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ABSTRACT An end-to-end process to achieve a complete framework methodology for Harmful Algal
Bloom (HAB) growth prediction is crucial for water management, especially in implementing robust
predictive modelling of HAB to prevent water pollution. Previous works have separately focused on the
prediction part or the implementation of the water monitoring system that involves the integration of sensors
through the Internet of Things (IoT). These studies lack in terms of discussion of both IoT with the algae
ecological domain and prediction method. Therefore, this paper takes the initiative to provide a wider
coverage on the end-to-end process including the assembly and integration of sensors, data acquisition
and predictive modelling using data-driven approaches, for example, machine learning, deep learning and
deep time series forecasting algorithm for future algal bloom outbreak mitigation. This paper believes that
discussion in a complete framework perspective based on the execution of each phase is important besides
providing a true understanding of the algae growth factors and prediction problems to achieve a robust
prediction algorithm for algal growth. In the end, this paper presents proof that selecting the right features
and utilising time series with deep learning are much better for tackling the issues of highly non-linear and
dynamic algae ecological data that are briefly introduced in this paper. Among all the algorithms selected,
Long Short-term Memory (LSTM) is the best fit for the prediction method and has outperformed other basic
machine learning methods in accurately predicting algal growth through the prediction of chlorophyll-a
(Chl-a) as a strong indicator of algal presence for coastal studies.

INDEX TERMS Deep learning, harmful algal bloom (HAB), IoT, long short-term memory (LSTM), machine
learning, time series forecasting.

I. INTRODUCTION

Recently, water resources have been reported to be pol-
luted by the increase of nutrients and minerals that conse-
quently promote excessive algal growth [1]. Harmful algal
bloom (HAB) has long been a threat to water sources due to
the rapid increase and accumulation of algae population that
can cause harm. HAB toxin negatively affects human health,
the environment, and the economy whilst non-toxic ones can
damage fisheries resources and equipment [2], [3]. Harmful
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toxins such as neurotoxins released by the algae encourage
decomposers’ growth that increases the biochemical oxygen
demand (BOD) of the water. As the algae decompose, oxygen
is removed from the water, which then starves the fish and
plants of oxygen and damages the local ecology. BOD acts
as a measure of the amount of dissolved oxygen (DO) that
has been consumed. When BOD is high, less DO will be
available for other organisms. This promotes competition for
oxygen and finally, causes water pollution known as eutroph-
ication [4].

With the current advancement of the Internet of Things
(IoT), the use of various sensors has also increased, which
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further facilitates the process of monitoring and profiling
water quality and eutrophication mitigation. The IoT is a
network of physical objects that have evolved into a network
of devices such as smartphones, cameras, etc. for homes and
vehicles that all are connected, communicating and sharing
information [5]. Due to the development of sensors as part of
IoT for monitoring, fields such as ecological informatics [6]
and bioinformatics have gained various benefits where man-
ual profiling is automated.

A sensor is a device that receives a signal (physical, chemi-
cal or biological) and converts it into an electric signal output
such as current or voltage [7]. Since profiling processes are
arduous, time-consuming and lack real-time outcomes to
stimulate proactive response to water pollution, the use of
sensors is considered a promising alternative for water quality
control.

To date, the key challenges in the study and management
of HABs are species variety, life histories, ecosystems, and
the impacts involved. For example, algae communities such
as phytoplankton or cyanobacteria that are categorised as
potentially harmful do not fit a sole, evolutionarily distinct
group [8]. Since algae communities comprise various species
and differ in nonlinear ways, they are complex and hard to
analyse and are not well understood, resulting in unreliable
predictive models [9]. The dynamic growth of algae, which
can vary on short timescales (e.g., hours to days) has made
identifying the condition that favours HABs a major research
effort.

In algae or HAB prediction, algal count and chlorophyll
concentration, especially chlorophyll-a (Chl-a), have been
widely used to indicate the presence or growth of algae.
Algae concentration can change abruptly where the current
chlorophyll content can sometimes increase or decrease up
to 5 times than before, causing great difficulties in predicting
accurately [10].

Therefore, the prediction of algae remains difficult and
unreliable due to the dynamic nature of the time series algae
ecological data [11], [12]. Besides, this dynamic nature cre-
ates highly nonlinear data which results in randomness issues
in model fitting [10], [12]-[14], [15]. Randomness issues
are rooted in anomalies that have made algal bloom predic-
tions extremely complicated and not well understood. Various
research works randomly selected factors for algal growth
and depended only on the domain knowledge for feature
selection by including all the factors that seemed to be impor-
tant. This led to model fitting issues and caused fluctuating
performance. This paper believes that if the dynamic issues
can be tackled accurately, which considers from the data or
features level until the algorithm level, all these mentioned
strategies might improve the overall prediction performance
more.

Based on past literature on the prediction method, due to
the success of the data-driven prediction method either with
or without considering temporal behaviour [16], researchers
used historical data to predict algal blooms by incorporat-
ing machine learning techniques [11], [17]-[19]. Machine
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learning provides a principled set of mathematical methods
for extracting meaningful features from data into distinct and
meaningful patterns that can be exploited for decision mak-
ing, estimation and forecasting. The most applied machine
learning methods include Artificial Neural Network (ANN),
Support Vector Machine (SVM), Decision Trees (DT), Ran-
dom Forest (RF), and regressions. Even though only the input
and output of the model are needed for data-driven mod-
els, the prevailing data-driven models, especially those using
basic machine learning techniques as mentioned above, are
unable to effectively extract features of multi-factor timing
data and solve the dynamic issues.

Another issue concerns the implementation of the monitor-
ing system. Inspired by the high cost of the commercialised
sensor and the dynamic nature of algae that has complicated
the prediction process, this article also discusses the develop-
ment of a solar-powered and low-cost real-time monitoring
system to profile the quality of water. Water quality data
collected in the data acquisition phase will be used for the
development of a predictive model.

Our previous work [3] has managed to implement a
solar-powered and low-cost water quality monitoring sys-
tem (WQMS) for coastal studies. However, it was only a
preliminary study focusing on simple data analysis of the
parameter readings. This paper extends from that previous
work and will discuss in detail the modelling phase for
the predictive modelling, especially in tackling the dynamic
problem of algae ecological data and will briefly mention the
enhancement progress of the previous system. Later, the cho-
sen predictive modelling will be applied to the data collected
in the previous study [3]. Hence, a complete framework is
presented in this paper, which covers the end-to-end process
of developing a water monitoring system, deployment, instal-
lation, and prediction model development, which was missing
in our previous work in this domain.

Algae can damage fisheries equipment. This can further
affect the algae ecological data with missing values and
consequently, reduce the quality of the data. Not limited to
algae ecology, in general, time series data are vaguely defined
expert knowledge due to the existence of random variables,
incomplete and inaccurate data, and approximate estimations
rather than measurements, which rendered the understanding
of data to remain elusive [20], [21]. Algae ecological data
that are exposed to high missing values are due to the depen-
dence on monitoring sensors or systems that need frequent
maintenance.

Coralline algae would attach to the equipment and damage
all the installed sensors [3] which would later lead to missing
data collection for the day. This is one of the main reasons
why early algae prediction remains crucial as more time is
provided for facilities that use coastal water to shut down
before their equipment is damaged [22], [23].

