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ABSTRACT Recent advances in machine learning have led to a surge of interest in classification of
the auditory brainstem response. In this work, we conducted a search in the PubMed, Google Scholar,
SpringerLink, ScienceDirect, and Scopus databases, and identified twelve studies that explored the use of
machine learning to classify the auditory brainstem response as a complementary and objective method
to (a) help clinicians better diagnose hearing impairment by discerning between healthy and pathological
auditory brainstem response waveforms, (b) present a neural marker for potential applications in hearing aid
tuning, and (c) provide a biometric marker for discriminating between subjects. A comparison between the
studies presented in this review is not possible as they used different test subjects, group sizes, and stimuli,
and evaluated auditory brainstem response differently. Instead, the result of these studies will be presented
and their limitations as well as their potential applications will be discussed. Overall, the findings of these
studies suggest that ABR classification using machine learning is a promising tool for assessing patients
with hearing loss, optimizing technologies for tuning hearing aids, and discriminating between subjects.

INDEX TERMS Auditory brainstem response, classification, decoding, feature extraction, machine learning.

I. INTRODUCTION
Traditionally, audiologists and clinicians used pure tone
audiometry to diagnose hearing impairments [1]. They also
relied on perceptual assessments such as detection, discrim-
ination, or identification of vowels / consonants in nonsense
words and real words to diagnose auditory processing dis-
orders [1]. These assessments are not appropriate for all
populations. Infants and children cannot cooperate entirely
to disclose their listening experiences, whereas adults with
severe hearing loss may have difficulty reporting what they
have heard. In addition, poor performance on such behavioral
tests could be attributed to other factors such language barrier,
wakefulness, mood, and motivation [2]. To overcome these
limitations, clinicians and researchers turned to the Auditory
Brainstem Response (ABR) which encodes stimulus-specific
information with a high degree of accuracy, including tim-
ing, the fundamental frequency, and fine structure (harmon-
ics) [2]–[4].

The ABR is a subcortical evoked potential that provides
diagnostic information about the pathway from the auditory
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periphery to the brainstem [5]. It was discovered nearly five
decades ago [39], [40] and has been shown to be an effective
tool for characterizing the synchronous neural activities in
the brainstem [3]. Early ABR studies used stimuli other than
speech such as clicks and tones to examine the auditory
function; however, such stimuli lacked authenticity consid-
ering that they do not replicate sounds from the real world.
Therefore, auditory neuroscience has progressively shifted
to the use of speech stimuli (e.g. vowels, consonant vowels,
and words) [3], [4], [6]–[8]. ABR is typically measured in
an anechoic audiometric room using a three electrodes setup
where a recording electrode is placed at the vertex, a reference
electrode on the right ear lobe, and the ground electrode on
the left ear lobe [3]. Speech elicits transient and steady-state
neural responses at the level of the brainstem. The transient
response refers to the initial portion of the ABR (< 20 ms)
which encodes the onset of the neural response to the stimu-
lus [3].

The transient response is commonly assessed in the time
domain by analyzing peaks I, II, III, IV, V and A ampli-
tudes and latencies. Peaks V and A (known as the VA com-
plex) are commonly analyzed in clinical settings [3], [9]
(see Figure 1). On the other hand, the steady state response
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FIGURE 1. Time domain of a 40-ms stimulus /da/ (top) and ABR
(bottom). The stimulus evokes characteristic peaks in the transient ABR
(V, A, C, and O), and steady-state ABR (D, E, and F). Modified from [3].

FIGURE 2. Frequency-domain representation of the frequency following
response was generated using the fast Fourier transform (FFT) in
response to a 40-ms stimulus /da/. Modified from [3].

(> 20ms) is analyzed in the frequency domain using fast
Fourier transform (FFT). It is characterized by the envelope
frequency response (EFR) and frequency following response
(FFR), reflecting the ensemble phase-locked responses to
speech stimulus periodicity and its fine structure, respec-
tively [8], [9], [38]. The EFR is analyzed at the fundamental
frequency F0 and its harmonics while the FFR is ana-
lyzed at the first and/or second formants, up to 1000 Hz
as neural phase-locking considerably degrades above this
frequency [9]. EFR and FFR diagrams are shown in Fig-
ure 2. Several studies have reported that the EFR and FFR
correlate with long-term experience with music or tonal lan-
guage [10], [11], the ability to understand speech in the
presence of background noise, [6], [12], [13] and reverber-
ation [14], [16].

As mentioned above, the analysis and interpretation of the
transient ABR involves identifying the response waveforms
and then measuring their amplitudes and latencies against
normative data [3]. This process requires skill and expertise.
While clinicians frequently draw similar conclusions; how-
ever, differences can occur especially with less experienced
audiologists [17].

