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ABSTRACT In this paper, we derive the sufficient and necessary stability conditions for rolling missiles with
velocity orientation autopilot. For themathematical derivation, linear time-invariantmathematicalmodels are
established. Structures of the velocity orientation autopilot for nonrolling and rolling missiles are introduced.
In addition, the effects of the autopilot structure and parameters on stability are discussed. Furthermore,
methods associated with actuator dynamics, static stability and decoupling are presented to improve the
stability of rolling missiles. Numerical simulations are conducted to verify the accuracy of the discussion.
It is demonstrated that the stability conditions can guide rolling missile velocity orientation autopilot design
for the stabilization of the flight of rolling missiles.

INDEX TERMS Rolling missile, coning motion, velocity orientation autopilot, dynamic stability, stability
improving methods.

NOTATION
Symbol Definition (Unit)
Jz lateral moment of inertial(kg • m2)
Jx longitudinal moment of inertial(kg • m2)
q dynamic pressure(N/m2)
sref reference area(m2)
l reference length(m)
d airframe diameter(m)
m mass of missile(kg)
V scalar velocity(m/s)
P thrust force(N )
θc flight-path angle command(rad)
ψVc heading angle command(rad)
θ flight-path angle(rad)
ψV heading angle(rad)
kz gain of velocity angle position feedback(−)
kω gain of attitude angular rate feedback(−)
ey, ez angle error(rad)
δyc, δzc deflection command(rad)
ϑ pitch angle(rad)
γ roll angle(rad)
Mα
z derivative of static moment coefficient(−)
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Symbol Definition (Unit)
Mβ
z derivative of Magnus moment coefficient(−)

Mωz
z derivative of damping moment coefficient(−)

M δz
z derivative of control moment coefficient(−)
cαy derivative of lift coefficient(−)

cβy derivative of Magnus force coefficient(−)
γd total deviation angle of control system(rad)
γc steady-state deviation angle(rad)
τ time delay of command transmission(s)
kr equivalent dynamic gain(−)
ks gain of actuator(−)
Ts time constant of actuator(s)
µs damping ratio of actuator(−)
δ complex deflection angle(−)
αC complex angle of attack(−)
δy, δz deflection in nonrolling coordinate system

(rad)
ψ yaw angle(rad)

I. INTRODUCTION
Velocity orientation autopilot is a typical autopilot that
can improve the damping characteristics and increase the
stability and interference rejection capability of missiles.
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Due to its simple and easy-to-implement structure, many
guided weapons have utilized this type of autopilot for
extended range and realization of body pursuit guidance.
In manual control systems, velocity orientation autopilot is
often used to control the velocity orientation of missiles to
be straight [1]. Usually, missiles with velocity orientation
autopilot are employed for attacking static and low-speed
targets, and some gliding missiles need to use a veloc-
ity orientation autopilot to achieve speed tracking during
the gliding phase under the velocity pursuit guidance law
[2]–[4]. Most of the missiles are designed to roll during
flight to decrease hitting dispersion. The stability conditions
and design methods of missiles with velocity orientation
autopilot are discussed based on the assumption that the two
perpendicular control channels (i.e., pitching and yawing)
of the missiles can be separated [5]–[7]. The results are
effective in nonrolling cases. However, for rolling missiles,
the rolling of the airframe induces cross-coupling effects,
which may worsen the stability of the velocity orienta-
tion autopilot. Therefore, the stability conditions based on
the separation assumption are no longer valid in rolling
cases.

For rolling missiles, most studies on the dynamic stability
of the coning motion have been devoted to uncontrolled mis-
siles [8]–[10]. In a paper by Mracek et al., it was pointed out
that rolling of the airframe affects both the response and the
stability of the autopilot [11]. The influence of cross-coupling
effects on the stability of missiles has been widely investi-
gated [12]–[17]. Garnell found that a phase lag in the actu-
ators appeared near the rolling frequency of missiles. The
frequency method was utilized in further analysis to reveal
the impacts on the autopilot’s stability conditions [5]. For
rolling missiles with a rate loop and an attitude autopilot,
Yan et al. proposed suitable design conditions that can sta-
bilize the coning motion to guide autopilot design [18], [19].
Similar studies on rolling missiles with acceleration autopilot
were performed by Li et al., and sufficient and necessary
conditions were proposed [20]. However,limited studies have
pay attention on the stability conditions of the coning motion
of rolling missiles with velocity orientation autopilot which
is commonly used. Therefore, it is crucial to analyze the
stability conditions of autopilot for these cases and to find
the autopilot design parameter boundaries to guarantee flight
stability.

