: Machine 5 maintains stable [TS-1,
bus-34, 0.180 s].

Inside the IVCS5 that is formed by Machine 5 and
Machine-sys, the net force of the machine (f5) is determined
by the entire system trajectory (θ). Since the system trajectory
is continuous along the time horizon, f5 is also continuous
during the postfault period, and thus, the ‘‘gravity’’ of the
machine becomes reversed smoothly without any sudden
changes, as shown in Fig. 20 (b). Against this background,
DLP5 occurs at the moment when f5 reaches zero. Following
the advantages of the NEC as analyzed in Section II G,
the stability of the machine is characterized precisely at
DLP5, as in Figs. 20 and 21. The trajectory separation
of the machine is also depicted clearly at DLP5, as
in Figs. 19 (a) and (b).

The simulation above fully shows that the IVCS is a typical
original Newtonian system.

B. NEC INSIDE MULTIPE CRITICAL MACHINES
A simulation case is given to demonstrate the NEC inside
a multimachine power system. The fault is [TS-1, bus-19,
0.230 s]. In this case, Machines 4, 5 and 1 are severely
disturbed critical machines. Machine 5 becomes unstable,
while Machines 4 and 1 remain stable. The system trajectory
is shown in Fig. 22. The NEC inside each critical machine is

FIGURE 20. NEC and EAC inside Machine 5 in Case-1. (a) NEC. (b) EAC.

FIGURE 21. NEC and EAC inside Machine 5 in Case-2. (a) NEC. (b) EAC.

shown in Figs. 23 (a) to (c). In this case, the energy reference
point of each IMPE is set as the prefault point θ s as a default.

From Fig. 23, following the mapping of the system struc-
ture (MAP-VI), the multimachine power system is formed
by ten subsystems, i.e., ten IVCSs. After decomposition,
the stability of each machine is characterized independently
in parallel (MAP-VII). The NEC of each machine is unique
and different because fi of each machine is different.
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FIGURE 22. System trajectory [TS-1, bus-19, 0.230 s].

FIGURE 23. Transient energy conversion inside each critical machine
[TS-1, bus-19, 0.230 s]. (a) Machine 5. (b) Machine 4. (c) Machine 1.

In particular, Machine 5 becomes unstable because residual
IMKE5 occurs at DLP5 (0.27 p.u.), while Machines 4 and
1 remain stable because the residual IMKE4 and residual
IMKE1 are strictly zero at their DSPs. The stability of each
machine is characterized precisely at its MPP, as shown
in Fig. 23. The trajectory of the machine is also depicted
clearly at its MPP, as in Fig. 22. In the end, the entire

FIGURE 24. Transient energy conversion inside Machine 4 when the
energy reference point is changed.

multimachine system is evaluated to go unstable because
Machine 5 becomes unstable at DLP5, according to the unity
principle (MAP-VIII).

C. DEMONSTRATION ABOUT MAP-IV
The independent parallel stability characterization in the
individual-machine transient stability analysis is of interest
because it indicates that the energy reference point of each
machine does not need to be set as the same.
Using the case in Section B as an example, assume the

energy reference point of Machine 4 is set as θc rather than
θ s. The modified IMTE4 is shown in Fig. 24.
From Fig. 24, compared with the case in Section B, the

characteristics of the modified IMTE4 are given as follows:
(i) The IMKE4 curve remains unchanged.
(ii) IMPE4 reaches zero at the fault clearing point rather

than the SEP.
(iii) The IMPE4 curve and IMTE4 curve move downward

by the same distance (
∫ θc4
θ s4

[
−f (PF)4

]
dθ4 = 2.088 p.u.).

Following (i) to (iii), the residual IMKE4 remains strictly
zero at DSP4 after the change of the energy reference
point, and thus Machine 4 is still precisely characterized
as maintaining stable. This fully indicates that the ‘‘energy
conversion’’ inside Machine 4 remains the same as that
in Fig. 23 (b), although the value of the ‘‘energy’’ is changed.

VI. FURTHER DISCUSSIONS
A. CLARIFICATION OF THE POTENTIAL ENERGY SURFACE
In the original Newtonian system, as shown in Fig. 2, the
basin is physically ‘‘real’’, and it is simply used to depict the
position of the ball (hi). In the individual machine transient
stability analysis, the IMPES is also seen as a ‘‘basin’’ with a
ball rolling on it [19]. However, the authors state that the two
concepts are completely different. The clarification is given
below.

We focus on the modeling of the IMPES [19]. Assume
numerous system trajectories in the angle space form a
‘‘system-trajectory set’’. Then, the IMPE of an individual
machine is computed along each system trajectory in the set.
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FIGURE 25. Formations of IMPES2 in TS-4.

In this way, the IMPE of the machine under different system
trajectories will form the IMPES.

