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ABSTRACT This paper presents a comprehensive review of retinal blood vessel segmentation based on
deep learning. The geometric characteristics of retinal vessels reflect the health status of patients and help
to diagnose some diseases such as diabetes and hypertension. The accurate diagnosis and timing treatment
of these diseases can prevent global blindness of patients. Recently, deep learning algorithms have been
rapidly applied to retinal vessel segmentation due to their higher efficiency and accuracy, when compared
with manual segmentation and other computer-aided diagnosis techniques. In this work, we reviewed recent
publications for retinal vessel segmentation based on deep learning. We surveyed these proposed methods
especially the network architectures and figured out the trend of models. We summarized obstacles and key
aspects for applying deep learning to retinal vessel segmentation and indicated future research directions.
This article will help researchers to construct more advanced and robust models.

INDEX TERMS Retinal vessel segmentation, fundus images, deep learning, convolutional neural network.

I. INTRODUCTION
The fundus retina image is the only deeper microvascular
system that can be observed non-invasively. The retinal vessel
map contains abundant geometric characteristics, such as
vessel diameter, branch angles, and branch lengths. These
geometric characteristics reflect clinical and pathological fea-
tures, which are used to diagnose hypertension, diabetes,
and atherosclerosis [1]–[4]. The ophthalmologist uses reti-
nal blood vessels to diagnose vascular and vascular system
lesions related diseases, which interprets diabetic retinopa-
thy (DR) and diabetic maculopathy (MD). These are the
leading causes of global blindness. Retinal image assessment
has been an indispensable step for the identification of retinal
pathology.

Retinal fundus image illustrates retina structure, such as
retinal blood vessel tree, optic disk (OD), fovea, macula, and
abnormal structures, as shown in Figure 1. The retinal blood
vessel tree is composed of the central retinal artery, vein,
and branches. An abnormality may include microaneurysms
(MAs), haemorrhages, exudates and cotton wool spots [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaojie Ju .

FIGURE 1. Annotated structure of retina [6].

Precise identification and diagnosis of eye abnormalities
and their timely medication are vital in preventing blindness.
Initially, trained experts would manually segment the retinal
blood vessels, but that was an expensive, tedious and time-
consuming process [7]. Moreover, the complexities of the
image cause inconsistency of vessel map segmented by dif-
ferent experts [8], due to the lower contrast between vessels
and backgrounds, uneven illumination, various abnormalities
and variation in vessel width/shape. These facts inspire the
development of automatic retinal vessel segmentation with
minimal human interference.

Several supervised and unsupervised methods are devel-
oped and used to automate the segmentation of retinal
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vessels. Earlier, unsupervised methods are the most com-
mon approach for automatically segmenting the retinal
vessels, which do not rely on any annotation for segmen-
tation [9], [10]. These methods are roughly divided into
matching filter [11]–[13], vascular tracing based segmenta-
tion [14]–[16] and model-based segmentation methods [17].
Unsupervised methods show some defects in their perfor-
mance because they cannot benefit from the hand-labelled
ground truth.

Unlike unsupervised methods, supervised models are
trained by using annotations and can benefit from the ground
truth. Supervised models conduct retinal vessel segmentation
in two stages: feature extraction and pixels classification.
Features can be further divided into handcrafted features or
automatically learned features. In machine learning, the pro-
cess of feature extraction from fundus images is manual,
and some typical classifiers are adopted, such as k-nearest
neighbour classifier (KNN) [18] and support vector machine
(SVM) [19]. Manual feature selection can leverage domain-
knowledge well, but it also lacks generalization ability since
it is application-specific and cannot learn new features auto-
matically [20].

Deep learning, especially convolutional neural networks
(CNNs), has gained much attention for image analy-
sis [21], [22]. Deep learning methods learn features
automatically by using massive data with less human infer-
ence. They have better generalization ability and recog-
nition capability because they can learn different level
patterns automatically and will not be limited by a spe-
cific application. In 2012, Krizhevsky, et al. [23] proposed
AlexNet for image recognition. For image segmentation
and identification, VGGNet [24] and GoogleNet [25] were
introduced. Long, et al. [26] proposed fully convolutional
networks (FCN) for image semantic segmentation, which
made dense predictions in a sliding window fashion and thus
speeded up the segmentation.

Several review articles on retinal blood vessel seg-
mentation have been published [10], [27]–[30]. However,
Mookiah, et al. [10], Khan, et al. [28], Badar, et al. [29],
Li, et al. [30] did not focus on deep learning methods for
vessel segmentation, whereas the techniques discussed in
Soomro, et al. [27] are published several years ago. There-
fore, in this review article, we discussed publications of recent
six years for retinal blood vessel segmentation based on deep
learning.

All the papers were retrieved by conducting iterative and
exhaustive searches in IEEE Xplore, Springer Link and Sci-
enceDirect databases.

We applied the following search command to index terms
of both journal papers and conference papers: ‘‘fundus
image’’ AND (‘‘retinal vessel’’ OR ‘‘retinal blood vessel’’)
AND (‘‘segmentation’’ OR ‘‘extraction’’ OR ‘‘detection’’ OR
‘‘identification’’) AND (‘‘deep learning’’ OR ‘‘convolutional
neural network’’ OR ‘‘CNN’’ OR ‘‘fully convolutional net-
work’’ OR ‘‘FCN’’ OR ‘‘generative adversarial network’’ OR
‘‘GAN’’). We only selected original studies from 2016 that

formulated retinal vessel segmentation as the main task
instead of the intermediate task.

This article is organized as follows. In section II, we dis-
cuss deep learning and convolutional neural networks.
In section III, we introduce the datasets used for retinal vessel
segmentation and performance evaluation metrics for pro-
posed models. In section IV, we analyze the existing models
for retinal segmentation based on deep learning. In section
V, we discuss retinal vessel segmentation according to the
analysis of existing models. Section VI concludes the article
and points out future research directions.