Motivated by the previously mentioned works, this paper
proposes the stability criterion of the velocity orientation
autopilot of a rolling missile. The main contributions and
innovations are summarized as follows:
• The sufficient and necessary condition for the stability

of a spinning missile with the velocity orientation autopilot is
proposed analytically using a complex summation method.
• Case studies and comparison between a rolling frame

and nonrolling frame show that the rolling frame narrows the
stable region.
• Considering the existence of coupling, this paper ana-

lyzes the dynamic of an actuator and the influence of missile

static parameters and further proposes a practical leading
angel decoupling method.

The remainder of this paper is arranged as follows: In
Section II, the mathematical model of the velocity orienta-
tion autopilot is formulated. In Section III, the structure of
the velocity orientation autopilot in the pitching channel is
illustrated, stability conditions are obtained, and numerical
simulations are conducted to verify the validity of the con-
ditions. In Section IV, methods associated with the actua-
tor dynamics, static stability and decoupling are introduced.
The simulation results demonstrate the effectiveness of the
decoupling method and robustness of the designed autopilot.
Conclusions are presented in Section V.

II. MATHEMATICAL MODEL
A. COORDINATE SYSTEMS
To describe the airframe motion equations, we introduce four
relevant coordinate systems: datum coordinate systems, body
coordinate systems, nonspinning body coordinate systems,
and velocity coordinate systems. The definitions of these
coordinate systems are given as follows [21]:

The datum coordinate system Ox0y0z0 is assumed to be
an inertial coordinate frame and the body coordinate system
Oxbybzb is a spinning frame and fixes the missile. As shown
in Fig. 1, the nonspinning body coordinate systemOxnbynbznb
can be obtained by sequentially rotating Ox0y0z0 by angles ϑ
and ψ . And Oxbybzb can be obtained by rotating Oxnbynbznb
by the angle γ about x-axis. The matrix for transforming
Ox0y0z0 to Oxnbynbznb is

Rnb0 = R(ψ)R(ϑ)

=

 cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ

 cosϑ sinϑ 0
− sinϑ cosϑ 0

0 0 1


=

 cosψ cosϑ cosψ sinϑ − sinψ
− sinϑ cosϑ 0

sinψ cosϑ sinψ sinϑ cosψ

 (1)

FIGURE 1. Relative angle between the datum coordinate system and
nonspinning body coordinate system.
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FIGURE 2. Relative angle between the datum coordinate system and the
velocity coordinate system.

For the velocity coordinate system Oxvyvzv, Oxv aligns
with the velocity vector, as shown in Fig. 2. Oxvyvzv can be
obtained by rotating Ox0y0z0 by angles θ and ψV in the same
way as in the definition of the nonspinning body coordinate
system. The matrix for transforming Ox0y0z0 to Oxvyvzv is

Rvel0 = R(ψV )R(θ )

=

 cosψV 0 − sinψV
0 1 0

sinψV 0 cosψV

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


=

 cosψV cos θ cosψV sin θ − sinψV
− sin θ cos θ 0

sinψV cos θ sinψV sin θ cosψV

 (2)

Note that Oxvyvzv can be transformed into Oxnbynbznb by
rotating a particular angle around the z-axis and a particular
angle around the subsequent y-axis, as depicted in Fig. 3 [22].
where αT is the total angle of attack and α and β are
the nonspinning angle of attack and nonspinning sideslip
angle, respectively. The matrix for transforming Oxvyvzv to
Oxnbynbznb is

Rnbvel = R(β)R(α)

=

 cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

 cosα sinα 0
− sinα cosα 0

0 0 1


=

 cosβ cosα cosβ sinα − sinβ
− sinα cosα 0

sinβ cosα sinβ sinα cosβ

 (3)

B. AERODYNAMICS OF THE MISSILE BODY
As previously stated, the missile involved in this paper has an
axisymmetric aerodynamic configuration. Without a loss of
generality, the derivative coefficients of the yawing channel
are replaced by that of the pitching channel to simplify the

FIGURE 3. Relative angle between the body coordinate system and the
velocity vector.

