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ABSTRACT Intra prediction is the key technology to reduce spatial redundancy in the modern video coding
standard. Recently, deep learning based methods that directly generate the intra prediction by neural network
achieve superior performance than traditional directional based intra prediction. However, these methods lack
the ability to handle complex blocks which contain mixed directional textures or recurrent patterns since they
only use the neighboring reference samples of the current one. The other intermediate information denoted
as reference priors in this paper generated during the coding process is not exploited. In this paper, a Current
Frame Priors assisted Neural Network (CFPNN) is presented to improve the intra prediction efficiency.
Specifically, we utilize the local contextual information provided by the neighboring multiple references
as the primary inference source. In addition to the neighboring references, we additionally use the other
two reference priors within the current frame — the predictor searched by intra block copy (IntraBC) and
the corresponding residual component. The IntraBC predictor provides useful nonlocal information to help
generate more accurate prediction for complex blocks together with neighboring local information. While the
residual component contains unique information that reflects the characteristics of the block to some extent
is utilized to reduce the noise contained in the reconstructed reference samples. Moreover, we investigate the
best way to integrate the proposed method into the codec. Experimental results demonstrate that compared
to HEVC, our proposed CFPNN achieves an average of 4.1% BD-rate reduction for the luma component

under the All Intra configuration.

INDEX TERMS Neural network, intra prediction, reference prior, High Efficiency Video Coding.

I. INTRODUCTION

Intra prediction is an efficient way to remove spatial redun-
dancy within a frame by exploiting the similarity of adjacent
pixels. It plays an essential role in current video coding
standards, like Advanced Video Coding (AVC) [1] and High
Efficiency Video Coding (HEVC) [2]. For intra prediction
of block based video coding framework, the prediction of
the current to-be-coded block is generated by extrapolation
of the nearest neighboring single reference line according to
the directional prediction mode. There are 35 intra prediction
modes for HEVC, while the available prediction modes for
AVC are 9. Combined with a more flexible prediction block
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size, HEVC can achieve about 22.3% bitrate saving compared
with AVC on intra prediction [3]. To improve the directional
accuracy, the number of directional intra modes is increased
to 65 for next generation video coding standard — Versatile
Video Coding (VVC) [4]. With the support of a more flexible
prediction block shape and size, the coding efficiency is
further improved.

In addition to extending the directional modes number,
numerous methods have been proposed to improve the
intra prediction efficiency of HEVC. Wei et al. [5] applied
DCT-based interpolation filter to generate fractional refer-
ence samples. Chen et al. [6] proposed an iterative filtering
method to smooth the conventional copy-based prediction
samples. Four-tap recursive extrapolation filters based on
the Markov model were employed to improve the prediction
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samples in [7]. These methods still use the nearest neigh-
boring single line as HEVC to generate prediction samples.
There are also methods to explore the performance by intro-
ducing more reference information or designing a new intra
prediction framework. In [8], multiple reference lines were
utilized to generate prediction. Qi et al. [9] introduced two
image inpainting algorithms into intra prediction. In [10], two
predicted blocks derived from different prediction directions
were weighted combined to generate the final prediction.
Chen et al. [11] proposed a new intra prediction method
which coded half pixels of a block while reconstructed the
other half by linear interpolation. Zhang et al. [12] proposed
a hybrid intra prediction method by jointly exploring non-
local correlation through template matching prediction and
local correlation. Intra Block Copy (IntraBC) which performs
motion compensation in the already reconstructed areas
within the current frame and has been adopted in the HEVC
extension for screen content coding, was also introduced in
natural content intra prediction [13]. Li et al. [14] proposed
a combination of regular intra prediction and IntraBC to
generate better prediction.

In the last few years, explorations of applying deep learn-
ing to the video coding task have been carried out and
have achieved impressive success. Generally speaking, deep
learning based video coding can be classified into two cate-
gories. The deep neural network of the first category takes
the uncompressed video as input and directly outputs the
compressed bitstream [15]-[18]. This kind of neural net-
work model is called the end-to-end model, which is out
of the scope of this paper. The second category methods
still follow the conventional block based hybrid video cod-
ing framework [19]. The deep neural network is integrated
into the framework to improve the performance of particular
module including inter prediction [20]-[22], transform [23],
entropy coding [24], [25], rate control [26], [27], in-loop
filtering/post processing [28]-[31], and intra prediction
[32]-[38] The details of these deep learning based video
coding methods are reviewed in Section. II-B.

Although the previous learning based intra prediction
methods have achieved remarkable performance, there is
still much potential for further improvement. The previous
methods use more local contextual information by feeding
multiple reference lines or neighboring blocks of the current
one into the network, which can generate a better prediction
for most blocks. However, for some complex blocks which
contain complicated textures like mixed multiple directional
textures or recurrent patterns, only using the local correlation
of adjacent pixels is not enough to generate an accurate
prediction. A possible way to further improve the prediction
accuracy of these complex blocks is using additional nonlocal
contextual information. Furthermore, previous works take
the reconstructed reference as input without utilizing any
other compression information generated during the encod-
ing/decoding process, such as partition mode, prediction
residual, etc. We name these different kinds of intermediate
information as reference priors in this paper. These reference
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priors, which are used as the elementary component to
form the final output of the encoder/decoder, always contain
unique characteristics. The effectiveness of reference priors
has been demonstrated in post-processing [39] and fractional
interpolation [22]. For intra prediction, these reference priors
are all within the current frame. Introducing current frame
priors is another potential way to improve intra prediction.
Moreover, the nonlocal information is also one Kind of refer-
ence prior since it is derived before reconstructing the current
block.

