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ABSTRACT Bird mating optimizer (BMO) is a population-based metaheuristic that has been recently
extended to solve combinatorial optimization problems. Even though the algorithm shows promising
performance in solving combinatorial optimization problems, it suffers from slow convergence and poor
efficiency which leads to poor solution quality for some problem instances. This is due to the limited
capability of BMO in exploiting the search space and identifying more promising regions. Therefore, in this
work we propose a hybrid BMO with five single-based metaheuristics: hill-climbing, late acceptance hill-
climbing, simulated annealing, iterated greedy heuristic and variable iterated greedy heuristic. Each of these
algorithms is used inside the BMO to exploit the search space, and improve the quality of solution generated
from the BMO population. This work also compares which one of these five is better for hybridizing with
BMO. The performance of these algorithms is tested on two combinatorial problems: travelling salesman
problem and berth allocation problem. Experimental results demonstrate that the hybrid algorithm is superior
to BMO when applied to both problems and it improved the BMO by 1.13% for BAP and by 4.13% for
TSP. Furthermore, the hybrid algorithm is able to match the best-known results for most of the instances.
In addition, the proposed hybrid approaches perform well over both tested domains and obtain competitive
results when compared to the best-known results that have previously been presented in the scientific
literature.

INDEX TERMS Bird mating optimizer, berth allocation problem, travelling salesman problem, combinato-
rial optimization, hill climbing, late-acceptance hill-climbing, simulated annealing, iterated greedy.

I. INTRODUCTION
Combinatorial optimization problems (COPs) arise in many
areas such as computer since, operational research, electronic
commerce, and artificial intelligence. COPs can be defined
as a topic to find an optimal ordering or arrangement for
given discrete variables [1], [2]. Examples of these problems
are job scheduling, journey planning, university educational
timetabling, travelling salesman, and berth allocation [3].
COPs are NP-hard whichmay not be suited for exact methods
that aim to find the actual optimal solution. Instead, approx-
imate algorithms that can find (near) optimal solution with
reasonable time are more practical especially when the prob-
lem instance is sizable [4]. Approximate algorithms consist
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of heuristic and metaheuristic algorithms in which heuristic
is a problem-dependent algorithm that is designed to solve
a specific problem, while metaheuristic can work in effec-
tively across different problems. Therefore, metaheuristics
are the better choice when solving several COPs. Examples of
these algorithms include simulated annealing (SA) [5], hill-
climbing (HC) [6], late acceptance hill-climbing (LAHC)
[7], genetic algorithm (GA) [8], [23], harmony search [9],
iterated greedy algorithm (IG) [10]–[12], ant colony opti-
mization [13], [14] and particle swarm optimization [15].

Bird Mating Optimizer (BMO) is a natural inspired meta-
heuristic algorithm that was proposed by [16]. The BMO
inspired by mating behavior of birds during mating season,
in which each male bird attempts to mate with a female
one to breed a new brood. BMO has some advantages as
avoiding trap in local optima by using five mating strategies
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to move through the search space. In addition, BMO hasmore
capabilities in exploring and exploiting the search space than
other mating algorithms such as genetic algorithm [16]. BMO
shows a competitive result comparing to other evolutionary
algorithms such as classical evolutionary programming, fast
evolutionary programming, classical evolutionary strategies,
fast evolutionary strategies, genetic algorithm, particle swarm
optimization, and group search optimizer [16]. However, the
BMO was originally proposed to solve continuous optimiza-
tion problems, but in 2020 [17] proposed a discrete version of
BMO for solving COPs. In this work, we will use this version
of BMO as it shows an effective and promising performance
for solving COPs.

However, even though BMO shows promising perfor-
mance in solving optimization problems, it suffers from
slow convergence and poor efficiency for some constraint
problems. This is due to the limited capability of BMO in
exploiting the search space and identifying more promising
regions. For some complicated problems, BMO shows pre-
mature convergence or poor efficiency [18], [19]. Therefore,
maintain the balance between exploration and exploitation
ability of the BMO algorithm is needed. Some researchers
have attempted to tackle these issues by conducting several
improvement modifications. One of these modifications is
hybridizing BMOwith single-based metaheuristics [19], [18]
to improve the exploitation ability of the algorithm. In this
study, our aim is to hybrid the BMO with five single-
based metaheuristics, HC, LAHC, SA, IG and variable IG,
to improve the performance of BMO for solving COPs. The
reason for choosing five single-based metaheuristics is to
compare and investigate which of these five can lead to better
performance when hybridizing it with BMO.