The IMPES of a machine is shown in Fig. 25
From Fig. 25, the IMPES is modeled in a genuine

IMPE manner. The ‘‘altitude’’ of the IMPES represents the
IMPE (V PE2) rather than the position (θ2) of the machine.
In addition, the IMPES is separated by flat land along the
constant-θi angle surface [19]. Therefore, the IMPES should
be seen as a distinctive ‘‘energy basin’’ with ‘‘gaps’’. This
is completely different from the physically real basin in
the Newtonian system that simply depicts the position of
a ball (hi).

B. THE SECOND DEFECT OF UEP
In Ref. [19], an inherit defect of the unstable equilibrium
point (UEP) is exposed through the concept of the zero-fi
angle surface. That is, some UEPs physically do not exist
in a multimachine power system. In this section, from the
perspective of the Newtonian system, another defect of UEP
is exposed. That is, the UEP completely ignores the unique
and different NEC characteristics inside each machine.

This defect can be explained by using the generalized
Newtonian system. The UEP and SEP are mathematically
given as

fi(h) = 0 i = 1, 2. . . n (39)

Following the definition of the DLP with zero gravity as
given in Section II F, the occurrence of UEP can be depicted
as follows:

(i) Each unstable machine in the system reaches its
corresponding DLP.

(ii) Each stable machine in the system reaches its
corresponding zero-fi point.

In fact, (i) and (ii) will form an extreme scenario.
In this scenario, each machine reaches the zero-gravity point
(DLP or zero-fi point) ‘‘simultaneously’’. In particular, each
unstable machine lies in its IMPEB, and it is ready to become
unstable, while each stable machine oscillates with zero-fi.

A demonstration of this extreme scenario in the Newtonian
system is shown in Fig. 26.

From Fig. 26, at the moment that UEP occurs (tUEP),
Machines 1 and 3 lie in their DLPs, while Machine 2 lies in

FIGURE 26. Occurrence of UEP in the generalized Newtonian system.

FIGURE 27. Net force of each machine along the time horizon.

the zero-f2 point. Then, at tUEP + 1t , this fragile balance is
completely destroyed because of the motion of each machine.
Against this background, Machines 1 and 3 fall into their
reverse gravity fields ‘‘simultaneously’’, and they become
unstable. Meanwhile, Machine 1 still oscillates around the
bottom of the basin.

Frankly, this extreme scenario will never occur along the
actual simulated postfault system trajectory, because it com-
pletely ignores the unique and different NEC characteristics
inside each machine. The case [TS-4, bus-1, 0.40 s] in
Section III C is used as an example. The variance in fi of each
machine along the time horizon is shown in Fig. 27. Note
that this figure is not the Kimbark curve of the machine. The
variance in f (PF)i , i.e., the ‘‘gravity’’ of each machine along
the time horizon, is shown in Fig. 28. The system trajectory is
already shown in Fig. 13. Detailed transient stability analysis
was already given in Ref. [19].

From Fig. 27, because of the complicated interactions
among all machines in the system, the NEC inside each
machine is unique and different, and thus, the occurrence
of the DLP of each unstable critical machine is also
different. Against this background, all DLPs cannot occur
simultaneously. Instead, they will occur one after another
along the time horizon. In particular, in this simulation case,
DLP2 and DLP3 occur at 0.47 s and 0.49 s, respectively.

From the analysis above, UEP is a ‘‘fictional’’ and
‘‘static’’ concept that is computed only through mathematics
( f(h) = 0). The UEP completely ignores the distinctive
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FIGURE 28. Gravity of each machine along the time horizon.

NEC characteristics inside each machine and does not exist
along the actual postfault system trajectory. Therefore, UEP
cannot be used as the critical energy point of a generalized
Newtonian system.

C. DISCUSSION OF THE MOTION REFERENCE
1) EARTH REFERENCE
In the Newtonian system, the Earth is set as the motion
reference to depict the relative motion of each ball in the
system. Against this background, the NEC of each ball
measures the ‘‘relative motion’’ between the ball and the
Earth.

2) COI-SYS REFERENCE
Following the mappings between the Newtonian system and
the multimachine power system as analyzed in Section IV,
the COI-SYS is naturally used as the motion reference,
i.e., ‘‘Earth’’, to measure the relative motion of each machine.
Against this background, the transient energy conversion of
each machine measures ‘‘relative motion’’ between each real
machine and COI-SYS.

3) REAL MACHINE REFERENCE
We go a step further. Based on the original idea of the
‘‘relative motion’’, it is certain that a physically real machine
can also be used as the motion reference of the entire system,
even though it is neither infinitely large (such as the Earth)
nor equivalent (such as COI-SYS). This real machine is
named the ‘‘reference machine’’ (RM) [17]. Against this
background, the transient energy conversion inside each
machine measures the ‘‘relative motion’’ between the real
machine and RM. Note that the RM will become ‘‘relatively
stationary’’ once it is set as the motion reference of the
entire system, even though it has velocity in the synchronous
reference.

Tutorial comparisons between the COI-SYS reference and
RM reference are shown in Figs. 29 and 30, respectively. The
simulation case is [TS-1, bus-21, 0.370 s] [17]. The formation
of the generalized Newtonian system using the RM as the
motion reference is shown in Fig. 31.

