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ABSTRACT Malicious binary files are a serious threat to industrial information systems. Because of their
large number, an automatic assistant tool becomes essential for analysis, and finding similar files would
be a great help. In this paper, we present a fast, scalable, and multifaceted search scheme to find similar
binary malware files. We use a content-defined chunking algorithm to convert a file into a feature set for the
first time. The proposed scheme uses MinHash to reduce any feature set of any file to a fixed size, which
significantly improves search accuracy, processing speed, and space utilization. We theoretically prove that
the new scheme returns similar files in jaccard index order. Through implementation and experiments with
12 million malicious files, we confirm that the search speed is increased by 600%, space is reduced by 90%,
and the accuracy is increased by 400% at least, compared with the state-of-the-art of Elasticsearch.

INDEX TERMS Elasticsearch, inverted index, jaccard index, malware, MinHash.

I. INTRODUCTION
Cyber security is essential for stable and secure industrial
information systems. According to a recent report, cyber-
crime would damage the world economy by approximately
6 trillion dollars annually by 2021 [1]. Malicious-software
(malware) files are critical threats to cyber security, and
malicious binary, or executable files have always been the
most serious threat and popular attack vector that com-
promise servers and employee PCs in industrial enter-
prise networks [2]. In this paper, we focus on Microsoft
Windows portable executable (PE) files for binary files
because malicious PE files represent by far the prevalent
security threat. A modern malware infection may start by
other file types such as portable document format (PDF)
or web pages, but in most of the cases the last stage of
the infection is done by PE files [3]. We emphasize that
the idea of this paper can be applied to any binary file
including PE.

The number of malware files has been rapidly increasing
to form big data. More than one million suspicious files are
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collected everyday by VirusTotal, the largest malware collec-
tion point in the world [2]. Because the manual analysis of
malware files is so expensive, 10 hours per file [4], human and
computing resources should be carefully assigned. Consider-
ing the large number of malware files, it would be better to
use as many automatic assistant tools for malware analysis as
possible, and there already exist such tools as static analysis,
dynamic analysis, machine-learning based detection, to men-
tion a few [1], [3], [5].

We assume that malware analysts have built a collection
of malware files that have been successfully analyzed and
the detailed reports exist as records, as in service providers
for malware analysis [2] or antivirus companies [6]. When
a suspicious sample of a PE file is given, malware analysts
first check if the sample is in the history records with its file
signature computed by cryptographic hash functions. If there
is amatch, the new analysis would be unnecessary; otherwise,
the analysts continue to find those malware files from the
collection that are similar to the given suspicious sample.
In many cases, finding similar files that have been analyzed
a prior can give valuable information concerning the analysis
of the new sample, which can significantly reduce time and
efforts [3].
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However, finding similar malware PE files is a challenging
problem. First, file representation and metrics for file simi-
larity can be defined differently. If a PE file is represented
by its byte sequence as a long string, two PE files can be
compared in terms of a string comparison metric. If a PE file
is represented by a set of its internal human-readable strings,
two PE files can be compared in terms of a set comparison
metric. Therefore, two PE files can be similar on the basis
of a byte sequence, but different on the basis of ASCII string
sets. Second, the similarity of two files is compared in pairs,
which means that all collected files should be compared with
a given suspicious sample. This is how the state-of-the-art of
ssdeep runs to find similar files [7], which is not scalable and
requires much computing resources.

In this paper, we present a new automatic assistant tool
for malware analysis that can search a large collection of
malicious PE files for the most similar file when a suspicious
PE sample is given. We call this MUltifaceted Search Engine
Using MinHash sampling (MUSEUM) that can find similar
files in terms of different criteria against a query file in
the order of jaccard index. We implement MUSEUM in the
Elasticsearch platform [8], which successfully indexes more
than 10 million files in commodity PCs. We use the MinHash
sampling algorithm [9] for Elasticsearch indexing and search
that not only reduces index size but also retrieves similar files
in the order of jaccard index, which has not been achieved by
any previous work. The main contributions of MUSEUM are
summarized as follows:
• For a given query file, MUSEUM returns a list of sim-
ilar files in jaccard index order. General binary files as
well as human-readable documents can be indexed and
searched in MUSEUM.

• Afile is converted into a set of keywords, and an inverted
indexing is established from the set to the file. We apply
theMinHash algorithm to extract only a fixed number of
keywords (e.g., 128) for indexing. Therefore, the index
space decreases and the search speed is increased signif-
icantly, which also solves the scalability problem.