Existing ecological studies, especially those on the algae
population are lacking in several aspects. To achieve robust
predictive modelling of algal growth, several issues must be
highlighted and addressed, for example, (i) the features must
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be mapped to the dynamic issues of algae ecology and (ii) a
suitable algal growth predictive modelling must be found,
particularly to tackle dynamic algae for coastal studies. This
is because, previously, prediction has been mostly done in
rivers [24]-[26] and lakes [27]-[30]. Thus, more research is
needed for coastal areas and other types of water sources such
as estuary. An algorithm that worked well for one type of
water source might not work well for different water sources
as they have different characteristics in terms of their hydro-
logic, geographic, climatic, morphologic, physical, chemical,
geochemical, and biological features. Addressing the prob-
lems through the features (water parameter) level and algo-
rithm level might help to achieve the main aim of this paper of
solving the dynamic issues by discussing the development of
coastal WQMS with predictive modelling. Hence, this paper
aims to answer this research question:

1) How to map the features and the right prediction
method to concurrently tackle the dynamic issues of
algae to provide a wider coverage from the end-to-
end process based on the IoT perspective until the
predictive modelling?

This paper’s primary objective is to address and discuss
the research question which will later complete the discus-
sion on the overall framework of coastal WQMS. The two
contributions of this paper are first, a low-cost solution to
the arduous manual sample collection process. Second, is the
development of the most suitable predictive modelling which
can be used to tackle the dynamic issues of algal growth
prediction in coastal studies. In the end, the predictive mod-
elling will be embedded into the IoT architecture, indirectly
implementing a smart IoT system. Besides, additional experi-
ments using suitable data-driven approaches, especially deep
time series, are performed to capture the non-linearity and
temporal-dynamic of coastal algae ecological study as a proof
of concept. Finally, a complete framework that consists of
the end-to-end process in achieving predictive modelling for
coastal algal growth is presented in this paper. The paper
believes that implementing the framework would benefit eco-
logical informatics and other domains in artificial intelligence
in terms of observing the importance of tackling both the
features until the algorithm level.

The paper is organised as follows. A short review of past
studies on identifying algal growth factors, development of
WQMS and algal growth prediction is presented in Section II.
Then, the research framework extended from our previ-
ous study is introduced in Section III. This framework that
focuses more on predictive modelling using machine learning
and time series with deep learning methods is discussed in
detail. Section IV discusses the results and analysis while
Section V concludes the paper.

Il. RELATED WORK

There are numerous continuous studies on algae ecology
including algal classification, algal detection, water qual-
ity profiling, algal analysis, and algal prediction [31]-[35].
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Nevertheless, this paper focuses on both WQMS and algal
prediction model development.

Prediction of algae in terms of Chl-a concentration is a
strong indicator that can contribute to the eutrophication issue
and is considered an important water quality (WQ) param-
eter for the management of water resources. Nonetheless,
since conventional profiling processes are arduous, time-
consuming and lack real-time findings to encourage proactive
response to water pollution, the use of sensors is considered a
promising alternative. Profiling water quality for the eutroph-
ication mitigation process will help to provide a solution
for a cost-effective and high-quality profiling technique to
solve the environmental concern due to highly polluted water
discharge. It will also help provide insights from the data
for robust predictive modelling at the later stage. However,
to the best of the researchers’ knowledge, discussion on both
monitoring work that also discussed the implementation of
the monitoring system with the predictive modelling part has
never been done together in the past, especially for coastal
studies that are still lacking in predictive modelling. As such,
this paper will review several past studies on the factors that
contribute to algal growth in general, the monitoring progress,
and the algal growth prediction methods.

A. IDENTIFYING IMPORTANT FACTORS

OF ALGAL GROWTH

Phytoplankton comprises several groups of algae and
cyanobacteria. In general, phytoplankton is described as
free-floating and reliant on water movement for maintenance
and transport [36]. Various factors affect their population
dynamics and these differ based on the type of phytoplankton
being scrutinised. Nevertheless, all algae species depend on
light as a basic input for photosynthesis and need nutrients,
for example, nitrogen and phosphorus for growth and repro-
duction. Factors such as water temperature, turbidity, mixing,
competition, and grazing are also pertinent to the population
dynamics of algae.

External pollution loading coupled with hydrodynamic
force influence the concentrations of nutrients, which, sub-
sequently, together with the underwater light intensity, affect
phytoplankton evolution [37]. The four main factors that are
crucial for algal growth are [38], (i) the growth coefficient,
(ii) the influence of solar radiation which under conditions of
unlimited nutrient availability is the main driving force for
algal growth, (iii) the influence of turbulence that is inclined
to increase with rising flow leading to resuspension of sedi-
ment material and decreasing light penetration, and (iv) the
self-shading factor where algal populations continue to grow
until light penetration is decreased by the algae themselves.

Twenty environmental parameters that facilitate cyanobac-
teria bloom in freshwater are listed in the latest study [39].
Amongst them are water temperature (WT), ambient tem-
perature, Secchi disk depth (SD), transparency, turbid-
ity, solar radiation, total phosphorus (TP), total nitrogen
(TN), NH4-N, NO3-N, ammonium ion concentration, DO,
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conductivity, alkalinity, calcium concentration, total sus-
pended solids (TSS), silica, pH, salinity, and chlorophyll-a.

Chlorophyll is the green pigment in leaves that allows
plants to generate energy light via photosynthesis. The
amount of photosynthesising is indirectly determined by
measuring chlorophyll. In a water sample, such plants are
algae or phytoplankton. Chlorophyll is the measure of all the
green pigments regardless if they are alive or dead. Mean-
while, Chl-a is the measure of the portion of the pigment that
is still alive. Both algae number and Chl-a concentration are
affected by factors such as sunlight, temperature, nutrients,
and wind. During spring, when water starts to warm, the days
are sunnier, and nutrients are abundant, the first outbreak or
“bloom” of algae might happen. As the days become pro-
gressively warmer and sunnier, algae will continue growing.
Predicting algae concentration that can be measured in total
chlorophyll form in raw water has previously been carried out
as a strong algal growth indicator [19], [40].

Other factors that are commonly used as a strong indicator
are turbidity, water depth, nutrient loading, total dissolved
solids (TDS), light intensity, temperature, climate change,
and water quality parameter. A liquid’s measure of relative
clarity is turbidity. It is water’s optical characteristic and
signifies the amount of light dispersed by material in the
water when light is shone through the water sample. Turbidity
will be higher when the light scattering intensity is high.
Among the materials that make the water turbid are clay, silt,
finely divided inorganic and organic matter, algae, soluble
coloured organic compounds and other microscopic organ-
isms. Water turns cloudy or opaque due to turbidity. Algae
growth increases water turbidity. This is because algae block
the light from passing through the water, hence, narrowing
the light spectrum below the water surface [41], [42]. Thus,
other than Chl-a, turbidity also plays a huge role in indicating
the growth rate of algae.

Numerous researchers have related essential parameters
such as water temperature, turbidity, pH, and Chl-a and
other standard parameters to algae growth. Water tempera-
ture, pH, and DO were reported to be positively associated
with cyanobacterial community dynamics and concentrations
of microcystins [17]. Other than that, nutrient level, phos-
phate, and nitrogen concentration were determined to be the
vital factors for cyanobacterial proliferation. Water depth and
nutrient loading are the two major factors causing HABs [43].
Shallow waters can raise the water temperature, encouraging
the growth of HABs. This is linked with seasonal changes
such as during spring and summer that generate more blooms
since there is more sunlight. Another factor that encourages
bloom growth is nutrient loading from tributaries and phos-
phorus and nitrogen are the main nutrients for microcystins,
a type of toxins produced during HABs.

TDS is a measurement of inorganic salts, organic matter
and other dissolved materials in water [44]. This measure-
ment does not distinguish among ions. TDS results in toxicity
viaincreases in salinity, changes in water’s ionic composition,
and toxicity of individual ions. Surges in salinity have been
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demonstrated to result in shifts in biotic communities, reduce
biodiversity, eliminate less-tolerant species and cause acute or
chronic effects at specific life stages. In some studies, a sig-
nificant and positive link between Chl-a concentration (an
estimate of primary production) and concentrations of Na+,
Mg2+, SO42—, HCO3— and CO32— has been shown [45].
Light is crucial for autotrophic growth and photosynthetic
activity because algae contain chlorophyll a and b, which are
important light-harvesting pigments sensitive to blue and red
light.