In addition, the literature does not clearly describe nor-
mative data for some hearing impairments, such as auditory

processing disorder (APD) [18]. Therefore, there is a need to
automate the ABR analysis to support clinicians in making
an accurate diagnosis.

Usually, hearing aid fitting is conducted by diagnostic
testing using simple stimuli such as clicks or tone pips that
do not always achieve optimum results [19], [20]. On the
other hand, the use of ABR has proven to achieve better
outcomes in selecting hearing aid for patients with hearing
impairment. Dajani et al. [21] offered insights into how to
exploit small changes in speech-evoked ABR waveforms
to configure hearing aid parameters such as amplification,
and compression levels, for optimal hearing. It is therefore
expected that automating the analysis of the ABR waveforms
would help patients with hearing aid fitting.

In addition to the clinical benefits, ABR has been
recently considered a potential candidate for biometric appli-
cations [22]. Currently, face, iris, DNA, and fingerprint
recognition are among the most common instruments for bio-
metric subjects’ identification. Since individuals have unique
ABRs [3], the ABR may also be used for the same purpose.

Artificial intelligence (AI) refers to the use of computers
to automate complex tasks generally performed by humans.
Machine learning (ML) is a type of AI that makes a prediction
or decision by learning patterns in training data and not
through direct programming [23].

The use of ML in ABR is a rapidly developing field,
predominantly among researchers, neuroscientists, and audi-
ologists, as an objective means to automate the analysis of
the speech-evoked neurophysiological data to achieve better
diagnosis.

First, the ML classifier is trained by constructing a statisti-
cal model with a sample of the ABRs (observations) and their
corresponding task classification labels [24]. Subsequently,
the remaining sample of the ABRs’ data is ingested into
the classifier, without labels, and the classifier returns the
predicted labels. The performance of the ML classifier is
calculated by comparing the labels predicted by the classifier
with the ground truth.

To the best of our knowledge, this is the first review that
focuses on the recent literature of ABR classification using
ML to (1) predict the stimuli labels from the ABRs, (2) auto-
mate the analysis of the ABRs, and (3) decode subjects’
identity for potential biometric applications.

II. METHODOLOGY
This review followed the Preferred Reporting Elements for
Systematic Reviews and Meta-analyses (PRISMA) guide-
lines [25]. Articles reviewed were originally published
in journals indexed in the following databases: PubMed,
Google Scholar, SpringerLink, ScienceDirect, and Scopus.
The keywords included in the query were: 1. Speech-
evoked auditory brainstem response, 2. Click-evoked audi-
tory brainstem response, 3. frequency following response,
4. classification, 5. decoding, and 6. machine learning. The
search phrases were created by merging the Medical Subject
Headings (MeSH) to locate other relevant machine learning
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FIGURE 3. PRISMA study selection diagram.

keywords. Then truncation was used for the word ‘classify∗’
to look for synonyms or variations on the word stem. Subse-
quently, the search query was combined with logical opera-
tors as follows: (1 OR 2 OR 3) AND (4 OR 5) AND (6).

The criteria used for inclusion included: (i) articles pub-
lished in the last 5 years (2015-20), (ii) peer-reviewed articles
and conference papers, and (iii) articles that focused on classi-
fication of ABR. Duplicate studies were eliminated from all
three databases. The exclusion criteria consisted of: (i) ani-
mal experiments, and (ii) articles that were not published in
English.

III. RESULTS
The initial search returned 25 relevant articles. After screen-
ing all the eligible papers using the inclusion and exclusion
criteria, we ended up with 12 articles (see Figure 1). Among
the articles, three used English vowels as a stimuli, three used
English consonant-vowels, two used Chinese lexical tones,
and the rest of the studies used tone pips, clicks, and musical
notes.

Table 1 summarizes the information from the selected
articles consisting of: (i) the sample size, (ii) the type of
stimulus to evoke the ABR, (iii) theML classifier, (iv) theML
validation method, (v) the extracted ABR features, (vi) the
outcome predicted, (vii) the classifier’s performance (accu-
racy, sensitivity, and specificity rates, and the area under the
curve), (viii) the key findings, applications, and limitations.