• In MUSEUM, similarity between two files can be mea-
sured by various criteria; for example, an executable file
can be converted into a set of byte n-grams or a set of its
imported libraries. We call each criterion as a feature,
and the set of keywords as the feature set. An executable
file can be converted into a byte stream n-gram feature
set, a string feature set, an imported function feature set,
etc.

• We implemented MUSEUM with two commodity PCs
where more than 10 million malicious PE files were
successfully indexed. Experimental results demonstrate
that search speed is increased by 600%, space is reduced
by 90%, and accuracy is increased 400% as measured
by relative errors, compared with the state-of-the-art
inverted indexing of Elasticsearch [8] and ssdeep index-
ing [7], [10].

We explain the limitations of MUSEUM as well. In this
paper, we present a new kind of automatic assistant tool

that can find previous similar files fast and accurately in
terms of different features. We emphasize that this new
tool cannot solve all the challenging problems with mal-
ware analysis, such as obfuscation, packing, fileless malware,
sneaky connection to command and control servers, etc. For
example, the proposed scheme can find only similar files at
byte-sequence level when byte n-grams are used as a feature.
This definitely cannot find semantically similar files in terms
of malicious behavior, which is usually the final goal of
malware analysts. However, MUSEUM can save their time
and efforts by automatically and mechanically looking up a
large collection of previously analyzed files.

The rest of the paper is organized as follows. We intro-
duce the problem and motivation in Section II. We present
MUSEUM in Section III and the experimental results in
Section IV.We describe related work in Section V and present
the conclusions in Section VI.

II. PROBLEM AND MOTIVATION
Because finding similar files is essential for critical applica-
tions, researchers have presented fuzzy hash algorithms to
solve the problem. For example, ssdeep is one of the most
widely used fuzzy hash algorithms; the whole byte sequence
of a file is divided into non-overlapping sub-strings, and
each sub-string is independently hashed [7]. Some bits from
each hashed value are extracted and concatenated to make a
representative string for the file. In Fig. 1 (a), file1 is divided

FIGURE 1. Comparison of file similarity measurement by fuzzy hash (a) vs
jaccard index (b). Representative strings are compared in fuzzy hash
while a jaccard index is computed between two feature sets. For a limited
number of query keywords, inverted indexing can retrieve relevant
files (c).

VOLUME 9, 2021 112771



D. Kim et al.: Scalable and Multifaceted Search and Its Application

into three parts and ‘‘c1c2c3’’ becomes the representative
string for file1. To measure the similarity between file1 and
file2, their representative strings are compared to produce
their similarity score. There are some limitations with fuzzy
hash. First, as the similarity should be measured in pair-wise,
fuzzy hash cannot search for similar files in a large scale.
Second, files can be compared only in terms of byte sequence.
In this paper, we want to measure the file similarity in jaccard
index, but ssdeep does not work for a set.

A PE file can be represented with different features. A fea-
ture is a basis property to represent a PE file, such as a byte
sequence, a set of human-readable strings embedded in the
file, a set of API calls, etc. For example, PE files include a
set of imported libraries that the operating system provides.
It is known that comparing the sets of imported libraries
can give decisive hints to malware analysis. If two sets are
almost the same and include unusual imported libraries in
common, we may conclude that they are closely related to
each other, or the same attacker may have invented them.
Once we convert a file into a feature set, we can compute the
jaccard index between them, which ranges from 0 to 1. Note
that the jaccard index between two sets is defined as the ratio
of the size of their intersection set to the size of their union set.
However, this approach also requires pair-wise comparisons
against every file in the dataset. Fig. 1 (b) shows that two files
are converted into their feature sets whose jaccard index is
0.5(=2/4).