In this paper, we propose a Current Frame Priors assisted
Neural Network (CFPNN) to provide more accurate intra
prediction for complex blocks. The proposed CFPNN takes
three input components to use both local/nonlocal corre-
lation and intermediate reference priors. The neighboring
multiple L-shape reference lines of the current block are
still used as the primary inference source to provide local
contextual information. In addition to the L-shape reference
lines, we further take advantage of the other two reference
priors. On the one hand, the IntraBC predictor, which is the
best matching block searched in the already reconstructed
areas within the current frame, is utilized to explore nonlocal
correlation. On the other hand, the corresponding residual
component of the predictor is used as the third input, since
the residual prior contains extra information about the char-
acteristics of block texture. Experimental results demonstrate
that compared with HM-16.9, the proposed CFPNN scheme
achieves an average 4.1% BD-rate reduction. The major con-
tributions of this paper are listed as follows:

o A novel Current Frame Priors assisted Neural Net-
work (CFPNN) based intra prediction is proposed. Apart
from the neighboring multiple L-shape reference lines,
our proposed method also takes advantage of IntraBC
predictor and the corresponding residual component to
explore nonlocal correlation and unique characteristics
of intermediate compression information.

o The network architecture is carefully designed to make
use of these three input components simultaneously.
A channel-wise attention mechanism is applied to com-
bine features from different components efficiently.

o We present two schemes to integrate learning based intra
prediction into the codec. For the first scheme, networks
with different input components are applied to blocks
with different texture characteristics. For the second
scheme, all blocks use CFPNN with three inputs uni-
formly. Comprehensive experiments have been carried
out to demonstrate the efficiency.

The rest of this paper is organized as follows: Section. II
reviews the related work. The details of our proposed method
are introduced in Section.IIl. Comprehensive experimental
results are presented in Section.IV. Finally, Section.V con-
cludes this paper.

Il. RELATED WORK
In this section, we first introduce the original intra prediction
of HEVC briefly. Then some recent deep learning based
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FIGURE 1. HEVC intra prediction modes. (a) 35 modes. (b) Example of
intra prediction with mode 29.

video coding methods, especially deep learning based intra
prediction methods, are reviewed.

A. INTRA PREDICTION OF HEVC

In HEVC, there are three new coding structure related con-
cepts — coding unit (CU), prediction unit (PU), and transform
unit (TU). A CU with a size varied from 8 x 8 to 64 x 64
can be further divided into PUs, each of which has identical
prediction information. For coding the prediction residual,
a CU can be split into multiple TUs. In intra prediction, TU is
the basic unit that conducts the prediction process. All TUs
inside a PU share the same intra prediction information.

For TU with size from 4 x 4 to 32 x 32, there are a
total of 35 intra modes, including Planar, DC, and 33 angular
modes. DC and Planar are designed for predicting blocks with
flattening textures and gradually changing textures, respec-
tively. The remaining angular modes target areas with strong
directional textures. For a TU with size NxN, the neighboring
4N+1 samples are used as the single reference line to generate
prediction, as shown in Fig.1. DC mode uses the average
value of reference samples as the prediction of the current to-
be-coded block, while planar mode uses bilinear interpolation
to generate the prediction. For angular modes, the prediction
is generated by extrapolating the reference samples along a
given direction.

B. DEEP LEARNING BASED VIDEO CODING

Recently, deep learning based methods have achieved
remarkable improvement in conventional video coding task.
These methods are integrated into the hybrid coding frame-
work to replace or improve a particular module.

For inter prediction, Zhao et al. [20] used a convolu-
tional neural network (CNN) model to combine two pre-
diction blocks to enhance the bi-directional inter prediction.
Lee et al. [21] proposed using a video prediction network
to generate a virtual reference frame for motion estimation
and compensation. In [22], a CNN based fractional inter-
polation method was presented to improve the inter pre-
diction efficiency. For the transform and entropy coding,
Liu et al. [23] trained a DCT-like transform network for
image coding. References [24], [25] proposed using CNN
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to predict the probability distribution of the intra prediction
related syntax elements. Reinforcement learning has been
introduced into the traditional rate control to allocate bitrate
and estimate coding parameters in [26], [27]. In order to
remove the compression artifacts, He et al. [28] proposed to
use one kind of reference prior — the partition information
to guide the quality enhancement combined with the distorted
frame. A dual-domain based artifact reduction neural net-
work was proposed in [29], which can learn representation
from both pixel domain and DCT domain. Apart from these
post-processing methods that directly improve the quality
of decoded frames, Jia et al. [30] applied a content-aware
CNN model after the SAO as an additional in-loop filter. An
attention-based loop filter was proposed to replace originally
existed filters in [31], which can process luma and chroma
components simultaneously.

Several deep learning based methods have also been pro-
posed to improve the HEVC intra prediction. These methods
can be classified into two categories according to the num-
ber of types of adopted neural network model (NM). The
methods in the first category adopt the same type of NM
for all blocks. Cui et al. [32] proposed a CNN based intra
prediction refinement method. The 8 x 8 prediction block
is first generated by the HEVC intra prediction, and then
this 8 x 8 block is fed into the CNN model together with
its three nearest reconstructed 8 x 8 blocks to get a refined
intra prediction block. Instead of using convolutional neural
network, Li et al. [33] proposed a fully-connected network to
learn an end-to-end mapping from the neighboring multiple
reference lines to the intra prediction block. Hu ef al. [36]
designed a progressive spatial recurrent neural network (PS-
RNN) to conduct intra prediction. A spatial RNN is applied
to generate the prediction progressively based on the neigh-
boring content. In addition, they also proposed to use the Sum
of Absolute Transformed Difference (SATD) as the loss func-
tion. Wang et al. [34] proposed a multi-scale CNN (MSCNN)
for intra prediction. The MSCNN also uses the predicted
block generated by HEVC intra prediction as one of the
input components. Different from [32], MSCNN further takes
the neighboring multiple reference lines as additional infor-
mation. With the help of a multi-scale feature extraction
subnetwork, the MSCNN achieves much better performance
than [32]. In [38], a CNN based intra prediction (CIP) was
proposed with the neighboring single reference line and the
predictor found by intra block copy as inputs. However,
the predictor is directly added to the prediction generated by
local information, which is not an efficient way to combine
these two kinds of information. For methods in the second
category, multiple types of NMs are adopted to improve
the intra prediction. Dumans et al. [37] proposed a set of
neural networks, which is called Prediction Neural Networks
Set (PNNS). In PNNS, fully-connected neural networks are
used to generate intra prediction for small blocks, while
convolutional neural networks are used for large blocks.
Sun et al. [35] explored two different schemes to integrate
multiple types of neural network models into the HEVC
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FIGURE 2. Overall Network Structure of Proposed CFPNN, which takes three inputs and directly output intra prediction block.