expression of the airframe motion equations. According to
Garnell [2], assuming that the velocity and rolling rate remain
constant over a short interval in the flight and neglecting some
small forces and moments, the dynamic equations of rolling
missiles can be written in the nonspinning body frame as:

d2ϑ
dt2
=
Mα
z

Jz
α +

Mβ
z

Jz
β +

Jx
Jz
ωx
dψ
dt
+
Mωz
z

Jz

dϑ
dt
+
M δz
z

Jz
δz

d2ψ
dt2
=
Mα
z

Jz
β +

Mβ
z

Jz
α −

Jx
Jz
ωx
dϑ
dt
+
Mωz
z

Jz

dψ
dt
+
M δz
z

Jz
δy

dθ
dt
=
P+ Y α

mV
α +

Y β

mV
β

dψV
dt
=
P+ Y α

mV
β −

Y β

mV
α

α = ϑ − θ

β = ψ − ψV

(4)

With the linearization of the coefficients of the aerody-
namic forces and moments, a more concise expression of the
airframe motion equation can be obtained as

ϑ̈ = −aLα − aMβ + aGψ̇ − aωϑ̇ − aδδz
ψ̈ = −aLβ + aMα − aGϑ̇ − aωψ̇ − aδδy
θ̇ = bLα + bMβ
ψ̇V = bLβ − bMα
α = ϑ − θ

β = ψ − ψV

(5)

where aL = −
Mα
z
Jz
= −mαz

qsref l
Jz

, aM = −
Mβ
z
Jz
=

−mβz
qsref l
Jz

(
ωd
V

)
, aG =

Jx
Jz
ω, aω = −

Mωz
z
Jz
= −mωzz

qsref l
Jz

( l
V

)
.

aδ = −
M δz
z
Jz
= −mδzz

qsref l
Jz

, bL = P+Y α
mV = cαy

qsref
mV +

P
mV ,

bM = Y β
mV = −c

β
y
qsref
mV

(
ωd
V

)
and ω = γ̇ .
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With the definition of complex variables αC = β + iα and
δ = δy+ iδz, the linearized angular motion of rolling missiles
can be obtained as

α̈C =

[
− (aL + aGbM + aωbL)
−i (aM − aGbL + aωbM )

]
αC − (aω − iaG) α̇C

− (bL + ibM ) α̇C − aδδ (6)

This equation defines a complex differential equation
between complex canard deflection and complex angles of
attack.

C. DYNAMICS OF THE ACTUATORS
In this paper, the dynamics of the actuators that we utilized
are modeled as a second-order transfer function.

δa

δc
=

ks
T 2
s s2 + 2µsTss+ 1

(7)

where Ts is the time constant of the actuators, µs is the
damping ratio, and ks is the gain. The time constant is limited
by the hardware and the costs.

The airframe of a nonspinning missile does not rotate
continuously. Both the inertia sensors and the servo work
in the same reference coordinate system (body coordinate
system). Therefore, there is no need to consider the coordi-
nate transformation between the feedback information and
the command when analyzing the autopilot. The desired gain
can be obtained by conventional root locus or frequency
approaches.

Generally, for a nonrolling missile, the actuators and
autopilot work in the same reference coordinate system (body
coordinate system). However, when the missile is rolling,
the actuators work in the body coordinate system, while the
autopilot functions in the nonrolling body coordinate system.
Because of the difference in the reference coordinate systems,
control cross-coupling between two channels is induced by
the rolling of the airframe. The projection of the responses
of the actuators from the body coordinates to the nonrolling
body coordinates shows that the control cross-coupling leads
to a deviation in the equivalent control forces and a decrease
in the efficiency of the actuators. These two effects can be
shown as the steady-state deviation angle and equivalent
dynamic gain.

The steady-state deviation angle of the actuators in the non-
rolling body coordinates of a rolling missile can be expressed
as follows:

γc = arccos
1− T 2

s ω
2√(

1− T 2
s ω

2
)2
+ (2µsTsω)2

(8)

The equivalent dynamic gain of the actuators in the non-
rolling body coordinates of a rolling missile can be expressed
as

kr =
1√(

1− T 2
s ω

2
)2
+ (2µsTsω)2

(9)

In addition, the existence of command transmission
delay τ , which can be easily identified by experiments, can

FIGURE 4. Total deviation angle.

lead to a deviation angle equal to τω. For the actuators of
a self-rolling missile, the total deviation angle γd equals
(γc + τω), as illustrated in Fig. 4.

As the same actuators are employed in the two control
channels, the outputs of the actuators can be obtained as[

δz
δy

]
= kskr

[
cos γd sin γd
− sin γd cos γd

] [
δzc
δyc

]
(10)

where δzc and δyc are the commands of the actuators in
pitching and yawing, respectively.