Inverted indexing is a cornerstone for document search in
a large dataset [11], and Elasticsearch is a de facto open plat-
form standard [8]. Inverted indexing provides fast search for
relevant documents against a set of query keywords as shown
in Fig. 1 (c). In this case, file1 and file2 are retrieved, and
file1 is recommended as the most relevant document because
file1 includes both r1 and r3. A search engine has a unique
scoring algorithm to give each retrieved document a different
recommendation score. Elasticsearch uses the BM25 scoring
algorithm as a default setting. Inverted indexing skips the
time-consuming pair-wise comparisons against all dataset
files, which makes MUSEUM a fast and scalable solution.
However, we cannot use a naive inverted indexing algorithm
for MUSEUM; first, naive inverted indexing does not retrieve
similar files in the order of jaccard index.We need a new scor-
ing algorithm to solve the problem. Second, inverted indexing
assumes that the set size of query keywords should be mod-
erate for search performance. For example, the default max-
imum size of query keywords is 1,024 in Elasticsearch [12].
However, a feature set of a file can include more keywords
than this size. For example, the size of the byte 4-gram
feature set from 1 MB file can be as large as 999,997
(= 1,000,000 – 3).

III. MUSEUM: MULTIFACETED SEARCH ENGINE USING
MinHash SAMPLING
We introduce the overall architecture of MUSEUM first.
Then, each component of the converter and MinHash-based
tokenizer is explained in detail.

A. OVERVIEW
MUSEUM is a search engine for finding similar files against
a query file. One or more criteria for measuring two files
in jaccard index are defined first. We explain MUSEUM in
indexing and searching phases. During the indexing phase, all
files are converted into feature sets for each criterion. Only a
fixed number of elements from a feature set are selected by
the MinHash-based tokenizer. Then, an inverted indexing is
built for each measurement criterion. During the searching
phase, a file is given as a query file. The same converter
and tokenizer are applied to this file, which results in a fixed
number of query keywords. Using the keywords, the search
engine returns a list of similar files in jaccard index order.
Fig. 2 shows this multifaceted indexing of MUSEUM. Note
that an indexing is established for each similarity measure-
ment criterion, or feature, independently. We emphasize that
the similarity of malware files can be compared in terms of
different features.

FIGURE 2. MUSEUM for multifaceted indexing and search that can find
similar malware files in terms of different criteria, or features.

B. FEATURE SET CONVERTER
An executable malware file can be converted into different
feature sets. The simplest conversion would be a set of byte
n-grams from the file; the byte sequence of the file can be
divided into multiple non-overlapping subsequences of size n
in bytes. For more complicated feature sets, if we use a static
analysis tool [13], a set of ASCII strings, or a set of imported
libraries can be extracted from a file [3]. If we use a dynamic
analysis tool [14], API call sequences can be generated from
a file. Each of them can be a criterion when file similarity is
measured. In this paper, we determine to use the jaccard index
as a measurement tool. Therefore, we need to convert any
sequence-type feature into a feature set. For example, an API
call sequence is a long string that should be converted into a
set.

We adopt a content-defined chunking algorithm for the
first time to convert a sequence-type feature into a set
for the purpose of indexing and search of malicious PE
files [15]. We choose an asymmetric extremum (AE)
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FIGURE 3. Comparison of (a) inverted indexing and (b) MUSEUM. The size of any feature set is reduced to a fixed number k with the
MinHash-based tokenizer in MUSEUM.

chunking algorithm because this runs quickly and divides any
sequence into evenly-sized chunks around the average chunk
size [16]. After an average chunk size is fixed as c, a byte
sequence of length m will be converted into a set of no more
than m/c distinct elements with a high probability. Note that
naive n-grams would generate a worst-case set of (m− c+ 1)
elements. From 1 MB file, 1 million (exactly 220 − 3)
4-gram words would be generated in the worst case. There-
fore, AE chunking efficiently converts any sequence into a
feature set, which is confirmed in our experiments in the next
section. The byte sequence of a file can also be converted into
a feature set through this chunking algorithm.

C. MinHash-BASED TOKENIZER
We first explain how the MUSEUM tokenizer converts fea-
ture sets of any size into fixed-size ones through MinHash
sampling. Then, we prove that this can estimate the jaccard
index between a query file and each indexed file. Assume
that a malware feature is already selected for similarity com-
parison and feature sets have been extracted from malware
files. For example, 10,000 malware files are provided for
indexing, and we select an ASCII string feature for similarity
measurement. This means that we have 10,000 ASCII string
sets for the malware files.

In this paper, we use A and B to represent the feature sets
of two malware files that are indexed; A′ and B′ are their
fixed-sized versions from A and B after MinHash is applied.
We call these dashed as representative sets. Similarly,Q is the
feature set of a query file, andQ′ is its representative set. A, B,
and Q are of variable size while the representative sets are of
the same fixed size. We explain indexing phase first and then
search phase.