Other than light, temperature affects the cellular chemical
composition, uptake of nutrients, CO2 and the growth rates of
each algae species. A thorough study on the impact of tem-
perature and light intensity on various species of algae (green,
blue-green algae, red algae, brown algae, phytoplankton, and
seaweed) in terms of algal growth was conducted [46]. This
study revealed the optimal temperature range of 20°C to 30°C
for different algae species growth and found that temperature
and light were vital growth factors in the form of photon flux
density. The study indicated that algae growth was restrained
by shading light. After eliminating the shading light materi-
als, algae can continue its rapid growth [46].

A previous paper has provided extensive coverage of the
past and current situation of algal blooms, emphasising how
climate change affects the marine planktonic system glob-
ally [42]. The authors described the linkage among sev-
eral environmental factors that undergo alterations when
pressured by climate change. These factors are tempera-
ture, stratification, light, ocean acidification, precipitation-
induced nutrient inputs, and grazing. Besides, an analysis by
the United States Environmental Protection Agency (EPA)
in 2013 has summarised the effect of climate change on
the occurrence of HABs via an assortment of mechanisms
such as warmer water temperature, changes in salinity and
rainfall pattern, rise in carbon dioxide concentration, coastal
upwelling and increase in sea level.

Lastly, research on water quality determines the chemical
and physical characteristics of water bodies and identifies the
likely pollution sources that reduce water quality. This can be
an indicator to show the growth of algae since Chl-a belongs
under the biological factor (BF) in a water quality study.
Table 1 summarises the most measured qualitative parameters
in a water quality study [47].

B. MONITORING AND PROFILING WATER QUALITY

FOR GROWTH OF ALGAE

Automated WQMS for fields such as aquaculture enable the
industry to decrease catastrophic losses, lower production
cost and enhance product quality. A promising alternative by
using sensors to ensure the successful integration of obtaining
the needed data and predictive modelling development, and
water quality control will be the key aspects in both water and
fisheries management success. Sensors are generally inex-
pensive and allow remote measuring in real-time and with
little human intervention. Aquatic ecosystems have a crucial
role in preserving water quality and are a key indicator of the
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TABLE 1. Commonly measured qualitative parameters [47].

Water Quality Parameter Abbreviation Unit
Chlorophyll-a Chl-a mg/L
Secchi Disk Depth SDD m
Temperature T °C
Coloured Dissolved Organic Matters CDOM mg/L
Total Organic Carbon TOC mg/L
Dissolved Organic Carbon DOC mg/L
Total Suspended Matters TSM mg/L
Turbidity TUR NTU
Sea Surface Salinity SSS PSU
Total Phosphorus TP mg/L
Total Nitrogen N mg/L
Orthophosphate PO, mg/L
Chemical Oxygen Demand COD mg/L
Biochemical Oxygen Demand BOD mg/L
Electrical Conductivity EC Ms/cm
Ammonia Nitrogen NH;.N mg/L

suitability of the water for other usages and the reasons why
the water authority has implemented various measures to pro-
file the water quality. Moreover, since discoloured water can
be a sign of polluted water caused by HAB, measures such
as image processing, real-time monitoring via satellites or
drones have been carried out on image data of polluted water
areas. Due to the limitation of manual profiling, the task of
modelling algal bloom has long been initiated. Based on the
literature, algal bloom predictions are reliable and can be per-
formed by monitoring (involving detection, prediction, and
tracking) the mechanism of algal growth. Several techniques
were developed for remote detection and identification of
algal blooms. For example, in situ sensors and low-cost sen-
sors were developed for algae detection [48]-[51], [47], [52].
These sensors replace human effort for water sampling as
well as human observation (judgment).

A review of the development of in situ sensors to measure
chlorophyll concentration was performed [51] to quantify and
analyse freshwater and seawater phytoplankton in situ. The
review outlined the enhancement of probe design, excitation
light sources, detectors, and calibrations of in situ fluorome-
ters. Numerous optical designs to increase the effectiveness of
fluorescence measurement and the development of electronic
technology to fulfill and enhance in situ measurement were
discussed. A smart sensors network for in situ and continuous
space-time monitoring of surface seawater bodies to evaluate
water quality was presented [50] and this formed strong sup-
port to strategic decisions regarding serious environmental
problems. Since internal distances are in two scenarios (less
than 1 km and the maximum is 1.852 km (1 mile)), the authors
have proposed two different probes i.e. A and B that can be
integrated solutions for field coverage (surface etc.).

Besides, a low-cost sensor to solve the problem of high-
priced commercially produced in situ fluorometers has been
proposed [49] to perform the depth-resolved measurement of
phytoplankton biomass by measuring in situ phytoplankton
fluorescence. The sensor managed to log over 500 Chl-a read-
ings where 10 measurements were taken every 10 minutes.
The authors mentioned that the same approach could be used
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in an array to help detect HABs. Finally, a concept paper
was proposed [52] on the Smart River Monitoring System
for river sustainability. Inspired by these studies, additional
modifications to the hardware to suit the low-cost concept for
seawater monitoring system was studied and proposed in our
previous work [3].

This current paper will extend the previous work [3]
on the predictive modelling phase to explain both IoT for
WQMS development and predictive modelling using data-
driven methods, especially deep learning for coastal studies.
Furthermore, this paper also discusses the factors that con-
tribute to algal growth in coastal areas to address the gap and
improve the conventional method of selecting salient features
for algal growth.

C. DATA-DRIVEN ALGAL GROWTH PREDICTION METHODS
Currently, the algorithms employed for algal bloom
prediction are mostly separated into data-driven and process-
driven models. The process-driven models usually need sev-
eral parameters, such as initial conditions and ecological
variables. Even though the process-driven models are very
precise in their predictions, they need comprehensive knowl-
edge of the system [18] and are known to suffer from the
uncertainty of kinetic coefficients utilised in such models.
The complexity to get all the data during the simulation
has limited the application of process-driven methods. How-
ever, various investigations have reported the effective usage
of data-driven artificial intelligence-based methods. This is
because data-driven models are usually based on computa-
tional intelligence and machine-learning techniques [53].

A machine-learning algorithm is employed to discover the
connection between a system’s inputs and outputs using a
training dataset that represents all the behaviours found in the
system. When the model is trained, an independent dataset
can be used to test it to determine how well it can be gen-
eralised to unseen data. Nevertheless, since this involves the
physical, chemical, and biological processes and the interac-
tion among them, to properly model and predict algae blooms
in such a complex system is quite challenging. The occur-
rence of water pollution or the eutrophication phenomenon
with the algae mechanism itself is a complex function of
all the possible influencing factors [54]. These limitations,
nonetheless, may be addressed through machine learning or
artificial intelligence to gain insight into the algal community.
The most common machine learning methods applied in algal
prediction are ANN, SVM, DT, RF, and regression method.