framework. For the appending scheme, the neural network
models are regarded as additional intra prediction modes.
For the substitution scheme, the neural network models are
integrated by replacing original intra modes. Reference [33]
also presented a multiple NMs scheme by applying different
neural network modes to angular and non-angular intra direc-
tion modes. Generally speaking, methods that adopt multiple
types of neural network models perform better than methods
with a single type of neural network model.

IIl. CURRENT FRAME PRIORS ASSISTED NEURAL
NETWORK FOR INTRA PREDICTION

In this section, we will introduce the details of our proposed
method, including overall framework, network architecture,
training data generation, training strategy, and how to inte-
grate into the codec.

A. OVERALL FRAMEWORK

In order to keep the consistency of the encoder and decoder,
the previously reconstructed boundary samples are used to
form an L-shape reference line in the original intra prediction.
Meanwhile, neighboring multiple L-shape reference lines are
also adopted as the only input in previous learning based
intra prediction methods. Although, the neighboring multiple
L-shape reference lines can provide more local contextual
information than a single reference line and generate a bet-
ter prediction for most blocks. For some complex blocks
which contain mixed directional textures or recurrent pat-
terns, only using neighboring L-shape reference lines and
local correlation makes the intra prediction inefficient. To
generate a more accurate intra prediction for the current
block, especially for complex blocks, we propose a Current
Frame Priors assisted Neural Network (CFPNN) to conduct
the prediction process. In our proposed CFPNN, in addition
to adopting the neighboring multiple L-shape reference lines,
we also use the other two reference priors within the current
frame — IntraBC predictor and corresponding residual com-
ponent to take advantage of nonlocal information and unique
characteristics of reference prior to improve the prediction
efficiency.
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FIGURE 3. Neighboring multiple L-shape reference lines. Fora N x N
block, there are 4NM + M2 samples in the reference lines.

In intra prediction, the neighboring L-shape reference line,
which is composed of the neighboring decoded samples from
top-right to bottom-left of the current to-be-coded block,
is shown in Fig.3. Similar to previous work, we also utilize
multiple L-shape reference lines to extract more local correla-
tions. The width of the reference lines is donated as M. There-
fore, for a block with size N x N, there are a total of 4NM +M?
samples in the multiple L-shape reference lines. Compared
with the original intra prediction process in HEVC, which
uses 4N + 1 samples as reference, multiple reference lines
can provide more local contextual information.

In video coding, a fundamental assumption is that the pat-
terns of objects in a frame are similar to corresponding objects
in other frames or similar to other patterns within the current
frame. To make use of this nonlocal correlation to generate
an accurate prediction for complex blocks, We use the best
matching predictor of the current one within the current frame
as an additional information source. Specifically, we use
the intra block copy (IntraBC) to find the best matching
predictor [40]. IntraBC is an efficient coding tool in HEVC
extensions on Screen Content Coding (HEVC SCC) [41]. In
IntraBC, the best matching block of the current to-be-coded
one is searched in the already reconstructed regions within the
same frame and used as the predictor. As illustrated in Fig.4,
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FIGURE 4. Example of IntraBC search range. The light blue area is the
available search range, and the block vector (BV) indicates the relative
positional relationship.

a block vector (BV) is used to indicate the relative position
relationship of the best matching predictor and the current
one. The IntraBC predictor introduces a nonlocal correlation
that is not contained in the neighboring reference lines to
improve the prediction accuracy.

In the block based hybrid video coding framework, both the
neighboring L-shape reference lines and the best matching
nonlocal predictor searched by IntraBC are decoded recon-
struction samples before the in-loop filtering process. These
reconstructed samples are accompanied by mixed distortions
due to the block based coding process and Quantization step,
making the network hard to learn efficient representations
from them. To help the network generate a more accurate
prediction, we propose to use the corresponding residual
component to enhance the prediction quality. The residual
component is the difference between original and correspond-
ing prediction samples. Generally, areas containing complex
textures, large motion objects, or sharpening edges are hard
to be predicted and accompanied by large residuals, which
also means the residual component can reflect the complex-
ity of the corresponding block to some extent. Therefore,
the residual contains extra information about texture com-
plexity, which can help to reduce the noise contained in the
reference samples, especially on those complexity areas, and
improve the prediction accuracy.

In summary, our proposed CFPNN takes two reference
priors — the IntraBC predictor and corresponding residual
component to assist the neighboring multiple L-shape refer-
ence lines to directly generate intra prediction block.

B. NETWORK ARCHITECTURE OF PROPOSED CFPNN

The overall architecture of our proposed CFPNN is illustrated
in Fig.2. As we mentioned in III-A, the inputs of CFPNN
are the neighboring multiple L-shape reference lines, the best
matching predictor searched by IntraBC, and the correspond-
ing residual component. In order to utilize these three inputs
simultaneously, we carefully design the network architecture
to generate a better prediction.