With the definition of δc = δyc + iδzc as the complex
command of the actuator, expression (10) can be rewritten
as

δ = kskr
(
−δzc sin γd + δyc cos γd

)
+ ikskr

(
δzc cos γd + δyc sin γd

)
= kskr (cos γd + i sin γd ) δc (11)

III. STABILITY ANALYSIS OF MISSILES WITH VELOCITY
ORIENTATION AUTOPILOT
A. FOR NONROLLING MISSILES
A typical velocity orientation autopilot mainly consists of
attitude angular rate feedback and velocity angle position
feedback. The block diagram of the velocity orientation
autopilot in pitching based on the established mathematical
model is presented in Fig. 5.

FIGURE 5. Velocity orientation autopilot for nonrolling missiles.

From Fig. 5, the expressions of the missile motions can be
obtained in the form of a transfer function

ϑ̇(s)
δz(s)

=
−aδ (s+ bL)

s2 + (bL + aω) s+ (aL + bLaω)
(12)
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and
θ (s)

ϑ̇(s)
=

bL
s (s+ bL)

(13)

FromFig. 5, the structure of the velocity orientation autopi-
lot can be separated into an inner loop, i.e., an attitude angular
rate feedback loop, and an outer loop, i.e., a velocity angle
position feedback loop, and the stability condition of the total
closed loop system can be converted to the corresponding
subsystem.

Initially, disregarding the dynamic process in this system,
i.e., considering only the steady state [20], the closed-loop
transfer function of the velocity orientation autopilot can be
obtained as

θ (s)
θc(s)

,
N1

M1
N1 = −bLkzksas

M1 = s3 +
(
bL + aω
−kskωaδ

)
s2 +

(
aL + aωbL
−bLkωksaδ

)
s

− bLkzksaδ (14)

Based on the Routh-Hurwitz criterion, the stability condi-
tions yield

bL + aω − kskωaδ > 0
aL + aωbL − bLkskωaδ > 0
−bLkzksaδ > 0(
(bL + aω − kskωaδ) (aL + aωbL − bLkskωaδ)
+bLkzksaδ

)
> 0

(15)

According to the definition, the coefficients bL and aω are
positive and aδ is negative for missiles with canard configu-
rations. As a result, the first and third inequalities in Eq. (15)
always hold true. The stability conditions can be simplified
as
aL + aωbL − bLkskωaδ > 0(
(bL + aω − kskωaδ) (aL + aωbL − bLkskωaδ)
+bLkzksaδ

)
> 0

(16)

Therefore, the stability conditions of the velocity orien-
tation autopilot is general. The stability conditions under
different circumstances is discussed as follows:

1) CASE WITH ONLY THE INNER LOOP
In this case, we disregard the gain of the outer loop (velocity
angle position feedback loop) of the autopilot, i.e., the gain
of the outer loop is 0. Therefore, the stability conditions for
the inner loop (attitude angular rate feedback loop) can be
formulated as{

aL + aωbL − bLkskωaδ > 0

(bL + aω − kskωaδ) (aL + aωbL − bLkskωaδ) > 0
(17)

that is,

kω > − (aL + aωbL) /− bLkskωaδ (18)

For a static stable missile, aL > 0, and the lower limit of
the gain of the rate feedback is kω > 0. However, for static
unstable missiles, aL < 0. Considering the case of |aL | >
aωbL , the lower limit of the gain of the rate feedback is kω >
− (aL + aωbL) / (−bLkskωaδ), which means that a kω larger
than that of a static stable missile is needed to stabilize a static
unstable missile. Therefore, the static stability of the missile
has many effects on the stability of the velocity orientation
autopilot.

2) CASE WITH ONLY THE OUTER LOOP
Disregarding the inner loop, i.e., kω is 0, we can obtain the
conditions for the outer loop.{

aL + aωbL > 0
aL + aωbL > −bLkzksaδ/ (bL + aω)

(19)

The existence of the outer loop tends to degrade the stabil-
ity of the autopilot and is unable to stabilize a static unstable
missile solely by the outer loop. Hence, the inner loop is nec-
essary to stabilize a velocity orientation autopilot regardless
of whether the missile is statically stable.

B. FOR SELF-ROLLING MISSILES
In this subsection, velocity orientation autopilot is applied in
both the pitching channel and the yawing channel. The rolling
of missiles induces cross-coupling and degrades the stabil-
ity of the autopilot and can even cause autopilot instability.
Therefore, to ensure the stability of the designed autopilot,
it is better to consider the two control channels as an inte-
gral control system and to analyze the stability conditions.
The block diagram of the integral control system is shown
in Fig. 6.