A study in 1997 was the first to conduct modelling of algal
blooms in freshwaters using ANN [55]. Back-propagation
was used during training where the inputs were observ-
able water quality parameters whereas the outputs were
the biomass quantities of specific algal groups [55]. Next,
another study forecasted algal growth by increasing the sam-
ple data size by merging in-situ and remote sensing data [56].
An ANN was employed to build the empirical data-driven
models using water quality data, meteorological data, and
bloom grade data gathered via remote sensing and in-situ
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monitoring [56]. The same work was conducted in another
study [57] that predicted algal bloom using Extreme Learning
Machine (ELM) models at artificial weirs [57]. An SVM-
based prediction was proposed [15] to understand and pre-
dict a dynamic algae population transformation in freshwater
reservoirs and to address the high complex nonlinearity that
required only a small number of samples but produced a high
degree of prediction accuracy [16]. Throughout the study,
SVM was shown to be better in the prediction of algal growth
and could cater to the non-linear aspect. SVM was also better
than ANN in some cases if observed from the performance
aspect. This could be because SVM is recognised as a strong
predictor since it has a higher chance to attain the globally
optimum solution in comparison to a weak predictor such as
ANN that is often trapped in a local minimum [58]. Based
on the observation, the performance still depends on the
variable or features that are used. Furthermore, a fluctuating
result was observed, which highlighted the highly non-linear
and dynamic algal ecology data despite the water sources.
Regardless of its success, SVM still has problems in handling
noisy datasets and it does not work very well for a large
dataset [59], which could be very challenging for a multi-
variate time series predictive problem. Several other works
have been conducted in the past which utilised other machine
learning methods [14], [60]-[62].

Even though for data-driven models only the input and
output of the model must be determined, the prevailing basic
machine learning models cannot efficiently extract features
of multi-factor timing data and most of the models do not
reflect the temporal characteristics of the data. An alternative
approach to capture the temporal aspect for forecasting algal
dynamics is therefore necessary. The use of time series fore-
casting might be able to address the problems.

The key difference between the time series problem and
traditional prediction problem is that the data points in tra-
ditional prediction such as classification are assumed to
be independent of one another. In contrast, in time series,
the data points possess a temporal nature. The time dimension
gives an explicit ordering to the data points that must be
maintained since they can offer extra or crucial information
to the learning algorithms [63] and this cannot be efficiently
learnt by basic machine learning. Classical time series statis-
tical forecasting models such as Auto-regressive Integrated
Moving Average (ARIMA) and its variants (autoregressive
models (AR), moving average (MA) and autoregressive and
moving average (ARMA)) can be identified as frequently
employed for forecasting methodologies. Although these
models can capture temporal behaviour and produce accept-
able forecasts for linear time series data, they are not appro-
priate for analysing non-linear data. These methods generally
assume certain distribution or function form of time series,
which renders them incapable of capturing complex underly-
ing non-linear relationships and reflecting reality. Moreover,
most of them disregard the reliance between variables when
addressing multivariate time series, which lowers the fore-
casting accuracy.
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Fortunately, recent studies have shown that deep learn-
ing with time series models (e.g., Recurrent Neural Net-
works (RNN) and Long Short-term Memory (LSTM))
can provide better accuracy in predictions than traditional
machine learning models and traditional time series mod-
els because of their capability to persist information, tackle
non-linearity and recognise temporal relationships. RNN and
its variants, especially LSTM, show a good performance in
exploiting long-term dependencies and managing non-linear
dynamics [38]. Only very recently have time series been
applied with deep learning for algae prediction and very few
studies have discussed RNN or LSTM [29] and its improve-
ment, especially for the coastal dataset, in algal growth pre-
diction. Therefore, this concept paper takes the initiative to
prove and observe the capability of deep time series, espe-
cially LSTM, in capturing temporal-algal dynamic behaviour
for coastal studies.

Deep learning is a subfield of machine learning regarding
algorithms inspired by the structure and function of the brain
termed ANN. Besides, several kinds of deep learning models
are usually utilised in time-series forecasting, for instance,
RNN and its variant LSTM. RNN has been suggested to
elucidate the dynamics [64], [65]. It is a network with feed-
back connections from the hidden and output layers to the
preceding ones, through which the dynamics of sequential
data can be recorded, and the memories of the prior patterns
are kept via cycles in the network.

LSTM is an RNN architecture created to model temporal
sequences and its long-range dependencies make predictions
according to past data, hence, it is more precise compared to
conventional RNNs. LSTM does not employ the activation
function within its recurrent components, the stored values
are not altered, and the gradient is not inclined to disappear
during training like RNN.

LSTM has been evolving and is applied in many fields,
especially in time series forecasting. Nonetheless, for algae
prediction, only a few studies have adopted the LSTM algo-
rithm. For example, the LSTM model was employed for
algal bloom prediction on a newly constructed WQMS on
16 rivers [29]. Besides, a study using other time series non-
linear models has been conducted [66] to improve the error
caused by time series. LSTM has showcased excellent per-
formance in other water sources, mainly river [24]-[26]. In a
coastal study, deep time series was utilised via enhanced
RNN [67]. Hence, this paper proposes LSTM as predictive
modelling and examines the performance using the designed
dataset and proposed approach in selecting features for this
study. The in-depth explanation of LSTM as the proposed
method used to accomplish the research objectives will be
provided in Section III.

Ill. RESEARCH FRAMEWORK AND METHODS

As a revision to our previous work [3], this paper presents
an enhanced and more detailed predictive modelling stage
that has not been discussed yet. The complete framework is
presented in Fig. 1.
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FIGURE 1. Complete framework of coastal WQMS [3].

A. STAGE 1: KNOWLEDGE BASE (DATA ACQUISITION)

In this stage, the problems of this research topic must be
identified first to find and collect the right data and determine
the right method to tackle the problems. Previous studies
have revealed a research gap in tackling the issues of highly
non-linear, uncertainty and complexity due to the dynamic
behaviour of algae aquatic ecosystems [68]. Another gap
concerns the way features or the parameters (factors of algal
growth) are chosen.

This paper opines that the method of selecting the features
and the features themselves are important in improving the
prediction performance as proven in past research [56]-[59].
Furthermore, the dynamic problem itself originates from
the features level. Despite only focusing on the algorithm
level in tackling the dynamic issues, this paper will further
investigate the preparation and designing of the dataset at
the features level. This is because features selected in past
works were mostly based on domain knowledge or were ran-
dom [60] where most researchers considered all the features
to be important and had no specific feature selection method.
To address the issues, this paper has proposed a combination
of knowledge based on the literature, and the features are then
inspected using the feature selection method at the features
level, as shown in Fig. 2.

Next, at the algorithm level, there is a gap for the coastal
dataset where the use of deep learning with time series has
the least investigation performed, especially using LSTM.
For coastal studies, only one study [67] utilised deep time
series using enhanced RNN. To the best of the authors’
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FIGURE 2. Predictive modelling framework.

knowledge, LSTM alone with an improved feature selection
method in one study has never been applied for coastal stud-
ies. The question of whether LSTM can still outperform other
algorithms using coastal datasets remains a grey area to be
investigated.

Based on these gaps, the proposed method was com-
pared and studied from the literature. After problem formula-
tion, suitable and important parameters were identified using
knowledge extracted from the literature and feature selection
method to further inspect and validate the importance of the
predictor or features. Several parameters (features) that were
reviewed could be categorised as biological factor (BF), phys-
ical factor (PF), chemical factor (CF), and meteorological
factor (MF), as listed in Table 2.

The summary of analysis and categories extracted based
on the domain knowledge discussed in past literature is pro-
vided in Table 2. After further analysis, features from the
dataset were chosen based on these categories. For dataset,
the monthly/biweekly water quality monitoring data gathered
by the Hong Kong Environmental Protection Department
were utilised for modelling where the data were set up and
designed according to certain guidelines [13]. The data col-
lection in this paper was based on individual indicators (water
parameters) from the most weakly flushed monitoring station,
TM3.