Since the neighboring multiple L-shape reference lines are
utilized as the primary inference source to provide more local
contextual information. We also use a fully-connected (FC)
structure to extract features from this input and generate a
primitive prediction P;. For a block with size N x N, the input
of the FC structure is the neighboring 4NM + M? samples as
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shown in Fig.3. The multiple lines could provide more local
correlations, but the correlation would decrease if large width
lines were used. In our implementation, the width of reference
lines M is set as min(N, 8). The multiple reference lines are
first flattened to a 4NM + M2-dimension vector as the FC
layers input. For the ith FC layer, its output is a K-dimension
vector calculated as:

FFex) = wfexre 4 pfc )

where Xl.F € is the input of the ith FC layer, which is the flat-
tened reference samples for the first layer and the non-linear
activated output of the last layer for other FC layers. WiF ¢
and bf C are the corresponding weight and bias of each layer.
The final output of the FC structure is a N2-dimension vector
which will be reshaped to a N x N block as the primitive
prediction.

To make use of the nonlocal correlation, the best matching
predictor searched by IntraBC is combined with the primitive
prediction P; generated by the neighboring reference lines.
The following convolutional layers are used to extract both
local and nonlocal features. The residual prior is introduced
as complementary information to help to reduce noise con-
tained in the reconstructed reference samples and enhance the
generated prediction. We design a light structure that contains
two convolutional layers followed by an activation function
to extract corresponding features. The extracted residual fea-
tures are combined with the joint local and nonlocal features
extracted from the other two inputs to form the input of the
following layers.

In order to make full use of these three inputs, we fur-
ther propose to use channel-wise attention to combine these
feature maps. Specifically, the Squeeze-and-Excitation block
(SE block) is used as the channel-wise attention unit [42].
Feature recalibration is performed by two steps named
squeeze and excitation in SE block. A 1 x 1 descriptor is
generated at the squeeze step for a set of input feature maps
with channel size C. This descriptor is used as the input of the
following excitation step to derive the channel-wise weights
for all channels. These channel-wise weights are applied to
scale the original input feature maps and generate the output
weighted feature maps. Compared with directly concatenated
feature maps extracted from three inputs of our proposed
CFPNN, using the channel-wise attention unit fuse the feature
maps in a more efficient way. These different kinds of feature
maps are combined based on their relative importance on the
intra prediction.

These aggregated feature maps are directly fed into the
subsequent convolutional layers to generate the final accurate
prediction block. In our proposed architecture, each convo-
lutional layer except the last one contains 64 filters with
kernel size 3 x 3. The output of each convolutional layer is
formulated as:

Fl_Conv(X) — WiCoanl_Conv + biConv )
where X iC”"V is the input of each convolutional layer. Wl.c"”"
and bf"”v are the learnable parameters. In our network,
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we take the Parametric ReLU (PReLLU) as the activation
function, where a scale parameter needs to be learned
during the training phase [43]. We also adopt the resid-
ual learning strategy to enable faster converge. In resid-
ual learning, the network just learns the difference between
output and input. Considering that the best matching block
searched by IntraBC is as a predictor for the current to-
be-coded one, we add this input component with the out-
put of the last convolutional layer to generate the accurate
prediction.

C. TRAINING DATA GENERATION

The first ten frames of all sequences from the SJTU 4K video
dataset [44] and images with 2K resolution from the super
resolution dataset DIV2K [45] are used to form the training
sequence set and generate the training data pair. Since the best
coding parameters need to be determined by RDO at encoder
side, the training data pair (xR®¢/, x/mraBC xResi y) _ multi-
ple L-shape reference, IntraBC predictor and corresponding
residual prior are extracted from the decoder side, while the
label y is extracted from the original sequence. To generate
the training data, all images from the training sequence set are
encoded under the All Intra (AI) configuration recommended
by HEVC. Four different QPs — {22, 27, 32, 37} are used to
encode these images. In order to collect the /ntraBC at the
decoder side, the best matching block is searched when the
original intra prediction process is finished, and the related
information is transmitted to decoder side as additional side
information.

In HEVC, although the intra prediction related information
is derived at the PU level, the actual prediction process is con-
ducted for each TU. The training data pairs are also extracted
at the TU level. Our proposed method tends to generate the
intra prediction block as close to the current TU as possi-
ble. Thus the current to-be-coded TU is extracted as label.
For each to-be-coded block, the neighboring multiple recon-
structed samples as shown in Fig.3 are collected as the mul-
tiple L-shape reference. If some parts of the reference lines
have not been reconstructed yet, the same padding manner
in HEVC intra prediction is applied to generate the reference
lines. In our implementation, the IntraBC best matching block
is searched for each CU, and all TUs in the CU share the same
IntraBC related motion information. As for the collection of
the IntraBC predictor and corresponding residual component,
we first retrieval the best matching block for the entire CU
at the already reconstructed regions according to the block
vector. Then the IntraBC and corresponding residual prior
can be easily extracted based on the relative position of the
current TU within its corresponding CU. Not all the blocks
coded with intra mode are collected as training data. The
best matching block for IntraBC is searched based on the
Sum of Absolute Difference (SAD) between the candidate
predictors and the current block. For some blocks with overly
complex textures, it is difficult to find accurate similar pre-
dictor. Using these rare blocks is not conducive to training
a general model. The training data are further refined by the
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following condition:

MSE IlntruBC

_PPhraBC 3)
Ave(MSE1rapc)

where MSE }Wa pc 1S the Mean Square Error (MSE) between
the ith block and its corresponding IntraBC predictor,
Ave(MSEprapc) 1s the average MSE of all blocks in a
frame. Only the blocks whose IntraBC predictor has small
MSE are kept as training data. To make the network easier
to train, the training data pairs are further normalized to
range [0, 1].

Since the available TU size for intra prediction varies from
4 x 4 to 32 x 32, we train individual networks for each
possible TU size. In addition, the training data extracted from
the bitstream coded with different QPs are mixed together.
When conduct the real video coding test, all test QPs share
the same model. In this way, the number of required neural
network models can be significantly reduced.