According to Talbi et al. [6], metaheuristic hybridization
can be done by combining a metaheuristic with a comple-
mentary metaheuristic. In this model, there are two levels
of hybridization: low-level and high-level. In the low-level
hybridization, a given function (e.g., crossover or mutation
in GA) of metaheuristic is replaced by another metaheuristic
(e.g., single-based metaheuristic). While in the high-level,
the different metaheuristics are self-contained and there is
no relationship between their internal working. For each
level, two hybridization mechanisms are available: relay and
teamwork hybridization. In relay hybridization, a set of meta-
heuristics is applied one by one and each one is taking
the output of the previous one as input. Whilst, teamwork
hybridization represents a set of optimization models that
cooperated as agents in parallel, and each agent searches in
solution space [6].

In this work, we aim to use the low-level teamwork hybrid
(LTH) model for COPs, where a population-based algorithm
BMO will be hybridized with five single-based algorithms,
respectively. In other words, each single-based algorithm will
be improving the exploitation ability in BMO and identifying
more promising solution regions. The single-based algorithm
will be applied with a probability to every newly generated
solution in the population of BMO to ensure that it’s the local

optima. In addition, a comparative study will be conducted
between these five hybrid models to figure out which one is
more effective in finding more promising solutions.

The rest of the paper is organized as follows: Section 2 rep-
resents the related work. The basics of BMO, HC,
LAHC, SA, IG, and VIG are presented in Section 3.
Section 4 presents the details of the proposed hybridization
approach. Section 5 summarizes and analyzes the experimen-
tal. Finally, the conclusion and details of future works are
given in Section 6.

II. METHODS
The following subsections present the details of the BMO
algorithm and the five single-based algorithms.

A. BIRD MATING OPTIMIZER
BMO is a population-based metaheuristic algorithm pro-
posed by Askarzadeh [16] that mimics the mating behavior of
bird species during mating season. The population is referred
as a society and each member of the society represents a
feasible solution and called bird. The new generated solu-
tion called brood. The society contains of two components:
males and females. Males are classified into three compo-
nents: monogamous, polygynous, and polyandrous. While
females are with the most promising genes which contain
two categories: parthenogenesis and polyandrous. In total,
the algorithm uses five updating strategies to generate new
solutions and they are explained below with details. Note
here that we are using the BMO version that proposed by
Arram et al. [20] which was proposed to solve COPs.

Parthenogenesis is the mating system in which the female
bird can produce a brood without mating with a male. In this
system, each female tries to produce her brood by modi-
fying and changing her genes with a predefined rate. Each
female bird in the parthenogenetic group produces a brood
using simple non-improvement hill-climbing (NI-HC). The
NI-HC algorithm starts with a solution and generates a new
one by applying some changes to the genes and repeat this
process until there is no improvement to the current solution.
Applying this system requires a probability at every iteration
to decide to apply this algorithm or to skip it. The pseudocode
of this system is presented in Algorithm 1 [16], [17].

Algorithm 1: Pseudocode of the HC Algorithm
Input: x as the initial solution.
Calculate the initial cost function f (x)
Repeat

Generate x ′. //generate a candidate neighbor//
Calculate the cost of the generated solution f (x ′)
if x ′ better thanx then //x ′ is the generated solution//

x = x ′

end if
Until termination condition is satisfied.
Output: final solution found x.
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FIGURE 1. Flowchart of the hybrid BMO with HC.