1) INDEXING
The tokenizer uses k-independent hash functions of
h1, . . . , hk to select only k elements from a variable-sized
feature set. For a given feature set, the smallest value of hi(a)
is selected for all a’s that are included in the feature set.
Because there are k hash functions, we collect the minimum

hi(a) for hi to form a representative feature set of size k .
Then, all k elements of the representative set are used for
indexing. In MUSEUM, we implement inverted indexing on
the Elasticsearch platform. Therefore, every malware file is
indexed with its representative k hashed values for a certain
feature criterion. The relationship between original feature
set A and its representative set A′ becomes

A′ =
⋃
i

{min {hi(a)|a ∈ A}} (1)

where |A′| is always k unless no hash collision occurs.
Fig. 3 compares the difference between the classical
inverted indexing and MUSEUM; feature sets A and B
are obtained from two malware files that have 7 and 4
feature elements, respectively. The inverted indexing uses
all elements for indexing, whereas MUSEUM selects a
fixed number of elements first and then builds indexing.
In Fig. 3, 10 elements of {a1, . . . , a7, b1, . . . , b3} are used
for the classical inverted indexing, but only 5 elements of
{h1(a2), h2(a4), h3(a7), h2(b1), h3(b2)} for MUSEUM.
Consequently, MUSEUM stores a small number of hashed

words for indexing that saves significant storage space. For
example, the average number of ASCII strings from a mal-
ware file is 2,417 for our experimental dataset, but 128 hash
functions (k = 128) are sufficient for accurate jaccard index
estimation in MUSEUM, which is later explained in detail.

2) SEARCH
When a query file is given, we convert it into a representa-
tive set of size k similar to the indexing process described
previously. These k elements are considered keywords for
the document search in Elasticsearch that returns a list of
malware file IDs in order of its scoring algorithm results.
The default scoring algorithm of Elasticsearch is Okapi
BM25, shortened to BM25, where BM is an abbreviation
of best matching [8]. BM25 is based on the probabilis-
tic retrieval framework and a term frequency–inverse docu-
ment frequency (tf–idf) style document retrieval algorithm
[11], [17]. For a given queryQ = {q1, q2, . . . , qn}, the feature
set of a query file, the BM25 score of document A, and the
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feature set of a malware file is defined by:

s(A,Q) =
n∑
i=1

IDF(qi)

×
f (qi,A)× (α + 1)

f (qi,A)+ α × (1− β + β × |A|/avgDL)
(2)

where f (qi,A) is the term frequency in A for each qi, |A| is
the length of A, and avgDL is the average document length in
the document collection [17] that is the collection of feature
sets in this paper. Although we can configure α and β as
free parameters in equation (2), BM25 cannot return similar
malware files in jaccard index order.

In MUSEUM, the purpose of search is to find similar
malware files in jaccard index order. To solve this problem,
we define a new scoring algorithm as follows:

s(A′,Q′) = |A′ ∩ Q′|. (3)

Equation (3) only measures the intersection size of
A′ and Q′, which can be easily implemented in the
Elasticsearch platform. Because every malware feature
set is converted into a fixed-size set through MinHash,
we only consider such A′ that includes anymin {hi(q)|q ∈ Q}.
We always need to consider only k query words because
|Q′| = k for any Q.
We prove that the scoring equation (3) preserves the jac-

card index order. For this, we use the Broder’s theorem of
Prob(min{hi(q)|q ∈ Q′} ∈ A′ ∩ Q′) = j(A,Q) [9]. Since we
use k independent hash functions, there are always k queries
in Q′. For simplicity, we ignore hash collisions, and we can
use adequate hash functions to make the collision probability
negligibly small. Then, the measured size of |A′ ∩ Q′| or
Equation (3), becomes an estimator for k×j(A,Q). Therefore,
|A′ ∩ Q′| > |B′ ∩ Q′| implies k × j(A,Q) > k × j(B,Q), and
j(A,Q) > j(B,Q).
Therefore, in MUSEUM, converting a malware feature

set into a MinHash-based fixed-size representative set and
measuring the intersection set size guarantees finding similar
files in jaccard index order.
We explain the example of Fig. 3 where measuring |Q′∩A′|