Nine water parameters or indicators were considered [13]
as the target variables. The parameters were Chl-a (g/l), total
inorganic nitrogen, TIN (mg/1), orthophosphate, PO4 (mg/l),
total phosphorus, TP (mg/l), water temperature, temperature
(°C), DO (mg/1), Secchi disc depth, SD (m), daily solar radi-
ation, SR (MJ/m2), and daily average wind speed, WS (m/s).
Five years and 5 months (Jan 1997 to June 2002) of data for
training and 2 years and 5 months (July 2002 to 7 Dec 2004)
of data for testing were used.

To improve the features, this research differed from a
previous work [13] whereby the features in this study had an
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TABLE 2. Categorical variables.

TABLE 3. Additional dataset design and description.

Abbreviation Variable Factor Category
Chl-a Chlorophyll-a Biological Factor
BC Bloom Cases (Incident) (BF)
SGR Specific Growth Rate

WT Water Temperature

Salin Salinity

DO Dissolved Oxygen

Turb Turbidity

pH pH .

SD Secchi Disk Depth Physical Factor
SS Suspended Solid (PF)

DC Depth Code

FI Freshwater Inflow

EV Estuarine Velocity

SRT Salinity Recovery Time

TIN Total Inorganic Nitrogen

PO, Orthophosphate

TP Total Phosphorus

N Total Nitrogen

AN Ammonia Nitrogen Chemical Factor
NO,-N Nitrite Nitrogen (CF)
NO;-N Nitrate Nitrogen

COD Chemical Oxygen Demand

Si Silica

Hg Mercury

Pb Lead

Zn Zinc

Al Aluminium

Rf Rainfall

Thmin Minimum Temperature

Tave Average Temperature Meteorological
Tinax Maximum Temperature Factor
Hum Humidity (MF)

SR Daily Solar Radiation

WS Daily Average Wind Speed

additional length of data until 2018 (according to availabil-
ity). Besides, via knowledge-based extraction, several other
parameters were determined and correlation analysis for fea-
ture importance inspection was performed. The additional
length of data and exclusion of some variables following the
domain knowledge in the literature were to strengthen each
factor and for comparison purposes. Based on past research
on identifying important algal growth factors (Section II.
A), investigation on PF (refer to Table 2 ) such as turbidity,
DO, and other vital factors is still lacking [13]. Hence, more
features under the PF were included. Additional physical
features common in water quality studies, such as salinity,
turbidity, pH, suspended solids, and total nitrogen along with
some CF variables were also included, as listed in Table 3,
as the final features used for modelling.

As explained previously, water quality study parameters,
especially PF and CF, are usually used to indicate algal
growth. The identification of these parameters was also based
on WQMS'’s available probe. From here, knowledge-based
extraction or selection of features was conducted, and the
chosen features were further inspected using correlation anal-
ysis in the next stage, as illustrated in Fig. 2.
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Variable Category

Chl-a Chlorophyll-a Biological
(BF)

Salin Salinity
DO Dissolved Oxygen
Turb Turbidity Physical
pH pH (PF)
SD Secchi Disk Depth
SS Suspended Solid
Wtemp Water Temperature
TIN Total Inorganic Nitrogen
PO, Orthophosphate
TP Total Phosphorus Chemical
TN Total Nitrogen (CF)
AN Ammonia Nitrogen
NO,-N Nitrite Nitrogen
NO;-N Nitrate Nitrogen
Si Silica

Next, experiments were designed to investigate the effect
and relation between all the factors with the amount of Chl-a
as the indicator of total algal biomass. For comparison pur-
poses, the MF was purposely excluded in the initial experi-
ment. This was to observe the results with and without MF
since recent scientific research related climate change with
the outbreak of algal growth. This paper wanted to investi-
gate if the exclusion of MF could still improve the current
performance using the benchmark dataset from the literature.
Such an arrangement gave an observable comparison from
the dataset used. The dataset was divided using a 70:30 ratio
of training and testing datasets as recommended in previous
work [13] but with several modifications as explained earlier.

The guideline of sampling rate was followed exactly as
stated in the previous study [13] to conduct a fair comparison
in terms of the division of data. Moreover, after the study,
it was found that not all the methods such as cross-validation
could be directly applied to time series data since there was
a temporal dependency between the observations, and this
relation must be preserved during testing [69]. Hence, this
study had 1,556 observations with 16 attributes or features
from the biological, physical, and chemical categories as the
predictors. Meanwhile, date was included as an attribute to
preserve the temporal order. The target variable in the dataset
was Chl-a as the strong indicator to predict the presence
of algal growth. The Tolo Harbour dataset description is
provided in Table 4 while Table 5 presents a brief description
of the sampling rate.

TABLE 4. Tolo harbour dataset description.

Date Range Factor Update Instances Attributes
19862018  BF, PF, Sporadic 1556 17
CF

B. STAGE 2: PRE-PROCESSING AND FEATURE SELECTION
This stage was divided into two major steps i.e. (a) data pre-
processing from data collection and design and (b) feature
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TABLE 5. Sampling rate description.

Dataset Date Range 70:30
Train Model Start Jan 1986
Train Model End April 2008
Test Model Start May 2008
Test Model End December 2008

selection using correlation analysis. The details of each step
are discussed as follows:

1) DATA PRE-PROCESSING

Data cleaning for time-series data is different from other data
as there are special ways to efficiently handle time-series data.
Data pre-processing was divided into:

a: MIN MAX NORMALISATION

Min Max Normalisation is a rescaling of data from the origi-
nal range so that all the values are within the range of 0 and 1.
Equation (1) is used to normalise the dataset, which scales all
the data in the range of [0 1]:

X
Xmax

Xnew = (D
where X is daily observation of time series data obtained as
described in dataset design that comprises 17 features from
the range date, X, is the highest value of observation of a
particular feature, and X, is obtained after normalisation.

b: DATA PROCESSING

The data usually comes in a very untidy form, contain a lots of
noise and missing data. To impute the missing values, linear
interpolation is used. Incomplete data set usually caused bias
due to differences between observed and unobserved data.
A direct but unreliable approaches to deal with this problem
is to ignore the missing data and to discard those incomplete
cases from the data set. This approach is generally not valid
for time-series prediction, in which the value of a system
typically depends on the historical time point. A method was
adopted based on reference [70] that successfully compared
and proved that linear interpolation method provides a very
good fit to the time series data if compared with other method.
Besides that, time-series data was framed as a supervised
learning problem in this stage. The detail is discussed in
Model Selection section.

c: DATA STATIONARY

The next step was to find out whether a given series was
stationary. A stationary time series’ statistical properties
(e.g., mean, variance, and autocorrelation) are constant over
time. There are two ways to check data stationary, namely via
(i) visual test and (ii) statistical test. This research employed
unit root statistical tests. Unit root denotes that a given series’
statistical properties are not constant with time, which is the
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condition for stationary time series. An explanation using
equations 2—4 is provided as follows:
Suppose there is a time series:

YE=axy—1+é& 2

where y; is the value at the time instant ¢ and &; is the error
term. To calculate yt the value of y;_ is needed, which is:

Vi—1 =a X yr—2+ &1 3)

If (3) is applied for all the observations, the value of y; will
be:

yi=a" Xyi_n+ th—l x a 4

If the value of a is 1 (unit), as in the above equation, then,
the predictions will be equal to y;_, and the sum of all the
errors from ¢ — n to t, which implies that the variance will
increase with time. This is known as unit root in a time series.
For a stationary time series, the variance should not be a
function of time. The unit root tests determine the existence
of unit root in the series by checking if the value of a = 1.
Augmented Dickey-Fuller (ADF) is the most utilised unit root
stationary test.

d: AUGMENTED DICKEY-FULLER (ADF)