II. OVERVIEW OF DEEP LEARNING
Deep learning models are composed of hierarchically struc-
tured layers which translate input information into a mean-
ingful output. Deep learning has been developed a rich
family since 1990 [31], such as deep neural networks
(DNNs) [31], auto-encoders (AEs) [32] and stacked auto-
encoders (SAEs) [33] neural networks, deep belief network
(DBNs) [34], [35], restricted Boltzmann machines (RBMs)
[36], convolution neural networks (CNNs) [37], recurrent
neural networks (RNNs) [38], [39], generative adversar-
ial networks (GANs) [40] and graphic neural networks
(GNNs) [41].

In this section, we have discussed the most widely used
CNNs architectures for image computer vision tasks.

A. CONVOLUTIONAL NEURAL NETWORKS (CNNS)
Convolutional Neural Networks (CNNs) are inspired by
multi-layered perceptrons (MLPs) and are widely used for
image processing such as classification, segmentation, and
localization. Hubel and Wiesel [42] conducted a first exper-
iment based on CNN, indicated that cells in the cat’s visual
cortex were responsible for detecting light in corresponding
receptive fields. LeCun, et al. [37] proposed another CNN
based network that recognized the handwritten digits. The
network was composed of convolution operation and pooling
operation, trained by the back-propagation algorithm. Later,
LeCun, et al. [43] proposed the LeNet-5 for document recog-
nition. However, these architectures were not widely used
due to the lack of training data and computation power at
that time. Krizhevsky, et al. [23] proposed a powerful deep
CNN for image classification, called AlexNet. Themodel had
significant improvement and outperformed all existing meth-
ods, also won the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [44]. AlexNet architecture is deeper
than LeNet-5 and utilizes the ReLU activation function. Fig-
ure 2 and Figure 3 show the architecture of LeNet-5 and
AlexNet, respectively.

Encouraged by AlexNet, a lot of research has been done
based on CNN architectures. Several applications based on
deeper architectures were proposed to improve the per-
formance. VGG Net [24] was the first to explore much
deeper networks, which stacked small, fixed sized kernels
in each convolution layer. Simonyan and Zisserman [24]
proposed deeper CNNs with different numbers of convolu-
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FIGURE 2. Architecture of the LeNet-5 [43]. C: convolution layer, S:
sub-sampling layer, F: fully connected layer.

FIGURE 3. Architecture of AlexNet [23].

tion layers, such as 13, 16 and 19. Finally, VGG19 with
19 convolutional layers won the ImageNet challenge of 2014.
Szegedy, et al. [25] introduced GoogleNet which contains
22 layers and adopts the Inception module [45].

1) CNN ARCHITECTURE COMPONENTS
CNN architectures are composed of hierarchically structured
layers with optimized parameters. This section will interpret
the main components of a CNN.

a: CONVOLUTIONAL LAYER
Convolutional layer is the main layer in CNNs that extracts
features from input data or feature maps. The convolutional
layer contains several stacked convolution kernels to conduct
convolution operations. In the convolution operation (see
Figure 4), a convolution kernel slides from left to right and
from up to down, and it multiplies with a specific region
of input or feature map elementwise to produce a value,
which is known as feature extraction. The specific region is
called the receptive field. These special regions share kernels,
known as weight sharing which reduces the complexity of the
model and makes the training process easier. Mathematically,
the feature map z generated by convolution kernel can be
expressed as:

z = W ∗ x + b (1)

where x is the input image,W is the convolution kernel, while
b is the bias for the convolution layer.

b: BATCH NORMALIZATION
The input or feature maps generated by convolutional layers
may vary greatly, so for large or small values sent to the acti-
vation function they face a problem of vanishing/exploding
gradients, which hamper the training process [38], [46].
To address this problem, batch normalization [47] is proposed
to accelerate the training process, which scales the input of

FIGURE 4. Convolution operation. Stride=1 and assume bias=0.

activation function and reduces internal covariate shift by
applying normalization operation to each mini-batch. Gen-
erally, batch normalization is performed before the activation
function, but the function can also be used after the activation
function based on application.

c: ACTIVATION FUNCTION
An activation function is a type of mathematical function
that maps input non-linearly, which is applied to improve the
feature representation ability of networks. It often follows
convolutional layers and uses feature maps as input in neural
networks. Sigmoid function [48] is a prevalent option for
activation function, which is defined as:

y = sigmoid (x) =
1

1+ e−x
(2)

where x is the input and y represents the output. The sigmoid
function experiences the vanishing gradient problem for very
large or very small input.

ReLU [49] is another frequently used activation function.
It is expressed as:

y = ReLU (x)= max(x, 0) (3)

where x is the input of ReLU function and y represents its
output. It preserves the positive part in feature maps and
prunes the negative part to 0. ReLU can alleviate the problem
of vanishing gradient since its gradient is 1 when the input is
positive, no matter how large it is.

However, when the input is negative, the output of ReLU
and its gradient is always equal to 0. It can reduce over-
fitting, but it also obstacles CNN architecture to learn in
some cases because of zero i.e. disconnection of neurons.
LeakyReLU (LReLU) was proposed to address the prob-
lem of zero gradients when the input is negative for ReLU
function [50]. It preserves the positive part fully, but it also
preserves the negative part and scales them in a ratio λ (range
0 to 1). It is expressed as:

y = LReLU (x) = max (x, 0)+ λmin(0, x) (4)

when its input is negative, both output and gradient are non-
zero values.

Generally, Softmax function is applied to the final layer as
activation function for the multi-class classification task. It is
expressed as:

y(x)i =
exi∑K
i=1 e

xi
(5)

VOLUME 9, 2021 111987



C. Chen et al.: Retinal Vessel Segmentation Using Deep Learning: A Review

FIGURE 5. Pooling operations, with 2× 2 filter and stride=2.

where x is input vector and xi is its component. K-dimension
output means K-class classification. y(x)i is the output which
means the probability of the input vector is classified into the
ith class.

d: POOLING LAYER
The feature map out of the convolutional layer records the
position of pixels precisely, so it is very sensitive to the loca-
tion of features. The high sensitivity means a small movement
of the position of features, such as rotation and shift, will
lead to a different map, which will decrease the robustness
of CNNs. Usually, a pooling layer with pooling operation is
applied after the convolutional layer to reduce specific feature
positioning reliance and ensure the shift-invariance of CNNs.
At the same time, pooling operations can also reduce the
resolution of feature maps, and then reduce the burden of
computation.