can find the most similar malware file based on the jaccard
index, but measuring |Q ∩ A| cannot preserve this property.
Fig. 3 (a) depicts how simple inverted indexing finds the most
similar file. Two malware files are preprocessed to produce
their feature sets, A and B. For simplicity, we use all the
elements from the feature sets to build an inverted indexing
table. When a query file is given, its feature set is generated
in the same way, denoted as Q. The scoring algorithm here
is the intersection size between Q and each of indexed files,
and therefore A is chosen as the most similar malware file.
Note that all of the four feature elements of Q are used and
only their postings are checked. On the contrary, a MinHash
tokenizer is adopted by MUSEUM as shown in Fig. 3 (b).
All feature sets, includingQ, are converted into representative
feature sets of the same size k . We build the inverted indexing
table with only k elements from each of the representative

feature sets. Note that only k hashed values from Q′ make a
set of query keywords, and scoring equation (3) finds B as the
most similar malware file in the right order of jaccard index.

D. JACCARD INDEX ESTIMATOR
We develop an estimator for the jaccard index in MUSEUM.
We assume that all malware feature sets are converted into
a fixed size. We define an indicator random variable of
I {min{hi(q)|q ∈ Q′},A′} for indexed document A′, query
file Q′, and hash function hi; this variable becomes 1 if A′ is
included in the posting list of min{hi(q)|q ∈ Q′} or otherwise
becomes 0. Subsequently, equation (4) becomes an estimator
for the jaccard index between A and Q according to Broder’s
theorem [9], which is denoted as Ĵ (A,Q):

Ĵ (A,Q) =

∑k
i=1 I {min{hi(q)|q ∈ Q

′
},A′}

k
≈
|A ∩ Q|
|A ∪ Q|

= j(A,Q) (4)

The equation takes the average of the jaccard index estima-
tions k times; Broder found that j(A,Q) = P(min{h(a)|a ∈
A} = min{h(q)|q ∈ Q}). We demonstrate that a moderate size
of k , e.g. k = 128, results in accurate jaccard index estimation
based on the experiments described in Section IV.

IV. EXPERIMENTS
We evaluate MUSEUM through extensive experiments using
datasets of up to 12 million malicious PE files. We implement
MUSEUM on the Elasticsearch platform with two PCs. The
experimental goal is to confirm that MUSEUM can find sim-
ilar malware files in jaccard index order in terms of various
features. We compare MUSEUM with two rival schemes:
(1) the default inverted indexing of Elasticsearch [8] and
(2) ssdeep with n-gram-based inverted indexing, shortly
ssdeep indexing [7], [10]. We emphasize that few meth-
ods can index and search a large number of malware files.
Although these rival schemes were not designed for mea-
suring metrics of jaccard index, they can index and search a
large volume of malware files on the Elasticsearch platform.
Therefore, we compare MUSEUM with them.

The first rival scheme, inverted indexing, is to use
the default inverted indexing setting provided by Elastic-
search. The difference between this and MUSEUM is that
MinHash sampling is implemented for MUSEUM as a tok-
enizer. The simple inverted indexing cannot find similar mal-
ware files in jaccard index order. Moreover, greater storage
space is required to hold all the elements of a feature set as
keywords for indexing.

The second rival scheme, ssdeep indexing, is adopted by
some security industries as a practical search technique to
find similar malware files in terms of sequences [7], [10]. The
main idea is to use ssdeep, n-gram, and Elasticsearch together.
However, this scheme supports only sequence-type features,
such as file byte streams and API call sequences. Two repre-
sentative strings are generated for every malware file through
ssdeep, de facto fuzzy hashing, and a set of n-grams generated
from two representative strings. Then, inverted indexing is
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FIGURE 4. Accuracy comparison of inverted indexing and MUSEUM where dataset1 and the ASCII string feature are used. Each point represents a query
file, whose x-coordinate is the true jaccard index between the query file and the most similar malware file; the y-coordinate of the left and middle plots
is the jaccard index between the query file and the first ranked search result while the right plot uses the estimator of equation (4). If the search is
perfect, all points would be on y = x .

built on Elasticsearch. More explanations are available in [7].
This practical scheme is scalable because a malware file is
converted into a small set of keywords. However, our exper-
imental results show that MUSEUM outperforms this rival
scheme in accuracy.

A. EXPERIMENTAL SETUP
We implemented MUSEUM on Elasticsearch with two
high-end PCs with Intel i9-7920 processors and 128 GB of
memory. One master node and three data nodes are config-
ured for the Elasticsearch deployment [8].