Monogamy is a mating system in which a male tends to
mate with only one female. Every male selects its mates
from the female group (parthenogenesis and polyandrous)
by evaluating the quality of the females using a probabilistic
approach to select one of them. So female birds with good
genes have a higher probability of being selected. For this
system, the two-parent order crossover (OX) is used as a
mating system between the male bird and its selected female
[16], [17]. More details about OX are reported in [21]. The
produced brood (new solution) from this mating system, will
go through a mutation operator with a probability to improve
the quality of the brood. Insertion operator will be used as a
mutation operator where a gene is selected from the brood
randomly and moved to another randomly selected position
in the brood.

Polygamy is a mating system in which each polygynous
male tries to produce a brood by mating with two or more
females. The benefit of this multi-mating process is to pro-
duce a brood with better genes. In nature, a polygynous
birds mate with several females to produce a number of
broods, but in the BMO, only one brood results from this
mating process, where the brood’s genes are a combination
of the male’s and multiple females’ genes. After selecting
the females by using a selection mechanism, each male bird
mates with his selected females. The multi-parent partially
mapped crossover (MPPMX) is used in this system as a
mating operator between males and several selected females.
MPPMX was proposed by Ting et al. [22] as an exten-
sion of two-parent partially mapped crossover to multiparent
crossover for better performance. The MPPMX applies four

main steps to generate a new brood: substring selection,
substring exchange, mapping list determination and offspring
legalization. More details of this crossover are reported in
[22]. In addition, insertion mutation operator is applied to the
produced brood with a probability to improve its quality [17].

Promiscuity is also another mating system in which one
male mates with several females with an unstable relation-
ships. This mating process indicates a chaotic social structure
in which the male bird will never see the brood, and generally
will not see the female for further mating activity. In promis-
cuity, the birds use a chaotic sequence method during the
generations. However, each promiscuous bird behaves in the
same way as a monogamous bird. Therefore, the OX is used
in this mating process and insertion mutation operator will be
applied with a probability [17].

Polyandry is the last mating system where a polyandrous
female bird seeks to mate with more than two monogamous
males. The female performs a selection mechanism to select
the males. Then, each female bird mates with her selected
male birds. MPPMX is used for this mating system as mul-
tiple birds will mate, and insertion mutation operator will be
applied with a probability [17]. Note here that the mutation
operator with a probability is applied to the four mating
systems (Monogamy, Polygamy, Promiscuity and Polyandry)
regardless of the resulting solution quality, and the aim of this
is to maintain the diversity of the algorithm.

The following steps explain the BMO algorithm procedure
as presented in [17]:

Step 1: Parameter initialization: initialize the BMOparam-
eters.
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FIGURE 2. Diversity measurement of the hybrid BMO-HC on i01 BAP instance.

Step 2: Society initialization: initialize the population ran-
domly with feasible birds (solutions). The initialization strat-
egy is related to the problem domain.

Step 3: Society evaluation: calculate the quality of each
bird using the objective function of the problem.

Step 4:Ranking: rank the birds in the society based on their
quality in descending order.

Step 5: Classification: classify the birds in the society
into five groups based on their quality, the classification
is as follow: parthenogenetic, polyandrous, monogamous,
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polygynous, and promiscuous birds. The percentage of each
group is a parameter and defined in the parameters initializa-
tion step.

Step 6: Breeding: each bird produces a new brood using
its own mating system.

Step 7: Replacement: If the quality of the brood is better
than the quality of the bird, the brood replaces the bird. Oth-
erwise, the bird remains in society, and the brood is removed.

Step 8: Termination condition: steps from 4 to 7 are
repeated until a predetermined number of generations is per-
formed.

Step 9:Report the best: select the bird with the best quality
in society as the best solution.

The pseudocode of theDBMO is illustrated inAlgorithm 2.

Algorithm 2: Pseudo-Code of LAHC Algorithm
Generate the initial solution x
Calculate initial cost function f (x)
Set the length of array Lfa
Iteration i = 0
Repeat

Construct a candidate solution x∗

Calculate its cost function f(x∗)
v = i mod Lfa
if f (x∗) ≤ fv or f (x∗) ≤ f (x)

accept the candidate (s = s∗)
else

reject the candidate (x = x)
Insert the current cost into the fitness array
fv = f (x)

end i = i+ 1
Until stopping criteria satisfied

B. HILL CLIMBING
Hill Climbing (HC) is one of the well-known local search
methods that attempt to find better solution. The algorithm
starts with an initial solution and improves it by generating a
neighborhood solution. The current solution is replaced with
a neighborhood solution if the quality of the neighborhood
is better than the current, otherwise, the neighborhood is
rejected, and HC begins a new iteration. The search process
continues until the stopping criteria is satisfied [23], [24].
Algorithm 3 presents the pseudo-code of the algorithm.