D. TRAINING STRATEGY

In order to get the end-to-end mapping from the triple input
components to the output intra prediction, the network param-
eters need to be estimated according to the training data with
predefined loss function. To keep the consistency with the
distortion metric used in the RDO of video coding, we adopt
MSE as the loss function. We also introduce a regularization
term in the loss function to avoid over-fitting during the train-
ing procedure. Given a training data set contains N training
npu

data pairs {xll ! y,-}, the training loss is:

S e @
2202

N
1©) = 52 3 [Fe™ @)~
i=1

i t . . . .
where, x;np “is the input triple components which are

(xiR o , xi]"’mBC, xfeSi). F (xf"p “. ©)is the generated intra pre-
diction, y; is the corresponding label. ® is the learnable
network parameters, including weights, biases of the convo-
lutional layer and fully-connected layer, and the scale factor
of PReLu.

During the training phase, the regularization term weight A
is set as 107, The weight of each layer is initialized by
Xavier, and the bias is initialized as 0. The parameter set ®
is optimized with Adam in [46]. The base learning rate is
initialized as 10™*, and decayed to 10~8 by a factor of 10",
The proposed neural network model is trained on Caffe.

E. INTEGRATION WITH HEVC

The proposed method is integrated into HEVC framework to
conduct real video coding test and evaluate the coding perfor-
mance. Since our proposed method utilizes the best matching
predictor searched by IntraBC, we implement a preliminary
IntraBC technique in the original HEVC framework. In our
implementation, IntraBC is conducting on the CU level. For
a CU, the best predictor is searched within the already recon-
structed areas, and a Block Vector (BV) is used to indicate
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TABLE 1. Overall BD-rate performance of our proposed method compared to HEVC.

CFPNN-F CFPNN-U
Class Sequence BD-Rate BD-Rate
Y U v Y U v
Tango -6.8% 0.2% 32% | -45% 1.7% 1.2%
Drums100 36%  -08%  -16% | 3.0%  05%  -12%
ClassAl CampfireParty 3.1% 2.3% 2.3% 3.0% 2.1% 1.7%
ToddlerFountain | -3.0% 1.8% 12% | 29% 1.5% 1.2%
CatRobot 51%  28%  21% | 46%  2.6%  -1.9%
TrafficFlow 68%  21%  28% | 61%  23%  3.1%
ClassA2 | pavlightRoad 55%  -17%  23% | -54%  -08%  -1.9%
Rollercoaster -5.0% -2.9% -2.0% -3.7% -1.9% -1.6%
Traffic 41%  22%  -19% | 33%  25%  2.0%
ClassA | peopleOnStreet -5.0% 2.4% 2.1% 4.3% 3.6% 3.6%
Kimono 27%  -15%  -08% | -02%  -06%  -0.8%
ParkScene -3.1% -2.4% -1.8% -2.5% -1.8% -2.2%
ClassB Cactus 50%  22%  29% | 39%  25%  -33%
BasketballDrive 52%  25%  31% | 29%  31%  25%
BQTerrace 529%  22%  22% | 47%  33%  2.1%
BasketballDrill 34%  25%  -15% | 3.6%  22%  -17%
BQMall 22%  -19%  -14% | 20% = 22%  -23%
ClassC PartyScene 17%  -07%  09% | -15%  -06%  -1.0%
RaceHorsesC -2.9% -1.6% -1.8% -2.0% -1.4% -2.3%
BasketballPass 17%  -1.0% 0.9% 07%  0.8% 0.4%
BQSquare 1.2% 1.3% 2% | -12% 13% 0.0%
ClassD | BjowingBubbles -1.8% 2.6% 2.6% 1.2% 1.1% 2.6%
RaceHorses -3.3% -2.6% 0.0% -2.4% -1.9% -1.1%
FourPeople 56%  34% 3% | 46%  45%  -44%
ClassE Johnny 5% 66%  52% | 56% 5%  -49%
KristenAndSara 6.1%  35%  33% | 48% 3%  25%
ClassAl 41%  03%  21% | -33% 0.2% 1.3%
ClassA2 56%  23%  23% | 49%  -19%  2.1%
ClassA 46%  23%  20% | 38%  31%  2.8%
Average ClassB 43%  22%  21% | 28%  23%  -22%
ClassC 26% 1%  -14% | 23%  -1.6%  -1.8%
ClassD 20%  -12%  08% | -14% = 0.6%  -0.8%
ClassE 64%  45%  41% | 50% = 46%  -3.9%
Overall 41%  20%  20% | 32%  -18%  -2.0%

the relative positional relationship as illustrated in Fig.4.
To balance the searching complexity and the predictor accu-
racy, we further constrain the IntraBC search range by a
resolution dependent parameter s:

IBV,| + |BC,y| < s 5)

where, (BVy, BVy) is the horizontal and vertical displacement
for the current CU, respectively. The total search displace-
ment of both horizontal and vertical directions cannot exceed
the limited range s. s is determined based on the width and
height of the current frame:

(128, 128 dq,/ weH (©6)
= R 7 S —
5= max oMY 1920 - 1080
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Compared with searching at the full available ranges,
applying a limited search range has negligible influence on
the performance.

There are two kinds of schemes to integrate the pro-
posed learning based intra prediction method into HEVC.
The first scheme is applying neural networks with different
inputs to blocks with different texture characteristics. Our
proposed CFPNN utilizes both local and nonlocal correla-
tions to handle complex blocks containing complexity tex-
tures like mixed directional textures and recurrent patterns.
Nevertheless, for those blocks which contain smooth con-
tent or single directional texture, accurate prediction can be
generated by only using the neighboring multiple reference
lines. There is no need to use nonlocal IntraBC predictor as
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FIGURE 5. A brief diagram of integrating CFPNN into HEVC.