The dataset is collected from a commercial malware
site from 2018-10-01 to 2019-02-01 [18]. For experiments,
we use two different collecting periods for indexing and
query; dataset1 consists of one day of indexing files from
2018-10-01 and one day of query files from 2018-10-02.
Dataset2 consists of 124-day indexing, from 2018-10-01 to
2019-02-01, and one day of query files from 2019-02-02.
The numbers of indexed malicious PE files of dataset1 and
dataset2 are 68,858 and 12,000,000, respectively. The num-
bers of query malware files of dataset1 and dataset2 are
3,000 and 10,000, respectively.

We use dataset1 to compare MUSEUM, inverted indexing,
and ssdeep indexing, for two different feature types of ASCII
strings and byte streams. The byte stream feature can be
obtained by either n-grams or AE chunking. The moderate
size of dataset1 enables complete pairwise comparison for a
given query file, and therefore we can know the ground-truth
of the best search results. This enables us to evaluate the
correctness of MUSEUM and its rival schemes. After con-
firming the soundness of MUSEUM search with dataset1,
we use dataset2 for evaluating the big data processing
capability of MUSEUM. Pairwise comparison is not possi-
ble for dataset2 because of its large size. Therefore, we do
not know the ground truth for accuracy, but we can con-
firm the scalable processing capability and usefulness of
search results fromMUSEUM. Table 1 summarizes these two
datasets and features.

We use three comparison metrics of, accuracy, throughput,
and storage space. Accuracy is measured as the exactness of

TABLE 1. Summary of two malware datasets and features.

search results. For a given query file, each search scheme
including MUSEUM will return an ordered list of search
results. We use only the first ranked malware file. Then,
we can compute the jaccard index between the query file
and the search result file. If we know the actual most similar
file for the query file, we can compute the relative error of
the jaccard index. Throughput is measured as the number of
query files processed per second. Space is measured as the
storage size to keep indexing information.

B. MUSEUM VS INVERTED INDEXING
The first set of experiments compare MUSEUM with
the default inverted indexing of Elasticsearch. We use
dataset1 for the experiments and a set of ASCII strings
extracted from a malware file is the feature. We use an
open-source string extractor to obtain ASCII strings [19].
To find ground truth information, we exhaustively com-
pute the jaccard index between every query file and all
indexed files; the total number of pairwise comparisons is
206,574,000 (= 68,858 × 3,000), which is not possible for
the dataset2 that is much larger than dataset1.

The number of hash functions, k , is set to 128 for
MUSEUM, and the smallest hashed value for each hash func-
tion is selected for the representative feature set. We observe
that k = 128 is a good parameter setting for MUSEUM
among a range of k values. For inverted indexing, we use all
ASCII strings for the feature set without sampling.

The search accuracy is compared in Fig. 4 where inverted
index and two MUSEUM versions are presented from left
to right. For the left and middle plots, each point represents
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FIGURE 5. Accuracy comparison of MUSEUM with byte stream (4-gram) feature (left), MUSEUM with byte stream (AE chunking) feature (middle), and
ssdeep indexing (right) [6]. The dataset1 is used for the experiments.

a query file where x-coordinate is the true jaccard index
between the query file and the most similar file, and
y-coordinate is the jaccard index between the query and the
first ranked malware file that is returned as the search result
of the query file. The right plot presents another MUSEUM
version where the estimator of equation (4) is used, which
quickly provides the estimated result. If the search result is
perfect, the point would be on the y = x line. As in Fig. 4,
MUSEUM has higher accuracy than inverted indexing. The
relative errors of the two schemes are 0.120 and 0.030,
respectively.

To compare time and space costs, we measure the through-
put and storage space of the inverted index and MUSEUM.
For indexing, MUSEUM is faster than inverted indexing
because it uses only 128 elements for the representative
feature set. We confirm that the throughput of MUSEUM
increases by more than 600%, the space is reduced by more
than 90%.

C. MUSEUM VS SSDEEP INDEXING
In this set of experiments, we compare ssdeep indexing and
MUSEUM using the dataset1. Because ssdeep indexing can
handle only a sequence-type feature, we use the byte stream
feature. Fig. 5 depicts the accuracy plots for MUSEUM with
4-gram (left), MUSEUM with AE chunking (middle), and
ssdeep indexing (right). Two MUSEUM versions outperform
ssdeep indexing.