Pooling operations can be categorized asmax-pooling [51],
average pooling [52], and sum pooling [53], [54]. Fig-
ure 5 shows how pooling operations work: a sliding window
is placed upon feature maps and max value, average value,
or sum of the value in this window is calculated as output.
Especially, if the size of the pooling window equals the size of
the feature map, it is referred to as global pooling, otherwise,
it is local/regional pooling.

e: FULLY CONNECTED LAYER
Fully connected layers (FCs) are flattened layers that gener-
ate specific semantic information. Each neuron in the fully
connected layer has a connection with all the neurons in the
previous layer, then all activations can be computed with
matrix multiplication followed by biases.

2) LOSS FUNCTION
The loss function is used to evaluate the difference between
the predicted result and desired result. An appropriate loss
function can measure the difference between the result and
label properly and guide a fast and correct training process.
Following are some popular loss functions used in CNN
architectures.

FIGURE 6. Architecture of an FCN [26].

For multi-class classification tasks, the most used loss
function is cross-entropy function loss. It is given as:

L = −
M∑
i=1

cilog(pi) (6)

where M is the number of classes, ci is the practical label of
an input belongs to ith class so it is 0 or 1, pi is the probability
of the input predicted by networks.

Cross-entropy can also be applied to binary classification
since the sigmoid function is a special case of the Soft-
max function. Here, cross-entropy is known as binary cross-
entropy loss function, it is expressed as:

L = −(ylog (p)+ (1− y)log(1− p)) (7)

where y is ground truth and p is predicted value.
Dice coefficient (DSC) is a statistical indicator that can

be used to evaluate the similarity between two images. It is
represented as:

DSC =
2|GT ∩ SR|
|GT | + |SR|

(8)

where |GT | represents the ground truth magnitude while |SR|
represents the segmentation result magnitude, |GT ∩ SR|
represents the common elements between GT and SR. Based
on the Dice coefficient, Dice loss (DSL) is another loss
function widely applied to image segmentation tasks. Dice
loss is expressed as:

DSL = 1− DSC = 1−
2|GT ∩ SR|
|GT | + |SR|

(9)

B. FULLY CONVOLUTIONAL NETWORKS (FCNS)
Long, et al. [26] proposed fully convolutional networks
(FCNs) which replaced fully connected layers with up-
sampling layers. The feature maps were up-sampled to the
same size as the input images, and thus dense predictions
were made by the network. The proposed FCN architecture is
shown in Figure 6. Compared with traditional CNNs, FCNs
can predict each pixel in an image or image patch, so it is
more suitable and fast for image segmentation tasks.

C. U-NET
Ronneberger, et al. [55] proposed U-net which has symmet-
rical encoder-decoder structure and skip connections from
encoding path to decoding path. Features were extracted in
the encoder and images were reconstructed in the decoder.
Skip connections sent low-level feature maps generated in the
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FIGURE 7. Architecture of U-net [55].

encoder to the decoder directly. Since low-level feature maps
contained local information while high-level feature maps
contained global information, then the proposed U-net inte-
grated low-level and high-level feature maps and thus made
the better prediction. Figure 7 shows the U-net architecture.

III. DATABASE AND EVALUATION METRICS FOR RETINAL
VESSEL SEGMENTATION
Retina locates in the inner layer of the eyewall. A digital
fundus camera attached with a low-power microscope is used
to acquire retinal fundus images. The pupil of the human
eye is the entry/exit point for fundus camera illumination
and imaging light beams on the retina. The retinal fundus
images can also be obtained through EasyScan camera based
on Scanning Laser Ophthalmoscopy (SLO) [56]. SLO has
the advantage of lower light exposure and has a better con-
trast between vessels and background due to the confocal
design [57].

There are many publicly available databases for retinal
vessel segmentation [10]. Here we just introduce several main
databases. DRIVE [18], STARE [58], CHASE_DB1 [59]
and HRF [6] are the most used publicly available databases.
DRiDB [60] and ARIA [61], [62] are also available for
retinal vessel segmentation but less used in recent years.
Images in these six databases were obtained by the color-
ful fundus photography technique. In addition, two other
databases, IOSTAR [63] and RC-SLO [64], whose samples
were obtained by SLO, can also be used for retinal vessel
segmentation. Table 1 indicates the brief information of these
databases.

Generally, pixels in FOV of fundus images are classi-
fied as vessel pixel (positive) or non-vessel pixel (negative).
Tomeasure the identification of pixels, ground truth labels are
compared with pixel identifications. On this basis, there are
four basic pixel measures i.e., TP (true positives), FP (false
positives), FN (false negatives), and TN (true negatives).
Table 2 shows the measures of these elements through pixels.

Several evaluation metrics are defined to evaluate the per-
formance of segmentation networks. Some of the prevalent
metrics are listed in Table 3.

TABLE 1. Summary of 2-D fundus Image Datasets used for retinal vessel
segmentation.

TABLE 2. Pixel measures in vessel segmentation.

In addition, the Receiver operating characteristic curve
(ROC curve) is a plot that summarizes the trade-off between
TPR and FPR of a model under different thresholds. There-
fore, the ROC curve can be utilized to compare different mod-
els under the identical threshold or a specific model under
different thresholds. Similar to the ROC curve, the Precision-
Recall curve (PR curve) illustrates the trade-off between Pre-
cision and Recall. The area under the curves, AUC-ROC (the
area under the ROC curve), and AUC-PR (the area under the
PR curve), are available to evaluate the overall performance
of the networks.

IV. EXISTING MODELS FOR RETINAL VESSEL
SEGMENTATION
In this section, we category and analyze various methods
for retinal vessel segmentation according to their network
architecture.

A. CNN FOR RETINAL VESSEL SEGMENTATION
Earlier, some researchers adopted CNNs with only several
layers to segment vessels. We review 7 CNNs and summarize
their performance evaluations in Table 4.