input for these blocks since there is additional overhead for
singling the IntraBC related BV information. In this scheme,
a lightweight neural network that only takes the neighboring
multiple L-shape reference lines and consists of the related
structure in Fig.2 is applied to generate intra prediction for
those blocks with simple texture. This scheme is referred to as
CFPNN-F with F represents Full. The other scheme is using
only the proposed neural network with three inputs for all
blocks without considering the block texture. This scheme
is referred to as CFPNN-U with U represents Uniform. The
proposed neural network based intra prediction method is
selected by the rate-distortion optimization (RDO) against
the traditional intra prediction. A brief diagram of integrated
CFPNN in HEVC is shown in Fig.5. If the RD cost of the neu-
ral network based intra prediction is smaller than that of the
traditional intra prediction, the CFPNN scheme is enabled.
A CU level flag is adopted to indicate whether CFPNN is
used. For the CFPNN-F scheme, an additional flag is used
to distinguish which type of network is used. Since TU is the
basic unit to conduct actual intra prediction, all TUs in a CU
share the same intra prediction method. We train individual
models for different TU sizes with luma component. When
CFPNN is enabled, the corresponding model is applied to the
TU luma component. Furthermore, the chroma components
will also reuse the corresponding model trained with the luma
component.

IV. EXPERIMENTAL RESULTS

A. EXPERIMENTAL SETTING

To conduct a comprehensive evaluation of our proposed
method, the CFPNN has been integrated into the HEVC
reference software HM-16.9 [47]. We use the All-Intra (AI)
configuration defined by the HEVC Common Test Condi-
tion (CTC) as the test condition [48]. The sequences in
CTC and 4K sequences in [49] are used as test sequences.
Since we target improving the intra prediction efficiency of
natural video content, the screen content video sequences
are excluded from the test sequences. These test sequences
contain a wide range of contents with various resolutions.
There is no overlap between the test sequences and the
training sequences. The first frame of these test sequences
is coded with Al configuration under 4 QPs — {22, 27, 32,
37}. We use BD-rate to evaluate the coding performance [50].
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TABLE 2. Comparison with previous work with only 8 x 8 intra prediction.

Sequence IPFCN [33] | PSRNN [36] | App7[28] | CFPNN
Traffic -3.4% -3.8% -5.2% -4.8%
PeopleOnStreet -3.4% -3.8% -5.4% -5.3%
Kimono -7.8% -6.6% -10.9% -7.5%
ParkScene -3.3% -3.4% -4.4% -3.9%
Cactus -3.2% -3.3% -4.3% -5.8%
BasketballDrive -8.3% -7.8% -9.9% -8.8%
BQTerrace -1.5% -2.6% -3.2% -4.6%
BasketballDrill -1.0% -2.9% -1.6% -5.1%
BQMall -1.4% -2.9% -3.5% -2.5%
PartyScene -1.2% -2.3% -2.4% -2.5%
RaceHorsesC -2.6% -2.8% -3.1% -3.2%
BasketballPass -1.7% -2.5% -2.7% -2.1%
BQSquare -0.8% -1.8% -1.6% -2.6%
BlowingBubbles -1.5% -2.3% -2.7% -1.7%
RaceHorses -1.9% -2.6% -3.1% -2.1%
FourPeople -3.9% -6.8% -6.0% -6.6%
Johnny -7.6% -5.6% -8.6% -9.7%
KristenAndSara -5.7% -6.6% -6.7% -10.0%
ClassA_Ave -3.4% -3.8% -5.3% -5.1%
ClassB_Ave -4.8% -4.7% -6.5% -6.1%
ClassC_Ave -1.5% -2.7% -2.7% -3.3%
ClassD_Ave -1.5% -2.3% -2.5% -2.1%
ClassE_Ave -5.7% -6.3% -7.1% -8.8%
Overall -3.4% -3.9% -4.7% -4.9%

For BD-rate, a negative value indicates performance improve-
ment, and a positive number indicates performance loss.

B. COMPARISON WITH HEVC

The overall performance of our proposed CFPNN method
compared with HEVC is summarized in Table.1. There are
two integration schemes of our method as described in
Section.III-E. Compared to HM-16.9, both of these schemes
can significantly improve the intra prediction performance.
For the luma component, CFPNN-F can achieve 4.1%
BD-rate reduction on average, and the maximum BD-rate
reduction can be up to 6.8%. The average BD-rate reduc-
tion of CFPNN-U is 3.2%, which is also remarkable. In
order to keep the consistency of the encoder and decode
side, the IntraBC related motion information BV also needs
to be transmitted to the decoder side. The joint consid-
eration of bitrate and distortion during RDO process will
make some blocks not choosing the learning based prediction
method when just applying uniform type of neural network
in CFPNN-U. However, more blocks tend to use learning
based prediction in the CFPNN-F scheme, where only neigh-
boring reference lines are used for blocks with relatively
simple texture while local/nonlocal correlations and unique
characteristics of residual prior are used for complex blocks.
Since the CFPNN-F scheme achieves better performance,
we use this scheme to represent our proposed method and
conduct other analyses. It can be observed that our proposed
scheme works for all test sequences with varied resolutions
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TABLE 3. Comparison with state-of-the-art methods under Al configuration.

Class Cui et al [32] | Zhang et al [38] | IPFCN-S [33] | IPFCN-D [33] | PSRNN [36] | MSCNN [34] CFPNN
ClassA -1.1% -1.1% -3.7% -4.4% -3.6% -4.0% -4.6%
ClassB -0.6% -1.8% -2.7% -3.2% -2.0% -2.6% -4.3%
ClassC -0.6% -1.2% -1.9% -2.1% -2.3% -3.4% -2.6%
ClassD -0.5% -0.2% -1.5% -1.8% -2.6% -3.6% -2.0%
ClassE -0.7% -2.0% -4.2% -4.5% -3.5% -4.2% -6.4%
Overall -0.7% -1.3% -2.6% -3.0% -2.8% -3.4% -3.8%

1 Some results are copied from [34]

and contents. We apply the model trained for luma compo-
nent to chroma components directly. The average BD-rate
reduction for two chroma components is 2.0% and 2.0%,
respectively. The coding performance of chroma components
can be further improved by using models explicitly trained for
these components.