According to the structure of the autopilot shown in Fig. 6,
the error signals in the pitching and yawing channels can be
expressed as[

ez
ey

]
=

[
kzθc − kzθ − kωϑ̇
kz (−ψVc)+ kzψV + kωψ̇

]
(20)

For missiles with canard configurations, to produce posi-
tive α, the deflection of the control surface in pitching should
be positive. A negative deflection of the control surface in
yawing is needed to produce a negative β. Hence, the com-
mands of the control surfaces can be described as[

δzc
δyc

]
=

[
1 0
0 −1

] [
ez
ey

]
=

[
kzθc − kzθ − kωϑ̇
−kz (−ψVc)− kzψV − kωψ̇

]
(21)

Remark 1: To further illustrate the effect of the rolling
frame, similar to the last section, the response delay of the
actuator is neglected.

For a linear time-invariant system, the stability is free from
the impact of input signals. As a result, the input signals θc
and ψVc can be set to zero in the stability analysis. With the
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FIGURE 6. Structure of the velocity orientation autopilot for a rolling missile.

definition of φ = ψV + iθ , expression (21) can be simplified
and rewritten as

δc = δyc + iδzc = −kzφ − kω (bL + ibM ) αC − kωα̇C (22)

Substituting (22) into (11), the following equation can be
obtained:

δ = kskr (cos γd + i sin γd )
(
−kzφ − kω (bL + ibM ) αC
−kωα̇C

)
(23)

By substituting (23) into (6), the following equation can be
obtained:(

α̈C + (M1 + iN1) α̇C + (M2 + iN2) αC
−aδkskr (cos γd + i sin γd ) kzφ

)
= 0 (24)

where

M1 + iN1

= aω + bL − aδkskrkω cos γd + i
(
bM − aG
−aδkskrkω sin γd

)
(25)

M2 + iN2

= (aL + aGbM+aωbL)−aδkskrkω (bL cos γd − bM sin γd )

+ i
[
(aM − aGbL + aωbM )
−aδkskrkω (bM cos γd + bL sin γd )

]
(26)

x =
[
φ αC α̇C

]T is defined as the state vector, and the state
equation of the velocity orientation autopilot can be presented
as

ẋ =

 0 bL + ibM 0
0 0 1
x31 − (M2 + iN2) − (M1 + iN1)

 x (27)

where x31 = aδkskr (cos γd + i sin γd ) kz.

The characteristic equation can be written as:

λ3 + (M1 + iN1) λ
2
+ (M2 + iN2) λ+ (M3 + iN3) = 0

(28)

where

M3 + iN3 = −aδkskr (cos γd + i sin γd ) kz (bL + ibM )

= −aδkskrkz (bL cos γd − bM sin γd )

− iaδkskrkz (bM cos γd + bL sin γd ) (29)

For a system with a characteristic equation, such as
Eq. (29), the stability conditions of the system can be
expressed by its coefficients. The following theorem gives
specific expressions.
Theorem 1: For a third-order linear characteristic equation

with complex coefficients of form,

λ3 + (a1 + jb1) λ2 + (a2 + jb2) λ+ a3 + jb3 = 0 (30)

where a1, b1, a2, b2, a3, b3 ∈ R, and the necessary and
sufficient stability conditions of the system are

a1 > 0
a21a2 − a1a3 + a1b1b2 − b

2
2 > 0(

a21a2 − a1a3 + a1b1b2 − b
2
2

) (
a1a2a3 − a23 + a1b2b3

)
−

(
a21b3 − a1a3b1 + a3b2

)2
> 0

(31)

Proof can be found in [23].
Therefore, with the system characteristic equation Eq. (28),

the stability conditions of the velocity orientation autopilot
can be expressed as

M1 > 0
M2

1M2 −M1M3 +M1N1N2 − N 2
2 > 0

P1P2 − P23 > 0

(32)
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where 
P1 = M2

1M2 −M1M3 +M1N1N2 − N 2
2

P2 = M1M2M3 −M2
3 +M1N2N3

P3 = M2
1N3 −M1M3N1 +M3N2

According to the definitions of (25), (26) and (29), the sta-
bility conditions can be expressed in a specific form. The first
inequality is

aω + bL − aδkskrkω cos γd > 0 (33)

When γd > π/2, the value of cos γd is negative. Thus,
the condition can be expressed as

kω <
aω + bL

aδkskr cos γd

It is indicated that the gain kω for the inner loop has an
upper limit of the total deviation angle γd > π/2. The upper
limit is usually small, as the coefficient of damping moment
aω and coefficient of lift bL are small. When 0 < γd < π/2,
the first inequality is always satisfied as cos γd > 0, bL >
0 and aω > 0. Hence, in general, the total deviation angle
should be kept underπ/2. In the next discussion, it is assumed
that the total deviation angle 0 < γd < π/2. The stability
of the autopilot and stable region under a rolling frame are
discussed as follows:

Considering only the inner loop of the autopilot, M3 =

N3 = 0, and the stability conditions can be obtained as{
M1 > 0
M2

1M2 +M1N1N2 > N 2
2

(34)

Based on the assumption of 0 < γd < π/2, the first
inequality always holds true, so the stability conditions can
be rewritten as

M1M2 + N1N2 > N 2
2 /M1 (35)

As the Magnus force and gyroscopic moment are small,
both can be neglected; so bM = 0 and aG = 0. The specific
expression of the stability conditions of the inner loop is
obtained as Eq. (36), shown at the bottom of the page.

Disregarding the effects of the actuator, which means that
kr = 1 and γd = 0, the condition can be presented as Eq. (37),
shown at the bottom of the page.

Comparing this expression with Eq. (17), it is clear that the
Magnus effect shrinks the stable region of the gain of the inner
loop. With the effects of the actuators, the reduction in the
stable region is large. All these effects derive from the rolling
of themissile body, so the impact of rolling on stability should
be considered in the design of an autopilot.

In the previous discussion, the influence of rolling on the
stability of the autopilot are revealed. However, due to the
complex expressions, it is hard for us to conduct further
discussion bymeans of simplification. Fortunately, numerical
methods can be employed to continue this work.

The parameters of the rolling missile are given in
TABLE 1. Through numerical simulation, we can obtain the
stable region at the rolling rate ω = 8π rad/s, as shown
in Fig. 7.

TABLE 1. Parameters of the rolling missile.

FIGURE 7. Stable region obtained from the stability conditions.

Fig. 7 illustrates the stable region of the autopilot design
parameters; this region is determined with the stability con-
ditions obtained with the proposed method. From Fig. 7,
it can be seen that the stable region has only a lower limit.
As kz increases, the critical value of kω increases and then
gradually slows, which means that the stability of the autopi-
lot decreases with an increase in kz and requires a larger
inner loop gain to maintain stability. With an increase in kω,
the stability of the autopilot is improved. Obviously, these
conclusions match those of the nonrolling case.

To check the accuracy of the stability conditions in an
intuitive way, numerical simulations are conducted based
on the mathematical model in Eq. (5). With kz = 12.5,
the critical value of kω = 0.086 is calculated atω = 8πrad/s.

(aω + bL − aδkskrkω cos γd ) (aL + aωbL − aδbLkskrkω cos γd )+ (−aδkskrkω sin γd ) (aM − aδbLkskrkω sin γd )

> (aM + bL (−aδkrks) kω sin γd )2 / (aω + bL + (−aδkrks) kω cos γd ) (36)

(aω + bL − kskωaδ) (aL + aωbL − bLkskωaδ) > (aM )2 / (aω + bL + (−aδks) kω) (37)
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FIGURE 8. Response curves with design parameters inside the stable region (Kz = 12.5, kω = 0.15).

FIGURE 9. Response curves with design parameters on the stable boundary (Kz = 12.5, kω = 0.086).

FIGURE 10. Response curves with design parameters beyond the stable region (Kz = 12.5, kω = 0.08).

In addition, kω = 0.15 and kω = 0.08 are selected for
the stable cases and unstable cases, respectively. Numerical
simulations are conducted with an initial angle of attack error
α0 = 4◦. The simulation results are shown in Fig. 8, Fig. 9
and Fig. 10.
The simulation results illustrated in Fig. 8 are simulated

at kω = 0.15. According to the simulation results, in the
stable case, the influence of the initial disturbance acting

on the autopilot can be eliminated. Fig. 9 presents the sim-
ulation results at kω = 0.086, which is a gain located in
the stability boundary. The motion of the airframe enters
a limit-cycle state and never converges to the zero point.
Fig. 10 shows the simulation results at kω = 0.08, which
is an unstable gain of the rolling missile, and the motion of
the airframe diverges gradually. Consequently, the simulation
results demonstrate that the stability conditions we achieve
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for the velocity orientation autopilot can correctly reflect the
stability of the designed autopilot.

IV. METHODS TO IMPROVE STABILITY
From this discussion, it can be seen that the rolling of a
missile has a significant influence on the stability of the
velocity orientation autopilot. With rolling of the airframe,
the Magnus effect and gyroscopic effect occur. Additionally,
the steady-state gain of the actuator decreases, and the control
response direction of the actuator deviates from expectation.
As a result, the stability and accuracy of the autopilot is highly
degraded. Hence, some feasible measures for suppressing the
impacts of rolling are presented.