Fan and Mo [65] applied a 5-layer CNN to vessel segmen-
tation and extracted image patches in the green channel as
input. According to the comparison betweenR, G andB chan-
nels, the green channel provides the best vessel-background
contrast than red and blue channels. They used L2-norm
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TABLE 3. Evaluation metrics for image segmentation.

as the loss function and adopted an optimized threshold to
generate the binary vessel map.

Liskowski and Krawiec [66] proposed a CNNwith 6 layers
for retinal vessel segmentation. They applied global contrast
normalization (GCN) and zero-phase component analysis
(ZCA whitening) to training images in the pre-processing
phase. GCN reduced the uneven illumination in images and
ZCA abstracted features from universal characteristics and
thus focused on the higher-order correlations.

Khalaf, et al. [67] constructed a CNN with 7 layers. They
divided pixels in an image into 3-class: background, large
vessel and small vessel to reduce the intra-classes variance.
They extracted the green channel of images and applied adap-
tive histogram equalization (AHE) and top-hat filtering to the
green channel in the pre-processing phase. The green channel
and AHE increased image contrast and suppressed noise, and
top-hat filtering enhanced vessels in training images.

Vengalil, et al. [68] proposed to fine-tune an existing net-
work DEEPLAB-COCO-LARGEFOV using retinal fundus
image patches. They replaced the last layer by a convolutional
layer and applied a threshold to obtain final vessel maps. They
did not adopt any image processing technique because they
thought it may lead to undesired outcomes or harm vessel
structures.

Tan, et al. [69] constructed a 7-layer CNN to make predic-
tions for multiple objects in fundus images, including optic

disc, fovea and retinal vessels. They extracted image patches
in different channels with different sizes and resized them.
Utilizing multiple channels can provide more information
which is helpful for multi-object classification.

Guo, et al. [70] proposed a CNN with 6 layers and intro-
duced a reinforcement sample learning scheme that trained
the network on samples with poor performance. The proposed
scheme allows researchers to train networks with fewer iter-
ations of epochs and less training time as well as increased
network performance.

Uysal and Güraksin [71] proposed a CNN model with
several convolutional layers, and they also introduced trans-
posed convolution to up-sample featuremaps. Their proposed
model made pixel-wise identification and did not perform
well.

From Table 4 we can see that most CNNs just produced
about 94% segmentation accuracy. We suppose that it is
because CNNs have only several convolutional layers and do
not have strong feature representation capacity, then they can
only segment the basic structure and misclassified most of
the vessel boundaries and thin vessels, so they are less used
in recent years.

B. FCN FOR RETINAL VESSEL SEGMENTATION
FCNs canmake dense and excellent predictions for each pixel
in an image patch [26]. In this survey, we review 7 FCNs and
list their performance evaluations in Table 4.

Oliveira, et al. [75] proposed an FCN and added skip con-
nections to propagate features from shallow layer to deeper
layer. They also explored the multiscale nature of the vascular
system by using stationary wavelet transform (SWT) which
added extra channels to input. Their result illustrated that the
deep learning method can benefit from domain knowledge.

Jiang, et al. [74] used a network based on the fully convo-
lutional version of AlexNet. They applied Gaussian smooth
to reduce the discontinuity between FOV and the replaced
region. The segmented vessels were thicker than ground truth,
so Jiang, et al. [74] applied a 9 × 9 filter to refine the result
and reduce noise in the post-processing phase.

Dasgupta and Singh [73], Soomro, et al. [76] also proposed
FCNs for retinal vessel segmentation. Soomro, et al. [76]
formulated a 2-classes classification task while Dasgupta and
Singh [73] regarded the task as a multi-label inference task.
Soomro, et al. [76] introduced principal component analy-
sis (PCA) to convert RGB images into well contrast grayscale
images.

Li, et al. [77] constructed an FCN with skip connections
and introduced active learning to retinal vessel segmentation.
Active learning used fewer manually labelled samples to
improve the segmentation accuracy of blood vessels. The
performance of the proposed model was increased in the
iterative training process.

Since the consecutive down-sampling operations in
the encoder lead to loss of information, which is crit-
ical to determine vessel boundaries and thin vessels.
Luo, et al. [72] proposed a size-invariant fully convolutional
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TABLE 4. Performance evaluations of CNNs for retinal vessel segmentation.

TABLE 5. Performance evaluations of FCNs for retinal vessel segmentation.

neural network (SIFCN) to reduce its effect. They hold the
size of feature maps in each layer by padding and assigning
strides and thus reduces loss of information.

Atli and Gedik [78] proposed a fully convolutional net-
work and they were the first to use up-sampling and down-
sampling to capture thin and thick vessels, respectively. Their
proposed model made some over segmentation and did not
produce a very good performance, especially on STARE
database.

FCNs have more convolutional layers that can extract
high-level features, therefore, FCNs have performed better
than other architectures as shown in Table 4 and Table 5.
However, the segmentation results produced by FCNs are
not enough fine, and the edges of segments are too blurry
and smooth. FCNs also ignore the spatial consistency of
pixels in pixel-wise segmentation. Conditional random field
(CRF) [79] can be introduced to improve the segmentation of
FCNs [80], [81].

C. U-NET FOR RETINAL VESSEL SEGMENTATION
U-net has a symmetric architecture and skip connection
is applied to send feature maps from encoder to decoder
directly [55]. Low-level feature maps contain rich detailed
information while high-level have better global information,
therefore, U-net can capture local and global information to
make better decisions. In this survey, we review 32 U-shaped
networks and list their performance evaluations in Table 6.

Guo, et al. [79] proposed a U-net and introduced structured
dropout to regularize it. The proposed structured dropout is
inspired by DropBlock [80] and discards continuous regions
of feature maps in a ratio. Sule and Viriri [81] proposed a
U-net and applied transpose convolution to the expanding
path to recover the lost information.

Zhang and Chung [82] regarded retinal vessel segmenta-
tion as a multi-class classification task and introduced an
edge-aware mechanism. They divided pixels into 5 classes:
background, thick vessels, thin vessels, background near
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thick vessels and background near thin vessels. The network
can pay more attention to the boundary areas of vessels in this
way. They leveraged deep supervision to ease optimization.