Some typical Rate-Distortion (RD) curves are illustrated
in Fig.6 to intuitively demonstrate the superior performance
of our proposed scheme. It can be observed that CFPNN
achieves better performance than original HEVC in the
entire bitrate range. Specifically, the coding performance
improvement at low bitrate range is higher than that at high
bitrate range. The reason of this difference is the recon-
structed reference lines at low bitrate always accompanied
by severe distortion and the prediction generated by origi-
nal HEVC intra prediction is inefficient. In this case, more
blocks would choose our proposed learning based predic-
tion method and the performance improvement would more
significant.

C. COMPARISON WITH STATE-OF-THE-ART

In order to evaluate the efficiency of our proposed method,
we also compare CFPNN with other learning based intra
prediction methods [32]-[38]. These previous methods are
either applied to fixed block size intra prediction or applied to
default configuration with variable block size intra prediction.
PSRNN [36] and App7 [28] are only applied to the 8 x 8
intra prediction. For a fair comparison, we also investigate
the performance of our proposed scheme with only 8 x 8 intra
prediction, where the intra prediction is limited to 8 x 8§ TU.
The detailed BD-rate comparison of 8 x 8 intra prediction
is shown in Table.2. We also reproduce the IPFCN in [33]
with our training data and test on the fixed-size block. IPCFN,
PSRNN, and App7 can achieve 3.4%, 3.9% and 4.7% aver-
age BD-rate reduction for the luma component, respectively,
while our method outperforms these methods and achieves
4.9% BD-rate reduction.

We also compare CFPNN with other methods under default
Al configuration with variable block size intra prediction.
The BD-rate reduction comparison on ClassA-ClassE is sum-
marized in Table.3. The method in [32], method in [38],
IPFCN-S, IPFCN-D, PSRNN and MSCNN [34] achieve
average 0.7%, 1.3%, 2.6%, 3.0%, 2.8% and 3.4% BD-rate
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TABLE 4. BD-rate results of different input components combinations.

CFPNN CFPNN
Class only Rec w/o Resi CFPNN
ClassA -3.2% -4.2% -4.6%
ClassB -2.1% -3.2% -4.3%
ClassC -2.3% -3.0% -2.6%
ClassD -1.5% -1.7% -2.0%
ClassE -4.5% -5.0% -6.4%
Overall -2.5% -3.4% -3.8%

reduction, respectively. By contrast, the coding performance
improvement of our scheme is 3.8%. The most related work
of CFPNN is the method in [38], which also utilizes the
IntraBC information. However, they just directly add the
IntraBC predictor and the prediction generated by neighbor-
ing reference as a primary prediction, which is not an efficient
way to utilize the nonlocal information. Our scheme outper-
forms these methods from two aspects. First, we introduce
the other two reference priors to the intra prediction task,
and these input priors are combined more efficiently with
neighboring references by channel-wise attention mecha-
nism. Second, we apply neural networks with different inputs
to blocks with different texture characteristics.

D. ANALYSIS OF DIFFERENT INPUT COMPONENTS
In our proposed CFPNN scheme, in addition to the neigh-
boring multiple L-shape reference lines, we also employ the
other two reference priors — IntraBC predictor and corre-
sponding residual component to generate better intra pre-
diction for complex blocks. To verify the effectiveness of
these two priors, we evaluate the performance of different
input components combinations. Specifically, we test the net-
work with only neighboring references as input and network
without using the residual component. The architecture of
these two networks is composed of the corresponding branch
in Fig.2. It should be noted that when using only neighboring
references as input, the IntraBC related BV information is no
longer transmitted.

Table.4 shows the BD-rate comparison of different input
components combinations. The network with only neigh-
boring reference lines achieves an average 2.5% BD-rate
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FIGURE 6. Rate-distortion curves of some typical sequences.

reduction, which is basically the same as IPFCN-S in [33],
in which the neighboring reference lines are combined with
fully-connected layer instead of convolutional layer. The net-
work using IntraBC prior helps to save an additional 0.9%
BD-rate compared with only using neighboring reference
lines. This is because the IntraBC predictor can introduce
additional nonlocal information to generate a better predic-
tion for complex blocks together with local information.
The CFPNN with both priors achieves the best performance,
which demonstrates that the unique characteristics contained
in the residual prior is also helpful to enhance the quality of
generated prediction.

E. COMPUTATIONAL COMPLEXITY

We summarize the computational complexity of our proposed
scheme compared with HEVC anchor in Table.5, which is
indicated by the encoding and decoding time. Both the neural
network forward operation and the other operations of the
codec are conducted on CPU. The encoding time increasing
of our method is 4972% on average, and decoding time
increasing is 19204%. At the encoder, our proposed neural
network intra prediction is selected by the RDO against the
original HEVC intra prediction. The time-consuming forward
operation of the neural network is the main reason for encod-
ing time increasing. Although the input IntraBC prior needed
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TABLE 5. Computational complexity and BD-rate comparison.

BD-Rate of Al Time Complexity

Method Y U % EncT | DecT

IPECN | 3.0% | -1.5% | -1.6% | 1745% | 12347%
CFPNN-U | -32% | -18% | -2.0% | 2617% | 16003%

CFPNN | 4.1% | 2.0% | 2.0% | 4972% | 19204%

to be searched at the encoder, we have taken a trade-off
between the IntraBC prediction accuracy and the computa-
tional complexity by limiting the search range of IntraBC
based on (5). At the decoder, a CU level flag is first decoded
to indicate whether CFPNN is selected as the intra prediction
method. If CFPNN is used, the corresponding neural network
model will be deployed. The time increasing of the decoder
mainly depends on the ratio of CUs that selected CFPNN as
intra prediction method.

Another reason for the increased complexity is that we
apply different types of neural networks to blocks with dif-
ferent characteristics. Two RDO processes are conducted at
encoder to determine whether learning based intra prediction
is used and which type of neural network is used. In the
CFPNN-U scenario, all blocks use the uniform type of neural
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TABLE 6. BD-rate comparison under different QP settings.