This test is a popular statistical test used to find out the exis-
tence of unit root in the series and it helps to determine if the
series is stationary. The null hypothesis of this test is the series
has a unit root (value of a = 1) while the alternate hypothesis
is the series has no unit root. If the null hypothesis is rejected,
the series is non-stationary. Hence, the series can be linear or
difference stationary. To test for stationarity, if the test statistic
is less than the critical value, the null hypothesis (the series
is stationary) can be rejected. On the other hand, if the test
statistic is higher than the critical value, the null hypothesis is
rejected (i.e., the series is not stationary). If the ADF statistic
employed in the test is a negative number, the more negative
it is, the stronger the rejection of the hypothesis that there is
a unit root at some level of confidence.

e: FEATURE SELECTION USING CORRELATION ANALYSIS

Correlation analysis [71] is a technique for investigating
the relationship and measuring the strength between two
quantitative, continuous variables to represent their inter-
dependencies. Pearson’s correlation is the most common one
where the coefficient scales range from —1 to 1, where
1 represents the strongest positive correlation while —1 rep-
resents negative correlation and O indicates no correlation
at all. For instance, a positive correlation means that if fea-
ture A increases, feature B will also increase, or if feature A
decreases, feature B also decreases. A and B have a linear
relationship. Meanwhile, a negative correlation implies that
if feature A increases, feature B will decrease and vice versa.
Highly positive correlation features can range from 0.5 to
0.7 while a strong and perfect positive correlation is signified
by a correlation score value of 0.9 or 1.0. Data and feature
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correlation is a key step in the feature selection phase of the
data pre-processing stage, especially if the data type for the
features is continuous. An experiment using the algae ecolog-
ical time-series dataset was performed using this algorithm to
observe the correlation between the 16 features which were
modelled based on the PF, CF, and BF that were determined
from the literature via knowledge-based extraction. Hence,
using Pearson’s correlation, this research could validate the
significance of the features selected at Stage 1.

C. STAGE 3: MODEL SELECTION AND EVALUATION

This stage was divided into three major steps, namely
(a) model selection, (b) evaluation, and (c) evaluation on a
real case study using WQMS data. The details of each step
are discussed as follows:

1) MODEL SELECTION-LSTM
Based on past literature, SVM, DT, RF, ANN, and Multiple
Linear Regression (MLR) were usually used and the perfor-
mance could be improved further. However, basic machine
learning has been pointed out as inefficient in handling the
dynamics of ecological data. Recently, deep learning with
time series capabilities such as RNN and LSTM has shown
outstanding performance to capture non-linear and temporal
behaviour but it has not been applied on coastal datasets.
The LSTM neural network, a variant of RNN, was ini-
tially introduced to solve the vanishing/exploding gradient
issue, which causes training divergence in RNN. Like RNN,
LSTM is very capable of capturing the dynamic features via
cycles in the graph [73]. Furthermore, LSTM shares the same
parameters (i.e., network weights) across all time steps that
significantly lowers the number of unknowns [74]. LSTM
was introduced in 1997 [74]. The key components of the
LSTM network are its memory cells, which differentiates it
from the traditional RNN. The input gate, the output gate
and the forget gate in the memory cells are the three types
of multiplicative units existing in the LSTM model structure.
These gates alter the state of the memory cells based on
several steps [74]. First, by activating the input gate, as the
latest data enter, the input message can be accumulated to
the cell. Second, by activating the forget gate, the former
cell states are to be abandoned during the procedure. Finally,
the output gate is in charge of determining if the latest cell
output is propagated to the final state, as illustrated in Fig 3.
The architecture of LSTM has made LSTM networks suit-
able to classify, process, and make predictions based on time
series data since lags of unknown duration can exist between
crucial events in a time series. LSTM was developed to handle
the vanishing gradient issue that could occur when training
traditional RNNs. The prediction of the algal growth can be
made using LSTM and is computed as follows [74]:

fi = 0 (Wyxy 4+ Uphy—1 + by) 5)
iy = og(Wix; + Uihy—1 + b)) (6)
oy = Ug(Woxt + Uohi—1 + by) @)
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FIGURE 3. LSTM internal architecture.

¢t = 0c(Wexy + Uchy—1 + be) (8)
Ct Zﬁ.Ct_] + it~5t (9)
h¢ = o.on(ey) (10)

where the initial values are cp—0 and hg—0 and the operator
*.” denotes the element-wise product. The subscript ¢ indexes
the time step.

For each variable, the definition is as follows:

« x; € R: input vector to the LSTM unit

o f; € R": forget gate’s activation vector

e i; € R": input/update gate’s activation vector

e 0; € R": output gate’s activation vector

e h; € R hidden state vector also known as output vector

of the LSTM unit

o & € R": cell input activation vector

e c;: cell state vector

e WeR™ U e R™handb e R weight matrices and

bias vector parameters which need to be learned during
training
where the superscripts d and & denote the number of input
features and the number of hidden units, respectively. The
activation functions definitions are as follows:

e 0g: sigmoid function

« 0. hyperbolic tangent function

To summarise, the gates contain sigmoid activations. A sig-
moid activation is like the tanh activation. Rather than squish-
ing values between —1 and 1, it squishes values between
0 and 1. This helps to update or forget data because any
number multiplied by O is 0, causing values to disappear or
be “forgotten.”

Information from both the previous hidden state and the
current input is passed through the sigmoid function. The
values are between 0 and 1. A value closer to 0 means to
forget, whereas closer to 1 indicates to keep. Input gate is to
update the cell state.

Therefore, based on past literature, this paper proposed
an LSTM model to be used in this research because LSTM
continuously outperformed the other methods in terms of
the performance measure root-mean-square-error (RMSE),
mean-absolute-error (MAE), etc.) in rivers and other fields
(compared in the results section). Since our framework is
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designed for seawater or coastal studies, finding a suitable
algorithm for coastal predictive modelling is crucial as the
performance might not be the same because the character-
istics of each water source are varied as mentioned before.
Moreover, in machine learning itself, the No Free Lunch
Theorems [75] indicated that a general-purpose, common
strategy is unfeasible. The only way one strategy can out-
perform another is if it is specialised to the structure of the
specific issue under scrutiny [75]. In this study, to cater for all
types of water sources, the indicator used must be considered.
Hence, LSTM methods were compared to other algorithm
performances using only the coastal dataset designed in this
study. The experiment results would be the baseline and
benchmark of this research work.

Choosing a good hyperparameter for deep learning models
needs numerous experiments, which is a laborious and time-
consuming task. Most scholars depend on their experience in
selecting appropriate parameters for a deep neural network.
Based on the dataset size, up to several days are needed to
train a single model. Hence, a common way is a meticulous
selection of limited values of the hyperparameters to train
several models and then select the model that performs the
best on a validation set. The description of the hyperparame-
ter used in the LSTM [76] is provided in Table 6.

TABLE 6. LSTM hyperparameter description.

Parameter Description

LSTM Cells Number of LSTM memory cells that store the
temporal information

Batch Size Number of samples per gradient update

Activation Function ~ Type of nonlinear activation function

Optimiser Type of optimiser to update weights during

training

For LSTM initial benchmark and preliminary study,
the parameter setup for LSTM involved the sequential model,
epoch of 50, batch size of 72, only one hidden or dense
layer and Adam as the optimiser. The batch size was set up
according to the discussion in past works. In general, a batch
size of 32 is a good starting point, together with 64, 72, 128,
and 256. The optimal batch size was 72 after experiment-
ing. Like the epoch number, the program implemented early
stopping, as a callback was used to check at the end of every
epoch whether the validation loss was no longer decreasing.
Once it was found that there was strictly no decrease for
3 epochs consecutively, the training process was terminated.
The maximum epoch was set up as 50. This is because it is a
good practice to start with 50 epoch and it can be increased
from time to time. Other methods’ setups are listed in Table 7.