Mishra, et al. [83] proposed a simple U-net and introduced
data-aware deep supervision to improve thin vessel segmen-
tation. They computed the average input retinal vessel width
and matched it with the layer-wise effective receptive fields
to find layers that extract vessel features preeminently, and
then add auxiliary layers there.

Laibacher, et al. [84] proposed a U-shaped network for
retinal vessel segmentation which was built on pre-trained
components of MobileNetV2. It was the first network to run
in real-time on high resolution images. It utilized bottleneck
modules and bilinear up-sampling to reduce the number of
parameters so that the model could be employed on mobile
and embedded systems. The network was trained by using a
hybrid loss that combined binary cross-entropy and Jaccard
index.

Jin, et al. [85] introduced deformable convolution to reti-
nal vessel segmentation. The deformable convolution block
adjusted the receptive fields adaptively by learning offsets
and therefore captured the retinal vessels at various shapes
and scales. The proposed deformable U-net produced better
performance than U-net and deformable convolution net-
work [86] on DRIVE, STARE and CHASE_DB1and two
other datasets: WIDE [87] and SYNTHE [88].

Similar to Luo, et al. [72], Wang, et al. [89] also wanted
to reduce information loss caused by consecutive down-
sampling layers. They introduced a feature refinement path
to U-net which sent low-level feature maps to high-level
layers in encoder and decoder, respectively. The proposed
feature refinement path can improve the detailed represen-
tation ability of the encoder and the discriminative ability of
the decoder.While Yin, et al. [90] proposed to addmulti-scale
grayscale images to each stage of the encoder and decoder to
reduce information loss and help information recovery.

Dharmawan, et al. [91] proposed a new directionally
sensitive blood vessel enhancement method that combined
CLAHE with a new match filter to detect micro vessels. The
new matched filter was based on multi-scale and orientation
modified Dolph-Chebyshev type I function. Their method
detected more micro vessels than common CLAHE but still
produced many mistakes.

Residual learning [92] was also introduced to increase the
depth of networks as well as alleviate vanishing/exploding
gradients. It was applied to building blocks [93]–[97] or skip
connections [97], [98].

Dilated convolution [99] was also introduced to retinal ves-
sel segmentation to enlarge the receptive fields [100]–[103].
Lopes, et al. [100] also tested the effect of different down-
sampling techniques, that is, max-pooling, convolution with
2×2 kernel and convolution with 3×3 kernel. They obtained
better results when using convolution as down-sampling
operations, which is consistent with Soomro, et al. [76].
Jiang, et al. [101] arranged dilated rates deliberately to

obtain a dense sampling of input and thus avoid the chess-

board effect. They also introduced depthwise separable con-
volution [104] to reduce the computation cost and the number
of parameters.

Soomro, et al. [103] introduced morphological trans-
form and fuzzy C-means to the pre-processing of images.
In the post-processing phase, they applied morphologi-
cal reconstruction to remove small objects in segmented
results. Mou, et al. [97] introduced probability regularized
walk (PRW) algorithm to reconnect fractured vessels. PRW
is an extension of the random walk algorithm [105] on prob-
ability maps.

There is a black ring around the field of view (FOV) in
fundus images. Networks should pay more attention to the
FOV since the black ring does not contain any informa-
tion. Attention mechanism [106] has been applied to locate
the region of interest (ROI) and strengthen feature repre-
sentations in retinal vessel segmentation. Luo, et al. [107],
Lian, et al. [108], Lv, et al. [109] made attention masks
manually with the same size as original images to locate
ROI. Wang, et al. [110], Li, et al. [111], Li, et al. [112],
Fu, et al. [113] Tang, et al. [114] designed attention modules
to strengthen feature representations, and their attention maps
were learned by networks instead of assigned by experts.

Yan, et al. [115] introduced a novel joint loss to alleviate
the highly unbalanced pixel ratio between thick and thin ves-
sels in fundus images. They divided vessels into thin vessels
and thick vessels to alleviate the unbalance problem. The
joint loss includes pixel-wise and segment-level loss which
emphasizes more on the thickness consistency of thin vessels.

Nasery, et al. [116] proposed a new data augmentation
approach. They leveraged vignetting masks to create more
annotated fundus images. Their method just adjusted the
illumination condition of images but did not change the geo-
metric and morphologic characteristics.

Galdran, et al. [117] proposed a new metric for retinal ves-
sel segmentation and tested it using U-net. They introduced
normalized mutual information to evaluate the segmentation
quality. The new metric was applied to raw vessel probability
map and can instruct the selection of threshold to binarize the
vessel probability map.

Alvarado-Carrillo, et al. [118] focused on the curvilinear
structures in vessels, so they proposed Distorted Gaussian
Matched Filters (D-GMFs) with adaptive parameters and
added them to the beginning and end of a U-net. They did
not conduct an ablation study so we cannot know the effect
of their proposed D-GMF Adaptive Unit.

Considering the large-scale variants of vessels and seman-
tic variants existing in fundus images, Wu, et al. [119]
proposed to adjust the receptive field adaptively to capture
multi-scale features, they also adaptively fused features to
extract more semantic information. They obtained a good
result but still need to pay more attention to thin vessels.

From Table 6 we can see that U-net can produce about 96%
segmentation accuracy, which is higher than FCNs’. U-net
can reuse low-level information by concatenating feature
maps, which also increases the computation burden, so the

111992 VOLUME 9, 2021



C. Chen et al.: Retinal Vessel Segmentation Using Deep Learning: A Review

input is a small image patch cropped from whole images.
The network cannot identify pixels well because an image
patch contains less information than a whole image, and it is
also constrained by a limited receptive field, although dilated
convolution can enlarge the receptive field.

D. MULTI-MODEL NETWORK FOR RETINAL VESSEL
SEGMENTATION
Lots of researchers had found the limited prediction capabil-
ity of a single model, so they proposed multi-model networks
for stronger prediction ability. Most of them followed the
spirit of U-net and FCN and employed encoder-decoder struc-
ture to form sub-models.We review 19multi-model networks
and summary their performance evaluations in Table 7.