Class Sequence SmallQP | standardQP | LargeQP
Tango -2.1% -6.8% -7.3%

Drums100 -1.6% -3.6% -5.5%

ClassAl I pfircParty 1.3% 3.1% 4.6%
ToddlerFountain -2.1% -3.0% -3.6%
CatRobot -2.1% -5.1% -5.5%
TrafficFlow -2.0% -6.8% -7.6%

ClassA2 T VlightRoad 2.0% 5.5% 7.2%
Rollercoaster -2.9% -5.0% -5.1%

Traffic -1.8% -4.1% -5.3%

ClassA PeopleOnStreet -2.2% -5.0% -6.7%
Kimono -1.7% -2.7% -2.6%

ParkScene -1.5% -3.1% -3.2%

ClassB Cactus -1.7% -5.0% -7.5%
BasketballDrive -2.2% -5.2% -6.9%
BQTerrace -2.0% -5.2% -9.5%
BasketballDrill -1.3% -3.4% -4.6%
BQMall -1.0% -2.2% -4.3%

ClassC PartyScene -0.6% -1.7% -4.3%
RaceHorsesC -1.7% -2.9% -4.4%
BasketballPass -1.0% -1.7% -4.2%
BQSquare -0.8% -1.2% -3.2%

ClassD 75, ingBubbles | -0.6% 1.8% 2.7%
RaceHorses -1.6% -3.3% -5.2%
FourPeople -2.6% -5.6% -6.9%

ClassE Johnny -2.1% -1.5% -71.9%
KristenAndSara -2.1% -6.1% -8.8%
ClassAl -1.8% -4.1% -5.3%

ClassA2 -2.3% -5.6% -6.4%

ClassA -2.0% -4.6% -6.0%

Average ClassB -1.8% -4.3% -6.0%
ClassC -1.1% -2.6% -4.4%

ClassD -1.0% -2.0% -3.8%

ClassE -2.3% -6.4% -7.9%

Overall -1.7% -4.1% -5.6%

network, and only take one RDO process to select the best
intra prediction method. The average time complexity of this
scheme is also summarized in Table.5. It can be observed
that the time complexity is reduced at the cost of reduction
of performance increasing. In addition, the computational
complexity of CFPNN-U is higher than IPFCN in [33], since
the network structure is more complicated.

F. EXPLORATION ON DIFFERENT QP SETTINGS
In our proposed scheme, the codec with different QPs shares
the same CFPNN model trained with mixed training data
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TABLE 7. Usage ratio of CFPNN for different QPs.

Class QP22 QP27 QP32 QP37
ClassAl | 48.05% | 48.65% | 50.85% | 50.38%
ClassA2 | 46.75% | 51.93% | 53.12% | 52.95%

ClassA | 42.71% | 52.13% | 57.93% | 59.17%
ClassB 4297% | 51.15% | 55.82% | 56.31%
ClassC 29.93% | 36.29% | 43.37% | 46.79%
ClassD 28.57% | 33.17% | 35.13% | 42.82%
ClassE 40.22% | 46.59% | 49.41% | 50.45%
Overall | 39.89% | 45.70% | 49.38% | 51.27%

generated under standard QP setting — {22, 27, 32, 37}. To
validate the generalization ability of our method, we further
evaluate the coding performance under small QP setting —
{11, 16, 21, 26} and large QP setting — {33, 38, 43, 48}. The
coding performance of the luma component is summarized
in Table. 6. The average BD-rate reduction under small QP
setting and large QP setting is 1.7% and 5.6%, respectively.
Generally, small QP setting results in high bitrate while
large QP setting results in low bitrate. It can be observed
that the performance improvement at low bitrate case is more
significant than the BD-rate reduction at high bitrate case. In
the case of low bitrate, the single neighboring reconstructed
reference line used by the original intra prediction method
always suffer severe distortions, resulting in inaccurate pre-
diction. By contrast, our method uses more local information
and nonlocal information, which are helpful to generate a bet-
ter prediction. The percentage of CUs choosing the proposed
learning-based method is much higher at low bitrate case.

G. EVALUATION OF RDO USAGE RATIO

In our proposed scheme, the CU level flag is enabled to
indicate whether the learning based intra prediction method
is used for all TUs in this CU. We calculate the usage ratio
of CFPNN to further clarify the effectiveness of our method.
The usage ratio is defined as the ratio of total areas of all CUs
that choosing learning based intra prediction to the area of the
entire frame as (7):

Zfi | Wi X hj

T T wxH @

where W and H are the width and height of the frame. N is
the total number of CUs choosing proposed scheme, w; and
h; is the corresponding width and height of CU, which is 8§,
16, 32.

Table.7 summarizes the average usage ratio of each class
for 4 different QPs under Al configuration. With the increase
of QP, the average usage ratio also increases. This is consis-
tent with previous BD-rate performance. The BD-rate reduc-
tion at large QP range (low bitrate) is relatively high, while the
average usage ratio of the proposed learning based method is
also high.
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V. CONCLUSION

In this paper, we propose a Current Frame Priors assisted
Neural Network (CFPNN) for intra prediction of video cod-
ing. In our proposed method, we also use the neighboring
multiple L-shape reference lines of the current block, which
containing rich local contextual information as the primitive
inference source. In addition to the neighboring reference
lines, we introduce the other two reference priors within
the current frame — the best matching predictor searched
by IntraBC and the corresponding residual component to
make use of the nonlocal correlation and the unique texture
information contained in the residual component. The net-
work architecture is carefully designed to extract features
from these input components simultaneously and fuse them
efficiently. We also investigate different schemes when inte-
grating the proposed CFPNN into the codec. Compared with
the HEVC reference software, our proposed learning based
intra prediction method achieves an average of 4.1% BD-rate
reduction under All Intra configuration.
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