IV. DISCUSSION
This scoping review examines 12 studies that developed ML
models to classify ABR. A comparison among these studies
is not possible as they used very different test subjects, group
sizes, and stimuli, and evaluated ABR differently. Instead,
the results of these studies will be discussed, and their lim-
itations, and the applications they might have, will be high-
lighted

A. TRADITIONAL ML MODELS TO CLASSIFY ABR
In total, 14 ML classifiers were implemented in all studies
presented in this review, with Support VectorMachine (SVM)

being the most frequently proposed. Although SVM is
regarded as a traditional classifier, it can help reduce over-
fitting, especially for smaller datasets compared to modern
deep learning models. Overfitting occurs when the classi-
fier becomes overly accustomed to the training data to the
degree that it has a detrimental effect on its performance
with another dataset. Shirzyhiyan et al. [26] compared accu-
racy rates across four traditional ML classifiers (k-nearest
Neighbor (KNN), Naive Bayes (NB), Multiclass Support
Vector Machine (MSVM) and Discriminant Analysis (DA))
and reported that MSVM achieved the highest accuracy rate –
97.5 % for both combined transient and steady-state features.
MSVM may have some advantages over the other classifiers
presented in [26]. It is commonly recognized that MSVM can
achieve satisfactory performance when the number of fea-
tures is large and the training dataset size is limited [27], [28].
Other studies used different types of traditional classifiers
and their performance scores varied considerably. For exam-
ple, Llanos et al. [22] and Llanos et al. [29] used a Hidden
MarkovModel (HMM) classifier and achieved accuracy rates
between 74% and 88% and Area Under the Curve (AUCs)
of 0.83 (over different ABR sessions and tones) and 0.93
(same tone and sameABR session), respectively. Yi et al. [30]
used a Gradient Boosted Decision Tree (GDBT) classi-
fier and obtained an AUC of 0.668. Molina et al. [31],
Dobrowolski et al. [32] used a pattern-based classification
and SVM classifiers, respectively, and achieved accuracy,
sensitivity and specificity rates of 99.4%, 97.6% and 100%,
and 92%, 85%, and 96%, respectively. Xie et al. [33] also
developed an SVM classifier and obtained accuracy rates
between 60-77%. To generalize these results, a larger dataset
and a more complex classifier such as Convolutional Neural
Network (CNN) is required.

B. CNN-BASED ML MODELS TO CLASSIFY ABR
Only [17], [18] used a CNN classifier. McKeraney and
MacKinnon [17] examined 232 paired ABR waveforms of
tone pips from eight normal-hearing subjects. The authors
classified the paired of ABR waveforms into one of three
classes: clear response (CR), absent response (AR), and
inconclusive response (IR) based on the decision criteria
described in [34]. The authors’ findings suggest that CNN
could be used in clinical settings, to help audiologists and
clinicians interpret ABR waveforms in an objective man-
ner that would allow accurate diagnosis of patients’ hearing
status. Although this study has its limitations such as small
sample size, and use of tone pips instead of speech, and
a transient ABR only, the results provide early indications
regarding the applicability of such technology in objective
clinical hearing assessment.

The performance of CNN classifiers has surpassed that
of traditional classifiers for numerous applications. Unlike
traditional classifiers, which rely on hand-crafted features
that are selected based on the expertise of the developers
and/or a tedious trial-error process, CNN classifiers auto-
matically perform feature extraction through the convolution
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TABLE 1. Summary of reviewed studies.
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TABLE 1. (Continued.) Summary of reviewed studies.
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TABLE 1. (Continued.) Summary of reviewed studies.
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TABLE 1. (Continued.) Summary of reviewed studies.

of the input information with learned filters at one or more
hidden layers. By increasing the number of convolutional
layers, the network can learn to extract complex features
at its deepest layers. It is due to these learned filters that
CNN architectures tend to perform better than traditional
classifiers. However, given the number of learned parame-
ters throughout the network, CNN classifiers require vastly
larger datasets to achieve their full potential. In the case of
ABR records, CNN can be directly fed the pre-processed
data without further feature extraction. Hence, the focus for
developing a CNN-based model would be at selecting the
most appropriate architecture rather than the optimal features.

C. HOW MUCH DATA IS ENOUGH?
One critical question remains about the use of ML to classify
ABR data: How much data is enough? Although a definitive
answer cannot be determined, some ML models are more
permissive or tolerable for small samples. For example, both
LDA and SVM can offer satisfactory performance for small
training datasets and are less likely to overfit while CNN
requires a large sample size. One method for predicting sam-
ple size is to use cortical EEGML based classification studies
as a reference. In this context, Llanos et al. [22] examined
several studies that classified cortical EEG with ML models
and found that an average sample size of 20 subjects is suffi-
cient for traditional ML algorithms. In our review, we apply
this estimation as a criteria; all studies that measured less than
20 subjects were considered to have a small sample size as
we report in Table 1 (under the Limitations column).Some of
the studies presented in this review indicated that additional
data might improve their classification algorithms. However,
considering the limitations of subject recruitment and long
ABR recording sessions, increasing the sample size is not
always feasible. These limitations can be mitigated by mak-

ing research data publicly available so others can use or
combine it with their existing data.