Some research segmented thin/thick vessels or vessel
boundaries/centers separately, then fused the segments to
complete a whole segmentation [122]–[125]. These methods
can be regarded as coarse-and-fine segmentation because
thick/thin vessels or boundary/center vessels were segmented
concurrently and separately.

Yan, et al. [122] proposed a three-stage segmentation net-
work for retinal vessels using three sub-networks. The seg-
mentation of the whole vessel tree was divided into three
sub-tasks: thick vessel segmentation using FCN, thin vessel
segmentation using U-net and fusion of segmentations.

Sathananthavathi and Indumathi [123] also proposed a
coarse-and-fine strategy. They constructed 2 parallel FCNs,
the first FCN was larger and trained with ground truth to
extract thick andmoderate vessels, while the second FCNwas
smaller and trained with skeletonized ground truth to extract
thin vessels legibly. Outputs of both FCNs were integrated to
generate the overall vessel segmentation.

Yang, et al. [124] proposed an improved U-net, whose
encoder was used as a backbone to extract features, they
arranged 2 decoders to segment thin and thick vessels, respec-
tively. Finally, they added a fusion network to fuse the output
of two decoders.

Wang, et al. [121] constructed a U-net which is composed
of one encoder and three decoders. They used one decoder
to generate a coarse probability map and divided an image
into ’hard’ or ’easy’ regions according to the probability
map. They used two other decoders to segment vessels in
’easy’ and ’hard’ regions independently. Finally, they fused
all feature maps produced by 3 decoders to generate the final
vessel map. They also introduced an attention gate to give
more weight to vessel feature responses in decoders.

Tian, et al. [125] proposed a multi-model network to
learn high- and low-frequency information, respectively.
They applied Gaussian high-pass filter and Gaussian low-
pass filter to original fundus images to obtain high-frequency
or low-frequency information. They sent obtained high-
and low-frequency information to two sub-networks with
encoder-decoder structures, respectively. They fused the out-
put of two sub-networks to get the final vessel map.

More researchers proposed coarse-to-fine segmentation by
cascading several sub-networks. The following sub-network

can inherit the learning experiences of previous sub-models
[126]–[132]. Generally, they added intra- and inter- skip
connections to send low-level feature maps and learned
knowledge to deeper layers and sub-networks. The followed
sub-network segmented vessels coarsely and the following
sub-network refined vessel maps. The following sub-model
used segmented results of previous sub-models and original
images as input. Wu, et al. [128] added an auxiliary layer to
the followed network to get an auxiliary loss, so their model
was trained by main supervision and auxiliary supervision.

Guo, et al. [133] introduced an incremental learning strat-
egy by cascading five CNNs. They trained the next CNN
using the same samples as previous ones and enhanced it by
feeding samples that were not performed well in the previous
CNN. Finally, the final decision of each pixel was made using
a voting scheme on the multiple CNNs results.

Lian, et al. [108] observed existing models always applied
global pre-processing operations to images that will lose
local information. They applied global and local operations
simultaneously to enhance the contrast of images.

Tang, et al. [134] proposed a network with five identical
and parallel sub-networks for ensemble learning. The input
of each sub-network was grayscale images by extracting R-G
channel image data with different proportions. Probability
maps produced by five sub-models were averaged to generate
the final segmentation result.

Zou, et al. [135] also formulated the task as a multi-class
classification task to detect thin vessels with a width less than
2 pixels. They constructed 2 networks, one is for generating
labels, one is for retinal vessel segmentation while the last
one is for label simplification.

Cherukuri, et al. [136] proposed a domain-enriched net-
work that was composed of two parts: a representation
network to geometric features from fundus images and a
residual task network to make a pixel-level prediction using
the obtained features. Their method obtained a good perfor-
mance but there are still non-vessel pixels identified as vessel
pixels.

To consider the graphical structure of vessel shape,
Shin, et al. [137] proposed a vessel graphic network that
combined a graph neural network (GNN) [41] with a CNN
to jointly utilize both local appearance and global ves-
sel structure. They did not obtain a good result because
their model misclassified many non-vessel pixels as vessel
pixels.

Tajbakhsh, et al. [138] proposed an error correction mech-
anism that can learn from segmentation mistakes. The pro-
posed network is divided into three sub-networks: a U-net to
produce an initial segmentation, a network to produce diverse
but representative error patterns and another U-net to make up
the mistake of the initial segmentation map.

From Table 7 we can see that multi-model networks can
produce about 96.3% segmentation accuracy, which have
slight improvement compared with single networks. How-
ever, multi-model networks are alsomore difficult to train and
have a higher computation burden.
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TABLE 6. Performance evaluations of U-nets for retinal vessel segmentation.
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TABLE 6. (Continued.) Performance evaluations of U-nets for retinal vessel segmentation.

E. GENERATIVE ADVERSARIAL NETWORK (GAN) FOR
RETINAL VESSEL SEGMENTATION
GAN [40] is a type of deep unsupervised learning model,
which is composed of a generator and a discriminator. In this
survey, we review 13 GANs and list their performance eval-
uations in Table 8.

Most generative models adopted encoder-decoder struc-
ture with some improvement modules, such as dense
block [139], Wu, et al. [140], and dilated convolu-
tion [139], [141], deep supervision [142], attention mech-
anism [140], [143], skip connections [144], Inception
module [145] and others [146]. CNNs were widely used as
generators [139]–[141], [144], [146]–[148], but U-net can
also be adopted [143], [145].

Son, et al. [148] explored several models for the dis-
criminators: pixel-GAN, patch-GAN and image-GAN. The
results indicate that patch-GAN performs better than others
including the one with a single generator.

Park, et al. [149] chained two U-nets in the generator and
used residual convolution blocks as building blocks in both
generator and discriminator. They utilized automatic color
equalization (ACE) to enhance images in the pre-processing
phase with the Lanczos resamplingmethod to smooth the ves-
sel branches and reduce false negatives in the post-processing
phase.