A. ACTUATOR DYNAMICS
As an airframe rolls, the distinct changes in the expressions of
the stability conditions are represented by the appearance of
the parameters associated with theMagnus effect, gyroscopic
effect and actuator dynamics.

TheMagnus effect and gyroscopic effect aremainly related
to the aerodynamic shape and rolling rate. The shape of
the missile is already determined before the control system
design, so it is more feasible to adjust the rolling rate to
change the magnitudes of these effects. The rolling rate is
usually a trade-off under many constraints. Many articles
have explored this problem, and thus, it is not included in this
paper.

For actuator dynamics, as previously stated, the rolling of
the missile decreases the dynamic gain of the actuator and
leads to a deviation in the control responses. These changes
decrease the stability and accuracy of the autopilot.

As stated in Section II, the equivalent dynamic gain of the
actuator is expressed as

kr =
1√(

1− T 2
s ω

2
)2
+ (2µsTsω)2

(38)

From the expression, it can be seen that kr ≤ 1 decreases
with an increase in the rolling rate and the time constant of the
actuator Ts. The steady-state deviation angleγc is expressed as

γc = arccos
1− T 2

s ω
2√(

1− T 2
s ω

2
)2
+ (2µsTsω)2

(39)

From the expression, it can be seen that the deviation angle
increases with an increase in the rolling rate and actuator time
constant.

In Fig. 11, the curves of the steady-state deviation angle
that vary with the rolling rate are plotted with the determined
actuator parameters. It is shown that with an increase in the
rolling rate, the total delay angle increases. It is obvious that
the time constant of the actuator has the same impacts on the
deviation angle. As the total deviation angle γd = γc + τω,
the total deviation angle is proportional to the command
transmission delay τ .

Referring to the stability conditions, a large dynamic gain
and small total deviation angle are needed to improve stability

FIGURE 11. Steady-state deviation angle up to 35 with the rolling rate.

and accuracy. Based on this analysis, actuators with a small
command transmission delay and small time constant are
reasonable choices for increasing stability.

B. STATIC STABILITY
Static stability describes the capability of a missile to restore
balance from a disturbance in the absence of control. It is
a very important characteristic that is associated with the
stability of missiles and is included in the static moment
coefficient aL . For static stable missiles and static unstable
missiles, aL > 0 and aL < 0, respectively. The absolute value
of aL shows the degree of static stability. From Section II,
the expression of the static moment coefficient is described
as

aL = −mαz
qSref l
Jz

(40)

where mαz is the derivative of the static moment coefficient,
which is related to the positions of the mass center and
pressure center and lift. Through the adjustment of the relative
positions of the mass center and pressure center, the coeffi-
cient can be changed.

To demonstrate the influence of the static moment coef-
ficient on the stability of rolling missiles, numerical sim-
ulations based on the stability conditions in Eq. (32) are
conducted with rolling rate conditions of ω = 8π rad/s
and derivatives of the static moment coefficient equal to
−0.6589, −1.3178, and −1.9767. From Fig. 12, it can be
seen that the stable region expands as the static moment
coefficient increases, which means that we can increase the
rolling missile stability by increasing the static stability of
the missile. Additionally, as the value of the static moment
coefficient increases linearly, the increase in the stability
decreases gradually, which means that the efficiency of the
stability improvement approach of increasing the static sta-
bility declines. In practice, static stability is also related to
the maneuverability of the missile, and a large static stability
means that the maneuverability of the missile decreases. As a
result, a large but proper static stability should be chosen
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FIGURE 12. Stable region with different derivatives of the static moment
coefficient.

with consideration of the stability and maneuverability in the
design of missiles.

C. DECOUPLING
From this discussion, it is found that the total deviation angle
affects the stability and accuracy of the velocity orientation
autopilot. With determination of the autopilot parameters,
the total deviation angle can be obtained with a certain accu-
racy. Thus, the decoupling method, which rotates a lead-
ing angle for actuator commands, can be used to improve
stability.