InMUSEUM, a sequence-type feature should be converted
into a set, and then the set is converted into a representative
set of size k through implementing MinHash. In this paper,
we adopt the AE chunking [16], a content-defined chunking
method, to convert a sequence into a set for the first time in
the search and inverted indexing literature.

For the byte stream feature, we apply the AE algorithm
to divide each byte stream of a malware file into sev-
eral non-overlapping byte sub-streams of different lengths
(chunks); the feature set is a collection of these chunks.
The chunking algorithm uses a sliding window to com-
pute content-defined delimiters to divide the variable-length
chunks. The repeated chunks of the same content can be
treated as one element in the feature set. Therefore, this

chunking algorithm outperforms the classical n-gram scheme
in reducing set size.

As in Fig. 5, we confirm the accuracy plots of
MUSEUM (4-gram) and MUSEUM AE look similar. How-
ever, the throughput of AE is much higher than that of n-gram
by 7,000%. We set n to 4 because 4-gram performs most
effectively among n-grams. The average number of n-grams
is 357,638, and the number of AEs is 2,731.

The average window size of MUSEUM AE is a tuning
parameter for the AE chunking. A larger window size implies
that the size of chunks increases, but the number of chunks
decreases. Therefore, a large window size increases through-
put, but this might decrease accuracy. However, in the next
experiments, we confirm that a large window size does not
significantly lower the accuracy. Because AE chunking out-
performs n-gram, we use AE chunking for MUSEUM in the
remaining experiments.

D. MUSEUM PARAMETERS
The number of hash functions, k , and the average chunk size
of AE chunking, c, are important parameters for MUSEUM.
They may affect the accuracy and throughput of MUSEUM.
Therefore, we show experimental results with different
k and c, which are shown in Figs. 7 and 8, respectively.
According to the AE chunking algorithm [16], w is the tuning
parameter of c as c = (e− 1)×w where e is the natural con-
stant. We use w instead of c in the figures. The dataset1 and
the feature of AE chunking are used for this experiment.

The experimental results show that k affects both accuracy
and throughput as in Fig. 7.We use k = 128 as a default value.
On the other hand, the search accuracy does not degrademuch
when w increases. This is because the size of malware files
for our experiments is generally much larger than w. For
example, if a file size is 1 MB and w = 256, we still have
106/((e − 1) × w) ≈ 2, 284 chunks. This number is large
enough for MinHash to keep its high accuracy. In this paper,
we set w = 128 as a default value for AE chunking.

E. EXPERIMENTS ON LARGE DATASETS
In the final experiments, we use dataset2, which con-
sists of more than 12 million malware files collected for
124 days. The feature is a byte stream, with AE used as
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a content-defined chunking algorithm. We use MUSEUM
to build the indexing. Simple inverted indexing without
implementing MinHash fails to even build indexing because
of the large number of files and the large size of fea-
ture sets. The query files are randomly selected from one
day of data from 2019-02-02 to create 10,000 queries.
For comparison of throughput and space of different-sized
datasets, we used datasets of 60,000, 1,000,000, 6,000,000,
and 1,2000,000 malware files, respectively. The first and the
last are dataset1 and dataset2, respectively. The second and
the third are subsets of dataset2. The experimental results are
plotted in Fig. 6.

FIGURE 6. Comparison of throughput and indexing space with different
collection sizes of malware files. Dataset1, 2 and byte stream (AE
chunking) feature are used.

The throughput of search and the space for indexing are
compared in Fig. 6, where four different indexing sizes are
presented. We confirm that the throughput can be preserved
steadily even with 12 million malware files indexed. In con-
trast, indexing space increases with the number of files. This
figure shows that MUSEUM indexing is very efficient; the
indexing space is less than 70 gigabytes, whereas the original
malware files amount to 9.34 terabytes. This scalability is
enabled by the use of MinHash sampling and the Elastic-
search open-source platform.