GANs based on semi-supervised learning were also
explored to address the problem of lacking annotated data.
Huo, et al. [150] proposed a semi-supervised framework
that combined GAN and self-training scheme, and they
adopted particle swarm optimization (PSO) [151] algorithm
to choose the hyperparameters in semi-supervised learn-

ing since self-training is sensitive to hyperparameters. They
obtained 0.9550/0.8419 of AUC_ROC and AUC_PR on the
DRIVE database when using 0.1 labelled and 0.9 unlabeled
data. Lahiri, et al. [152] also trained a GAN based on semi-
supervised learning to learn from both labeled and unlabeled
data. They only used 3K annotated image patches to make
patch-wise predictions and obtained 0.95/0.96 accuracy and
0.96/0.94 AUC on DRIVE and STARE databases, respec-
tively. Their models outperformed simple U-net and used
less annotated data, but they also did not segment vessels
as accurately as other improved models based on supervised
learning.

From Table 8 we can see that GANs produced about
96% segmentation accuracy, which is similar to U-net. Park,
et al. [149] obtained the best performance. Compared with
CNNs, we need to train generators and discriminators alter-
natively in GANs, which is more troublesome.

F. OTHER NETWORK FOR RETINAL VESSEL
SEGMENTATION
Researchers also proposed networks that cannot be cat-
egorized into the forgoing classes due to their unique
architectures. The performance of these methods is listed
in Table 9. Ngo and Han [153], Guo, et al. [154],
Li, et al. [155] adopted multiple input branches to cap-
ture multi-scale spatial information. Further, all the fea-
ture maps generated by each branch are combined to make
predictions. In addition, Guo, et al. [154] applied the K-
dimensions tree integrated with the hessian matrix to recon-
nect the broken segments in the post-processing stage.
Some broken vessels were reconnected and the vessel map
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TABLE 7. Performance evaluations of multi-model networks for retinal vessel segmentation.

became cleaner after post-processing. Accuracy and sensitiv-
ity were increased while specificity was decreased after post-
processing. Li, et al. [155] introduced sparse variables into
the label design and improved the cross-entropy loss function
to address the unbalance of samples. Li, et al. [155] got better
sensitivities than [153] and [154] because they solved the
class imbalanced issue.

Holistically-nested edge detection (HED) network made a
significant advancement on edge detection in an image [162].
It is a single-stream network with multiple side outputs and
final predictions are made by fusing multi-scale side out-
puts. Inspired by the HED network, Mo and Zhang [20],
Guo, et al. [158] integrated feature maps generated in dif-
ferent stages of networks to generate the final probability
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TABLE 8. Performance evaluations of GANs for retinal vessel segmentation.

map. Lin, et al. [156], Hu, et al. [157] also constructed
single-stream networks based on VGGNet and applied fully-
connected CRFs [163] to get the final binary segmentation
result. CRFs utilized multiscale feature maps in different
stages to make full use of spatial contextual information.
CRFs can mitigate noise and edge blurring acting as a global
smoothness regularizer.

Feng, et al. [159] proposed a cross-connected net-
work (CcNet) that has two parallel paths. They used two
CRM (convolution-ReLU-Max pooling) modules as build-
ing blocks and formed cross-connections between these two
paths. They sent feature maps produced by each module
in the upper path to each module in the lower path. They
concatenated all feature maps generated in the lower path
to generate final vessel maps. Since these cross-connections,
CcNet can learn multi-scale features efficiently.

Zhuo, et al. [160] used three dense blocks to form a straight
network and added two bottleneck blocks between them,
which aimed to reduce the model complexity and computa-
tion cost. Similar to Luo, et al. [72], they also maintained the
size of feature maps by cancelling down-sampling layers to
reduce information loss of tiny vessels. In addition, consid-
ering the existing evaluation metrics should not be equally
important since great unbalance exists between vessels and

non-vessels, Zhuo, et al. [160] proposed a new evaluation
index named fusion score, which converts multiple evaluation
metrics into a single target. It is expressed in Equation 9:

FS =
3 ∗ F1 ∗MCC∗Gmean

F1 ∗MCC + F1∗Gmean+MCC ∗ Gmean
(10)

They got a fusion score of 0.8339, 0.8449 on DRIVE and
STARE databases, respectively.

To reduce the high-frequency information loss caused by
consecutive down-samplings in the encoder, Noh, et al. [161]
introduced a scale-space approximated CNN (SSA-Net). It is
a single-stream network with residual connection and skip
connections. They inserted up-sampling layers in the feature
generation phase to generate size-invariant feature maps and
thus reduce spatial scale-space distortions.

CLAHE is widely applied to fundus images to enhance
image contrast, which has two parameters: size of the contex-
tual region and clip limit. Most researchers just used default
values for CLAHE, but Aurangzeb, et al. [164] introduced
PSO to CLAHE to find optimal parameter values. They did
not propose a new network but just applied their method to
existing models.

From Table 9 it can be observed that Noh, et al. [161]
obtained the best performance in these methods, and these
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TABLE 9. Performance evaluations of other networks for retinal vessel segmentation.

methods produced about 95.5% segmentation accuracy.
These models did not have a strong learning capacity because
most of them have only several convolutional layers, and their
architectures may not be very suitable for this task.

V. DISCUSSION
In this survey, we have reviewed 89 deep learning models
for retinal vessel segmentation, which indicate deep learning
has been widely applied to segment retinal vessels. Earlier,
researchers applied simple CNNs for vessel segmentation on
DRIVE and STARE databases [69], [165]. Moreover, lots
of researchers have proposed various improved models for
retinal vessel segmentation. FCNs and U-nets were the most
leveraged to make dense predictions because of the excellent
performance [73], [79], [81]. Later, different improvement
modules such as residual block, dilated convolution and atten-
tion mechanism, were introduced with U-net to improve the
performance of proposed models [101], [102], [107]. On the
other hand, researchers also proposed multi-model networks
to get a stronger identification capability [122], [128], and
others introduced GANs to vessel segmentation [128]. Multi-
branch networks and HED-shaped networks were also used
for vessel segmentation [153], [166].