Let the rotating angle be γp. With the decoupling method,
the expression of the command resolution can be described
as[

δz
δy

]
= kskr

[
cos γp − sin γp
sin γp cos γp

] [
cos γd sin γd
− sin γd cos γd

] [
δzc
δyc

]
(41)

This can be rewritten as[
δz
δy

]
= kskr

[
cos

(
γd − γp

)
sin
(
γd − γp

)
− sin

(
γd − γp

)
cos

(
γd − γp

) ] [ δzc
δyc

]
(42)

Comparing equation (42) with (10), the new command
resolution angle is equal to γd − γp. For a missile with a
constant rolling rate, the leading angle can be chosen to be
equal to the total deviation angle so that the new command
resolution angle equals zero. Therefore, the control cross-
couplings caused by the total deviation angle are completely
decoupled. The leading angle is illustrated in Fig. 13.

The proposed decoupling methods for the cross-coupling
of a servo system is validated in Fig. 14. Fig. 14 shows
the step responses of actuators, and Fig. 15 shows the sine
responses of actuators. According to the results, we found that
the proposed lead angle decoupling method can effectively
offset the coupling component, while the pitch channel is

FIGURE 13. Schematic of leading angle.

FIGURE 14. Step response of actuator.

FIGURE 15. Sine wave response of actuator.

given a step signal or sine signal. Considering the missile
aerodynamic model presented in Eq. (5), Fig. 16 and Fig. 17
explain the correctness of the coupled six degrees-of-freedom
mathematical model.

To illustrate the robustness of the velocity orientation
autopilot of a rolling missile, the Monte Carlo simulation is
conducted with consideration for the deviation rolling rate
and uncertain aerodynamic parameters of a missile [22], [24].
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TABLE 2. Comparisons between the critical design parameters of cases with and without decoupling.

FIGURE 16. Step response of missile.

FIGURE 17. Sine wave response of missile.

The result is shown in Fig. 18. We determined that the system
can be kept steady under the effect of interference.

To further verify the effectiveness of the decoupling
method, numerical simulations at different rolling rates are
conducted based on the stability conditions in Eq. (32). The
parameters of the rolling missile are the same as those listed
in TABLE 1. The critical design parameters of the velocity
orientation autopilot with and without the decoupling method
are shown in TABLE 2. TABLE 2 shows that with the decou-
plingmethod applied, the stable region of the autopilot design
parameters extends considerably. Moreover, it is shown that
the stability improves as the gain of the inner loop increases
and worsens as the rolling rate increases, which matches the
analysis results. In practical applications, the leading angle is

FIGURE 18. Monte Carlo simulation.

usually achieved by installing sensors with advanced instal-
lation angles along the rolling direction. However, due to the
absence of roll control autopilot, the rolling rate of the missile
often varies due to disturbances from the environment during
flight, so the total deviation angle changes. In this case, a rate
gyro can be applied to measure the real-time rolling rate and
then compensate for the decoupling. The decoupling method
is effective and easy to apply to improve the dynamic stability.

V. CONCLUSION
In this paper, the sufficient and necessary stability conditions
for rolling missiles with velocity orientation autopilot are
obtained by mathematical derivation. Numerical simulations
are conducted to verify the accuracy of the conditions. The
analysis of the stability conditions indicates that the total
deviation angle of the control system should not exceed 90◦.
If the total deviation angle of the control system exceeds
90◦, the gain of the rate feedback is seriously limited, which
makes it difficult to obtain the desired velocity orientation
autopilot. A comparison between the stability conditions of
rolling missiles and those of nonrolling missiles shows that
the stability of the velocity orientation autopilot is degraded
due to rolling of the airframe. The achieved stability condi-
tions can reflect the effect of rolling on stability. Based on
this discussion, some approaches are introduced to improve
stability. Considering the reduction in stability induced by
the actuator dynamics, actuators with small time constants
(fast response speeds) and short command transmission times
should be employed for rolling missiles. Static stability is
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a very important factor related to stability and the control
system design. Increasing static stability can greatly improve
stability. Considering the control cross-coupling induced by
the total deviation angle, a decoupling method that rotates
the leading angle for actuator commands can be applied to
increase stability. With numerical simulation, the effective-
ness of these approaches is demonstrated. In conclusion,
the stability analysis method and the achieved stability condi-
tions have instructive significance to the engineering design
of the velocity orientation autopilot of rolling missiles. In this
paper,we only consider the dynamic stability of the velocity
orientation autopilot that designed through classical control
theory, for further studies,the dnamic stability of the autopilot
in rolling frame taht designed through modern control the-
ories such as sliding mode control and LQR control theory
can be taken into consider.Moreover,this paper only proposed
a simple decoupling method of setting a lead angle to com-
pensate control coupling,therrfore many advance decoupling
methods like inverse dynamic theory and neural network can
invetigate to eliminate coupling.
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