2) MODEL EVALUATION

The “loss” values are usually reported by deep learning algo-
rithms. Technically, loss is a type of penalty for a poor predic-
tion. More precisely, the loss value will be zero, if the model’s
prediction is perfect. As such, the goal is to minimise the loss
values by gaining a set of weights and biases that minimises
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TABLE 7. Experimental setup.

Method Parameter

MLR -

SVM Kernel: linear, poly, rbf, sigmoid
C=1, gamma=0.5

DT Depth=from 2 until 9

RF -

ANN Simple MLP
Hidden Layer=1

DNN Sequential Model
Dense Layer=3
activation="relu'
optimiser="adam'
verbose=2
epochs=50

RNN Sequential Model
Simple RNN Model
Dense Layer=2
optimiser="adam'
activation="relu'
epochs=50
batch_size=72,
verbose=2

the loss. Besides loss, which is utilised by the deep learning
algorithms, researchers frequently employ the RMSE, mean-
square-error (MSE), and MAE to evaluate the prediction
performances [29]. The goodness-of-fit measures used in this
study were RMSE and MAE.

1 n ~ 2
RMSE = \/;Zl_zl (Y;—Y)) (11)

RMSE is commonly utilised to measure the difference
between the values predicted by a model and the actual values
in the data or the square root of the mean/average of the square

of all the error. The n is the total number of data, Y; and Y ; are
the actual and simulated data, respectively, and the average
value of the related variable is signified by the ‘bar’ above
the variable. Meanwhile, MAE measures the average mag-
nitude of the errors in a set of predictions, regardless of their
direction. It is the average over the test sample of the absolute
differences between prediction and actual observation where
all the individual differences have equal weight.

1
MAE = - Zi:l

3) EVALUATION OF A REAL CASE STUDY

USING A WQMS STUDY

This stage overlapped with Stage 1 where the development of
the water monitoring system was conducted simultaneously
with the study from the literature. However, the development
of the water station (WQMS) is discussed in this stage. Data
from the data acquisition process served as the dataset for
the real case study and were applied using the proposed
model. The architecture of the system during data collection
could be separated into two major sections, i.e. hardware
and software. These sections existed in three phases, namely
kit development, installation, and transmission of data to the

Y, — ¥ (12)
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server. In the case of hardware, the kit development phase
consisted of all the necessary sensors, whereas the soft-
ware section encompassed the development of a water mon-
itoring programme using the C/C++ language in Arduino
Bluno. The sensors to build the water station are summarised
in Table 8.

TABLE 8. Sensor specification.

Sensor/Equipment Sensor/Equipment
Arduino Bluno Temperature

Expansion Shield Turbidity

pH Solar Panel and Controller
DO Battery

TDS Jumper Wire

EC Waterproof Box

There is an antenna outside the box to send or receive
data via the 3G mobile network. After kit development was
completed, kit installation was remotely carried out at the
fish-farm site. Since sufficient power must be supplied to
the sensors and Arduino, a rechargeable battery with a solar
panel was also fixed at the site. After confirming that the solar
panel was linked to the battery via the solar panel controller,
the panel box was closed and firmly tied beside the solar
panel. Four units of panel box were developed and fixed at
different sides of the fish farm to monitor the algal population
via profiling of the water quality parameters. Based on our
previous work [3], the sensors were in the process of being
improved to use a water pump instead of direct contact with
water due to coralline algae [3]. Fig. 4(b) shows the broken
probe. Hence, the implementation of the proposed enhance-
ment architecture from the previous WQMS is still ongo-
ing, as displayed in Fig. 4(c). After we have completed the
enhancement of the water station development, the real case
study will be ready for data collection and at least 6 months
of data must be integrated with the proposed predictive model
discussed in this paper. Overall, the complete implementation
of the WQMS framework [3] can be illustrated as in Fig. 4.

FIGURE 4. The complete implementation of the previous WMQS [3] from
(a) Initial development, (b) After installation and deployment until
(c) Enhancement.

IV. ANALYSIS OF RESULTS AND DISCUSSION
This section discusses in detail the development of the predic-
tive modelling in the last stage. The discussion comprises the
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exploratory data analysis (EDA) and the results of comparing
different algorithms such as SVM [77], DT, RF [78], ANN,
Deep Neural Network [79], MLR [80], RNN, and LSTM [74]
to the dataset. The chosen method would be used as the final
prediction method and as a proof of concept. The results of
some of the preliminary EDA are discussed in Section A and
the comparison model results are discussed in Section B.

A. PRELIMINARY RESULTS OF EDA

It is vital to make sense of the dataset and clean it to attain
success and improve the prediction algorithm. First, the data
must be understood via the EDA method [82] because it
assists in creating the logical approach to solve the research
problem. Besides, it helps to determine issues such as the
presence of outliers in the dataset through visual observation.
However, it will be complicated when dealing with datasets
that have hidden properties, for example, time series datasets.
The time series datasets are a kind of data that are ordered
chronologically and require special attention for managing
intrinsic elements such as trend and seasonality. Therefore,
this paper took the initiative to also discuss the results of EDA
and the pre-processing part.

Since the interest of our prediction was Chl-a as the strong
indicator of algae presence, Chl-a concentration was the tar-
get variable in the prediction and must be analysed in detail
from the beginning. Initially, for the EDA, the time series
was visualised using the average amount of Chl-a over time,
as presented in Fig. 5.

120

FIGURE 5. Average amount of Chl-a over time.

The higher concentration of Chl-a observed between the
years 1996 to 2005 can be indicated as outliers (Fig. 5).
An outlier is an observation that substantially varies from
other observations of the same feature. If a time series is
plotted, in general, outliers are the unexpected spikes or
dips of observations at given points in time. A temporal
dataset with outliers possesses several characteristics and has
either a systematic pattern (deterministic) or some variations
(stochastic). Only a small number of data points are out-
liers. The outliers considerably differ from the rest of the
data [81]. The outliers of Chl-a concentration (Fig. 5) have
a value of more than 60 until greater than 120. This could be
further investigated using the Statistical Summary, as shown
in Table 9.

There are various methods in statistics to make the detec-
tion of outliers easy such as interquartile range and standard
deviation. From the statistical summary, a huge difference
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TABLE 9. Statistical summary of the variables.

Variable Min  Mean  Std 25%  50%  75% Max
Chl-a 020 9.33 11.09  2.70 6.00 12.0 130
Salinity 145 30.84 222 30.3 31.3 32.1 34.6
DO 0.10 6.87 2.50 5.40 6.90 8.40 17.0
Turb 0.10 398 3.58 1.60 3.00 5.40 51.0
pH 720 823 0.29 8.00 8.20 8.40 9.30
SD 030 2.02 0.78 2.00 2.50 5.00 5.00
SS 0.50 3.32 4.46 1.50 2.20 3.50 93.0
W/Temp 11.6  23.6 4.44 19.7 243 27.6 32.0
TIN 0.01 0.14 0.14 0.04 0.09 0.19 1.17
PO4 0.00 0.02 0.03 0.00 0.01 0.03 0.22
TP 0.02 0.07 0.09 0.02 0.05 0.09 2.40
N 0.11  0.56 0.38 0.28 0.45 0.73 3.97
AN 0.00 0.10 0.10 0.03 0.06 0.13 0.99
NO,-N 0.00 0.01 0.02 0.00 0.00 0.01 0.35
NO;-N 0.00  0.03 0.05 0.00 0.00 0.01 0.60
Si 0.05 0.79 0.63 0.32 0.68 1.10 7.10

was noted between the 75th percentile and the max values
of certain fields such as *“Chl-a”, “Turbidity”, “‘Suspended
Solid”, etc. Thus, this observation implies the presence of
extreme values or outliers in the dataset. The same conclusion
was made looking at the time series graph of the observed
Chl-a distribution from the year 1986 until 2016. The daily,
monthly, and yearly Chl-a amount is shown in Fig. 6. Once
the data were cleaned by removing the outliers, the graph
of the Chl-a series prediction was produced, as illustrated
in Fig. 7.
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FIGURE 6. Chl-a concentration distribution by day, month, and year.
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FIGURE 7. Chl-a concentration distribution from 1986-2018 after outliers
removal.