A. CHALLENGES IN RETINAL VESSEL SEGMENTATION
USING DEEP LEARNING
According to the existing research, the following challenges
are encountered while using deep learning for retinal vessel
segmentation:

1) Lack of well labelled training samples. Although there
is a large number of fundus images, acquiring anno-
tated data is very difficult to obtain since it requires
professional doctors and takes a significant amount of
time and cost.

2) Low quality of existing image samples. It hinders deep
learning models to learn better feature representations.
Image noise, uneven illumination, low contrast espe-
cially for thin vessels, centerline reflection and various
structures (pathological region, fovea, macula, optic
disc) decrease the performance of proposed models.

3) Class imbalance problem of training samples. The dif-
ferent number of positive and negative examples avail-
able for training degrades the performance of networks.
Class imbalance problem not only exists between fore-
ground and background, but also in thick vessels and
thin vessels. Deep learning models tend to classify
pixels in boundaries as non-vessels pixels because the
number of non-vessels pixels are in large quantities as
compared to vessel pixels. The network performsworse
on thin vessels than thick vessels since the misclassifi-
cation of pixels in thin vessels has less influence on the
total loss.

B. KEY ASPECTS FOR SUCCESSFUL RETINAL VESSEL
SEGMENTATION
From the analysis of existing methods, a successful model
should be able to detect vessels under uneven illumination,
low contrast and various regions in fundus images. At the
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same time, it should be robust enough for images and have
strong generalization ability. We identify some key aspects
for successful and robust retinal vessel segmentation, which
are as follow:

1) Raw image enhancement. Using image enhancement
techniques pre-processing phase, such as the conver-
sion of RGB images to grayscale images, normaliza-
tion, contrast limited adaptive histogram equalization
(CLAHE) [167] and gamma correction increase the
image quality [73], [93], [107]. We can also adopt
morphological operations [168] to increase the quality
of images [76], [123].

2) Data augmentation. The publicly available databases
are too small to train a network, so we can uti-
lize regular data augmentation techniques [169] to
enlarge the training dataset, such as rotating, flip-
ping, shifting, mirroring and cropping images into
image patches [23], [107], [108], [122], [156]. Also,
we can leverage transfer learning for this task, such
as VGGNet [20], [156]–[158], ResNet [158] or a fully
convolutional version of AlexNet [74].

3) A Well-designed model. A well-designed model could
capture more spatial information, reduce loss of local
information and reuse low-level feature maps for accu-
rate segmentation. From the segmentation result, U-net
and multi-model networks have a better performance
than CNNs and FCNs, that is because they have more
convolutional layers then they can extract features bet-
ter. In addition, skip connections also help the reuse of
low-level information, which is very important in iden-
tification. Some proposed GANs also obtained high
accuracy. In addition, dilated convolution is a good
option to enlarge the receptive field and capture more
spatial information but still keep the same number of
parameters [99]. Residual learning can increase net-
work depth and alleviate network degradation at the
same time [92]. A dense connection can make full use
of feature maps generated by all previous layers and
thus decrease model complexity andmitigate vanishing
gradient [170].

4) Proper loss function. A proper loss function could lead
models to pay more attention to vessels, especially thin
vessels. Researchers can adopt improved loss func-
tions, such as weighted cross-entropy loss function,
to solve the imbalance problem [82], [125], [158].

5) Vessel map enhancement. The segmentation result con-
tains noise and isolated small vessels, so we can use
a matched filter or morphological transform to illu-
minate them in the post-processing phase [74], [103].
The vessel segments are broken in some cases, and we
can reconnect fractured vessels by some techniques,
such as PRW and K-dimensions tree [97], [154]. Better
visualization of the vessel map helps ophthalmologists
diagnose disease easier.

6) Abundant validation: we cannot only verify our mod-
els using a single database, but also cross-validate

networks to evaluate their generalization ability.
In cross-validation, a network is trained using sam-
ples from one dataset but tested using another
dataset [20], [75], [123], [128]. Even we can conduct
mixed validation for further check. We can train a net-
work using mixed samples from several databases and
test it using the rest samples from these databases [74].

From the analysis of the reviewed articles, several proposed
research in terms of models and strategies to improve the
performance of networks, such as incremental learning strat-
egy [133], various improvement modules [93], [101], [121],
coarse-to-fine segmentation [127], there is still no model can
segment vessels perfectly, including segmentation of vessel
boundaries and thin vessels, segmentation of background
between two closed vessels, segmentation of vessel under
the presence of abnormalities and various structures, segmen-
tation of vessel in cross-connections and robust segmenta-
tion between different databases. In addition, the segmented
vessels are still fractured and broken in most results, which
invites researchers to investigate further to reconnect frac-
tured vessels.

Although deep learning has been widely applied to retinal
vessel segmentation, there are still some limitations. Com-
pared with human beings, deep learning has less generaliza-
tion capacity. Compared with conventional methods, such as
matched filtering methods and vessel tracing methods, deep
learning is more uninterpretable, and it needs massive data
and GPUs in training processes, which are not available and
expensive for users in some cases.

VI. CONCLUSION
Geometric characteristics of retinal vessels reflect clinical
and pathological features. The ophthalmologist uses vessel
maps to diagnose diseases, such as DR and MD. Precise
diagnoses of eye abnormalities and their timely treatment are
important in preventing global blindness.

Computerized automatic segmentation for retinal blood
vessels is inspired since manual segmentation of retinal
blood vessels is expensive and time-consuming. In the past,
researchers proposed different methods for automatic retinal
vessel segmentation. Unsupervised models are limited by
their accuracy. Machine learning algorithms require hand-
crafted features and thus are limited by their generalization
ability. Currently, deep learning models have been greatly
used to image segmentation including retinal images since
they do not need any handcrafted features and outperform
existing unsupervised methods.

This article reviews publications of recent six years for
retinal vessel segmentation based on deep learning. The main
contribution of our works is to analyze recent models and
find out new trends for retinal vessel segmentation. It will be
helpful for researchers and industrialists to develop a robust
model for retinal vessel segmentation.
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