FIGURE 29. Trajectory separation using the COI-SYS reference. (a) System
trajectory in the synchronous reference. (b) IMTR of each critical machine
using the COI-SYS reference.

FIGURE 30. Trajectory separation using the RM reference. (a) System
trajectory in the synchronous reference. (b) IMTR of each critical machine
using the RM reference.

FIGURE 31. Formation of the Newtonian system using the RM as the
Earth.

From Figs. 29 and 30, quite different from the COI-SYS
reference, the physically real Machine 1 is set as the RM and
is used as the motion reference of the entire system [17].
Against this background, the individual-machine transient
stability analysis is completely transferred from the COI-SYS
reference to the RM reference. The stability of each critical
machine is also characterized independently in parallel in the
RM reference.

From the analysis above, theoretically, the mechanisms of
the individual-machine transient stability under the two refer-
ences are quite similar. However, technically, the distinctive
advantage of the RM is that the concept of the equivalent COI-
SYS is completely eliminated from the individual-machine
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FIGURE 32. Variant gravity in the Stanton planet.

transient stability analysis. In particular, the stability of each
machine in the RM reference is measured through only two
‘‘real’’ machines without using the equivalent COI-SYS that
comprises the information of all machines in the system,
which greatly improves the efficiency of TSA. This also
indicates that the motion reference in the original Newtonian
system can be set as a physically real ball rather than the
infinitely large Earth.

D. STANTON PLANET
In our daily living environment, the ‘‘value’’ and the
‘‘direction’’ of the gravitational field are constant because the
Earth is a ‘‘gravity-constant’’ planet. In this section, a virtual
planet is established by the authors. This planet is named
the ‘‘Stanton’’ planet to commemorate the contributions of
Dr. Stanton in individual machine studies [4], [5], [12], [13].

The Stanton planet strictly follows the modeling of the
generalized Newtonian system. It is formed by the planet
itself and all the objects on it. Compared with gravity-
constant Earth, the Stanton planet is a ‘‘gravity-variant’’
planet. That is, the gravity of each object is affected by the
altitudes of all the objects (including the object itself) on this
planet. In particular, the direction of gravity might reverse if
the object leaves far from the ground.

Assume three astronauts, i.e., Lesley, Tom and Philip, land
on the Stanton planet. The three astronauts and the Stanton
planet naturally form a generalized Newtonian system with
four components. Then, two actions of the astronauts are
given as follows:
Walk: Under this circumstance, the altitude of each

astronaut is zero (hi = 0), and thus, the gravity of each
astronaut is also zero (Gi(h)= 0). The three astronauts remain
on the ground and they are safe.
Jump: Bored with walking, the three astronauts try a very

dangerous action. That is, they jump up from the ground. Tom
jumps much harder and higher than the other two astronauts.

At first, the gravity imposed on Tom remains positive
because the altitude is low. He is decelerating, and the
gravitational field feels ‘‘similar’’ to the Earth. However,

the situation becomes dangerous after a while. With
increasing altitude, Tom goes through his ‘‘DLP’’, and
his gravity reverses. After that, he keeps accelerating and
finally separates from the planet. Comparatively, the gravities
imposed on Lesley and Philip remain downward. The two
finally fall back to the ground.

In the end, Lesley and Philip found that they might
live flexibly on this planet. However, they should always
remember ‘‘no jumping’’ when hiking on this distinctive
gravity-variant planet.

A demonstration of the variant gravity of the Stanton planet
is shown in Fig. 32.

VII. CONCLUSION
In this paper, the authors clarify that Newtonian mechanics
can be used as the theoretical foundation of individual-
machine transient stability. The NEC strictly holds inside
the original Newtonian system. It is clarified that EAC is
the Newtonian work, and the EAC is identical to the NEC.
Based on these features, the stability characterizations of the
original Newtonian system are given. It is shown that NEC
is independent of the setting of the energy reference point.
Furthermore, a generalized Newtonian system with multiple
balls is established. The generalized Newtonian system can
be decomposed into multiple two-ball-based subsystems.
In this way, independent parallel stability characterization
is used in each subsystem after decomposition. Finally,
eight strict mappings between Newtonian system stability
and individual-machine transient stability are analyzed.
In addition, the difference between the physically real basin in
the Newtonian system and the IMPES is clarified. The second
defect of UEP is also exposed through the modeling of the
generalized Newtonian system. The gravity-variant Stanton
planet visually explains the mechanisms of the generalized
Newtonian system. All the analyses in this paper validate that
the theoretical foundation of the individual-machine transient
stability should be Newtonian mechanics.

In the history of power system transient stability,
global methods and individual-machine methods seem to
be developed ‘‘independently’’. However, the thinking of
Newtonian mechanics in both global methods and individual-
machine methods strongly indicates that ‘‘transient stability
paradigms’’ can be found between them. The exploration of
these paradigms will bring real unity between global thinking
and individual-machine thinking. This will be analyzed in
future work.
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