As shown in Fig. 7, Chl-a was highly uncertain and non-
linear. It was observed that the data were hardly analysed
in terms of trend or seasonality. The data were quite erratic,
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having neither an upward nor downward trend. Hence, this
time series data showed an irregular trend, whereby the com-
ponents were mostly unpredictable. However, for prediction,
the key aim is to model all the components to the point that
the only component that is still unexplained is the random
component. This is where decomposition techniques help to
extract trend, seasonality, and error/irregular components of
a time series dataset. The next step was to find out if a given
series was stationary. The results for the stationary test using
ADF is listed in Table 10.

TABLE 10. Augmented dickey-fuller test.

Results of ADF for Chl-a

Test Statistic —5.497272
p-value 0.000002
Critical Value (1%) —3.434560
Critical Value (5%) —2.863399
Critical Value (10%) —2.567760

In Table 10, the test statistic value < the critical value,
implying that the series for Chl-a is already stationary. The
test was also applied to other variables that yielded the same
results, whereby the test statistic value < the critical value
and was negative. A time series can be easily modelled if it
is stationary. Statistical modelling techniques assume or need
the time series to be stationary to be effective.

B. FEATURE SELECTION USING CORRELATION ANALYSIS
Next, the correlation between the features was checked.
A quick way to check is by visualising the correlation matrix
as a heatmap. Fig. 8 shows the correlation analysis results
using Pearson’s correlation matrix heatmap plots.
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FIGURE 8. Correlation analysis using pearson’s correlation heatmap.

According to Fig. 8, some variables are highly positively
and negatively correlated while some are not. A high pos-
itive correlation was seen for ammonia and total inorganic
nitrogen (TIN) with 0.93. Besides, TIN was repeatedly shown
to be highly positively correlated with other variables. Some
highly negative correlations were between the variable tem-
perature and ammonia, DO, and orthophosphate. Negative
correlations were seen when temperature increased while

108261



IEEE Access

N. A. P. Rostam et al.: Complete Proposed Framework for Coastal Water Quality Monitoring System

suspended solid decreased, ammonia decreased, and DO
increased.

Despite only some variables were considered to have a
higher correlation with Chl-a, the correlation matrix did not
exclude any of the selected variables. Thus, this is considered
a list of good features for our predictive model and the
features can be used as the input to our model.

C. COMPARISON OF PREDICTION MODEL

This section presents the results, analysis and discus-
sion arranged according to the experimental design in
Section III for the initial experiment. The results are shown
in Table 11 while Table 12 presents the comparison of LSTM
performance from the literature review. Table 11 lists the
experimental findings using the designed dataset with various
algorithms reviewed in the literature. LSTM outperformed
the other basic algorithms and efficiently addressed the chal-
lenge of the dataset.

TABLE 11. Comparison model performance evaluation for testing data.

Method MAE RMSE MSE

SVM 0.4772 0.5923 0.3508
DT 0.4840 0.5940 0.3528
RF 0.4453 0.5686 0.3233
MLR 0.4477 0.5632 03171
ANN 0.5607 0.6359 0.4044
TSP 0.4772 0.5923 0.3508
RNN 0.0594 0.0696 0.0048
DNN 0.0319 0.0440 0.0019
LSTM 0.0256 0.0360 0.0013

TABLE 12. Comparison model performance of our approach and LR.

Author(s) Method Source MAE RMSE MSE
[23] LST™M River NP 0.0486 NP
[28] LSTM River NP 7.67 NP
[25] Merge-LSTM  River NP 0.0459 NP
[67] DA-RNN Coastal  0.790  1.269 NP
[12] SVM Coastal  0.926  1.583 NP

Ours SVM Coastal 0477  0.592 0.351

Ours RNN
Ours DNN
Ours LSTM

Coastal 0.091 0.083 0.008

Coastal  0.032 0.044 0.002

Coastal  0.026  0.036 0.001
*NP=Not provided

In Table 12, the RNN or LSTM model performance from
the literature is not only limited to coastal datasets. This is to
show that LSTM has continuously displayed impressive per-
formance despite using various types of water sources with
a high reduction of error. This is also true when compared
with the results of the past study [13]. With the changes in the
selection of features and by using longer data, our approach
of using SVM has produced much better results than the
previous work [13]. This indicates that the right features
are important with and without the temporality aspect. Even
though SVM was not as efficient as the deep learning method,
the results are better using the improved and selected features
proposed in this paper. It can also be concluded that factors
such as PF, BF, and CF are sufficient for predictive modelling
using this dataset.
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As shown in Fig. 9, LSTM can fit very well, which concurs
with a previous study [21] which mentioned that LSTM is
a type of neural network with powerful nonlinear fitting
ability. This also shows that LSTM is better in predicting the
dynamics of Chl-a concentration and continues improving
during the testing phase and this includes the observation
of the overfitting issue during training. The problems are
addressed during testing. Nevertheless, LSTM has room for
improvement as more attention is needed, especially in pre-
dicting the sudden high peak that is not captured by LSTM
(refer to the circles in Fig. 9). This has motivated us to proceed
with the improvement part and to further reduce the errors.

It can be concluded that PF, BF, and CF factors are enough
as inputs to the development of predictive modelling. This
research has further strengthened the justification that our
proposed approach is better where LSTM with improve-
ment through the selection of significant features is the best
in handling non-linear, uncertain and dynamic data. This
research has further proven that the improvement must be
tackled from data level until algorithm level. Another insight
is even though the features were tested to be significant using
correlation analysis alone, the results somehow only showed
the correlation between two variables of the 16 features.
As mentioned in the review, one drawback of the correlation
method is the missing of the sense of direction or cause and
effect relationship. Hence, investigation on the relation of
each feature could further improve the explanations.

V. CONCLUSION

Due to the issue of dynamics of algae that are highly non-
linear and uncertain, robust predictive modelling that tack-
les from the end-to-end process is necessary. Selecting the
right features are crucial in tackling the dynamic issues,
and from the results, the algae ecology is dependent on the
number and types of the features. Based on the discussion and
analysis, it was observed that LSTM with the right features
outperformed the other methods and grasped the temporal
behaviour and tackled the dynamic issues. Besides, even
though during this study the MF was excluded, and more
CF and PF were included, this study outperformed the other
studies. This indicates that the factors are dependent on the
characteristics of the data to improve the prediction further.
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Additionally, this paper has concisely presented a complete
framework that discusses in detail both IoT and predictive
modelling that consists of the main phases such as data acqui-
sition, data management and lastly, predictive modelling.
Later, the predictive model can be integrated into our system
for future HABs prevention. Hence, with the suitable method
that has been chosen during the predictive modelling stage,
each phase has now been completed, which comprises all the
phases in the framework, and overall has achieved all the
objectives mentioned. For future work, the LSTM method
can be improved further using the hybrid method with other
suitable learning methods. Besides, the MF that might further
improve the performance can be incorporated. To include MF,
the discussion will be big in scope as it will include data
segmentation, processing, and feature engineering. Finally,
future research should investigate the relation of each feature
that could enrich further the explanations.
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