V. RELATED WORK
Broder studied the problem of the resemblance among files
and coined MinHash in his seminal study [9]. MinHash can
estimate the jaccard index among files with a fixed number
of selected elements from the original sets. His work affects
the research on finding similar files and documents, which is
especially useful for web search [20], [21]. MinHash solves
the problem of a large number of elements in a set, but the
scalability problem caused by a large number of files per-
sists. Locality sensitive hash can solve this problem by first
observing hash collisions of file subparts and then selecting
candidates for similar files [22]. In this paper, we combine
MinHash and Elasticsearch to find similar malware files in
jaccard index order in a scalable way. In this paper, we use
only the first-ranked search result, but our schemes can be
easily extended to use several of the high-ranking results.
This is similar to the traditional k-nearest neighbor prob-
lem [11]. Although recent work solves the problem efficiently

[23], [24], none of the studies can find similar files in jaccard
index order, to the best of our knowledge.

Measuring jaccard index is an effective way to compare
malware files. Raff and Nicholas usedMinhash and compres-
sion algorithms to estimate the similarities among malware
files in terms of byte sequences [25], [26]. The main idea is
to compress two concatenated files. If the compression rate is
high, the two files can be considered very similar; otherwise,
they are not similar. However, this algorithm still requires
every pairwise comparison among files, which can be solved
by MUSEUM.

Finding similar malware files is a critical task for mod-
ern malware analysis. The number of similar malware files
steadily increases because of malware variants. After sys-
tematically dissecting a large number of malware datasets
collected over a long period, Ugarte-Pedrero et al. find that
few malware samples are unique [3]. Interestingly, not only
malware files but also benign files have similar cousins [4].
Therefore, finding similar files, not only text files but also
executable files, becomes important for cybersecurity. This
can present malware analysts with decisive materials for
analysis and an advanced starting point instead of analysis
from scratch, significantly reducing their time and effort.

Machine learning and recent deep learning can detect vari-
ant malware files. After collecting a large dataset of mal-
ware files and their stable labels, or malware family names,
machine learning models are trained to predict if a suspi-
cious file is malware or benign or which malware family
a suspicious file belongs to; in general, supervised learning
is widely used [27], [28]. Cui et al. adopt deep learning
models from the image-processing literature to solve the
problem of malware classification [29]. Raff et al. present
an end-to-end deep learning model that does not need any
preprocessing or additional feature engineering for malware
files [30]. Antivirus companies understand the limitations
of traditional malware detection technologies. They actively
study and adopt machine learning algorithms to detect variant
malware files [6].

Finding malware variants has been a critical research
topic in cybersecurity. Shafiq et al. introduce how to use
data mining to detect variant malware files by using header
information from Windows PE files [13]. Diro and Chil-
amkurti present a cyber-attack detection method based on
deep learning models, deployed at edge nodes in fog com-
puting [31]. However, all of these machine learning and deep
learning-based detection systems cannot find similarmalware
files, especially in jaccard index order.

Malware analysts know that similar malware files of a high
jaccard index provide decisive hints for malware analysis, but
no scalable solutions have been developed until now. Some
industry experts use ssdeep, a de facto fuzzy hash function,
together with Elasticsearch to develop practical industrial
technologies [7], [8]. This is a clever idea because similar
files can be found by ssdeep, and scalable and fast search
can be performed by the industry-verified Elasticsearch,
which removes pairwise comparison operations. However,
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FIGURE 7. Different numbers of hash functions and their effects on accuracy and throughput for MUSEUM. The dataset1 and byte stream (AE chunking)
feature are used for the experiments.

FIGURE 8. Different average chunk sizes of AE chunking and their effects on accuracy and throughput for MUSEUM. The dataset1 and byte stream (AE
chunking) feature are used for the experiments.

the soundness of this technique is not theoretically proven,
and the technique does not guarantee that similar files can be
returned in jaccard index order.

Fuzzy hash algorithms can efficiently find simi-
lar files [10], [32]. They divide a file into multiple
non-overlapping parts and each part is encoded into a small
string or bitmap. For similar two files, some parts of the
string or bitmap would be identical. However, fuzzy hash
algorithms require inefficient pairwise comparisons of all the
small strings or bitmaps. This problem can be relaxed with
inverted indexing [7].

VI. CONCLUSION
In this paper, we presented a new search engine that can
find similar malicious binary files in jaccard index order
for a query file. Its unprecedented accuracy and scalability
derive from a new method to combine MinHash and inverted
indexing. The similarity can be defined differently based
on multiple features, and our proposed scheme can reflect
the multiple features individually or collectively. We proved
the accuracy of our proposed scheme theoretically and also
confirmed, through extensive experiments on real malware
datasets up to 10 million files, that it outperforms previous
work and current state-of-the-art methods.
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