D. HOW TO ENSURE GOOD QUALITY OF THE DATA?
It is not only the quantity of data that is important for high-
performance ML classification, but also the quality of the
data is critical. Because ABR data can easily accumulate
noise at multiple stages during collection, ML prediction
could be highly impacted especially when CNN classifiers
are used [43]. As a result, it is critical to minimize noise dur-
ing the ABR collection process. Al Osman et al. [16] discuss
noise reduction procedures in detail, as well as how to prepare
participants for optimal ABR data collection. To summarize,
both the quantity and quality of ABR data are critical factors
for best ML classification performance.

E. APPLICATIONS OF ML MODELS TO CLASSIFY ABR
Eight of the 12 studies presented in this review suggested
that classification of the ABR can be used to diagnose hear-
ing impairments and auditory processing disorders, perform
biometric identification of subjects, or to adjust hearing aid
configuration. However, they did not elaborate on the feasi-
bility of such applications. Only four of the studies detailed
the potential application of their technology. For example,
Llanos et al. [22] demonstrated that classification of FFRs
could be used for biometric applications in the context
of subject-discrimination tasks, especially considering their
simple three electrodes setup. This is a novel finding as pre-
vious EEG biometric identification studies were conducted
exclusively with cortical EEGs.

Furthermore, Molina et al. [31] developed an ML classi-
fier to decode the ABR time series of 83 young subjects
based on symbolic pattern discovery. Their findings offer
insights into potential applications to predict whether patients
have an auditory-related disorder. Dobrowolski et al. [32]
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compared six ML classifiers (SVM, RF, DT, GB, EGB,
and NN) and found that EGB was the most robust
algorithm with an accuracy value of 92%. Their results
suggest that EGB may be well suited for the future
development of an automatic evaluation tool for clinical
ABR waveform analysis. Taken together, the findings of
Wimalarath et al. [18] and Dobrowolski et al. [32] suggest
that automating speech-evoked ABR analysis using machine
learning may provide a complementary means to help clin-
icians better diagnose their patients’ hearing. On the other
hand, a significant limitation for these studies is the size
of the dataset available. With sufficient data, ML models
could perform better than humans in a variety of complex
tasks [39], [40]. McKeraney and MacKinnon [17] suggested
that if a machine learningmodel was trained on sufficient data
labelled by a group of experts, the model’s predictions would
improve and potentiallymatch those of the expert group. Such
algorithm could then be embedded as a module in the ABR
software to provide clinicians with real-time assistance in
ABR analysis.

F. QUALITY ASSESSMENT
To assess the quality of the twelve targeted studies, the report-
ing items from the checklist described in Table 1 from [44]
were compared to the content of the publications. This check-
list requested information about the study’s nature, objec-
tives, rationale, data collection setup, machine learning mod-
els and algorithms, theoretical claims, datasets, validation
metrics, experimental results, clinical applications, limita-
tions, and unexpected results. We calculated a mean score
of 10.25 ± 1.22, and score disagreements were resolved
through consensus.

G. LIMITATIONS
Considering that the twelve studies used vastly different test
subjects, group sizes, and stimuli, and evaluated ABR dif-
ferently, a comparison of their findings was not possible.
Instead, a summary of the findings from these studies, their
limitations, and potential applications is shown in Table 1.

H. FUTURE WORK
First, future studies should have a larger sample size and take
advantage of modern deep learning classifiers such as CNN
or combine CNNwith traditional classifiers in an ensemble or
to create a cascade architecture. Most of the studies included
in this review reported difficulties in attaining a large sample
size. This constraint could be alleviated by making ABR
data public so that others can use it and / or combine it
with additional data. Moreover, future studies should employ
natural speech stimuli simulated in noise and reverberation to
ensure that we are faithfully replicating real-world listening
conditions. Furthermore, future research should examine the
possibility of using ML to establish a correlation between
ABR and auditory thresholds in a variety of populations,
including children and the elderly with and without hearing
loss, as well as those with and without cochlear implants.

Most of the studies covered in this review included young
adult participants with normal hearing. To generalize the
effectiveness of ML techniques, different populations with
various types of hearing impairment are needed to ensure
good clinical applicability and effectiveness.

V. CONCLUSION
This review presented 12 studies that explored the use of ML
models to classify ABR as a complementary and objective
method to (1) support clinicians to better diagnose hearing
impairment by discriminating between healthy and patholog-
ical ABRwaveforms, (2) provide a neural marker to optimize
technologies used in hearing aids and cochlear implants, and
(3) provide a biometric marker for discriminating between
subjects. However, certain challenges must be addressed
before these can be established.
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