C. LATE ACCEPTANCE HILL-CLIMBING
The late acceptance hill-climbing algorithm (LAHC) is an
improved version of HC algorithm, which was proposed by
Burke and Bykov [25]. The main idea of LAHC is to accept
the non-improving solution when the quality of the new
generated solution is better (or equal) than those that were
recently accepted a few iterations before. In practice, LAHC
starts from a given initial solution, and iteratively improves
it by comparing the new candidate solution with the current
one in order to accept or reject it. Hence, to apply the LAHC
rule, the algorithm will create a list with a fixed length to

Algorithm 3: Pseudo-Code of SA Algorithm
Generate the initial solution x = x0
Set the starting temperature T = T0
Set Cooling rate β.
Set max number of trials at each temperature imax
Repeat

i = 0
for i = 0 to imax do

Generate a random neighbor x ′

1E = f (x ′)− f (x)
If 1E ≤ 0

x = x ′ //accept the neighbor solution
Else

Generate a random number between 0 and 1
(r)
If ( r < e

−1E
T )

x = x ′
end

end i = i+ 1
end
Reduce temperature rate T = T ∗β
Update the best solution

Until Stopping criteria is satisfied T = 0
Return best found solution.

save the quality of recently visited solutions. If the quality
of the new candidate solution is better than the quality value
of the last element in the list, the candidate solution will be
accepted as the current initial solution. Then, the element at
the end of the list will be removed and the quality value of the
newly accepted solution will be added to the beginning of the
list [7]. Algorithm 4 presents the pseudo-code of the LAHC
algorithm [7], [25].

D. SIMULATED ANNEALING
Simulates annealing (SA) was proposed by Kirkpatrick et al.
[5], Černý [26] as an optimization algorithm for solving opti-
mization problems. SA was proposed based on hill-climbing
to overcome its problem of trapping in local optima. SA uses
probability to accept worse solution and give more chances to
explore the search space. The algorithm starts with a random
initial solution, and at each iteration, a neighbor solution is
generated using a predefined neighborhood structure. The
new solution is evaluated using fitness function and will be
accepted if it is better than the best one, otherwise, the worse
solution is accepted with a probability that is determined by
Boltzmann probability as in equation 1. In addition, T is
a temperature that periodically decreases during the search
process according to the cooling schedule [5], [27]. The
pseudocode of SA is presented in Algorithm 5.

P = e−1E/T (1)

where1E is the difference between the best solution and the
generated one.
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Algorithm 4: Pseudo-Code of IG algorithm
Generate the initial solution x
Set the starting temperature T = T0
Repeat

//destruction procedure
for i = 1 to d do

//d is the destruction size
remove one gene at random from x and add it in
x2 // x2 is a second array to store the removed
genes from x

end
//construction procedure
for i = 1 to d do

x ′ = best permutation obtained by inserting gene
x2i in all possible position of x

End
if the quality of x ′ is better than the x do

x = x ′ //accept the new solution
Else

1E = f (x ′)− f (x)
Generate a random number between 0 and 1 (r)
if ( r < e

−1E
T )

x = x ′

end
end
Update the best solution

Until Stopping criteria satisfied
Return best found solution.

E. ITERATED GREEDY ALGORITHM
Iterated greedy algorithm (IG) is a stochastic search method
that was proposed by [10]. The IG generates a new solu-
tion using the idea of destruction and construction phases.
In destruction phase, number of solution’s genes d are ran-
domly chosen and removed from the solution without

repetition, so that two partial solutions will be resulted. The
first, with the size d of genes, is donated as SR including
the removed genes in the same order that they removed. The
second, with the size n-d of genes, is the original solution
without the removed genes which is donated as SD. Next,
the construction phase is employed to reinsert the removed
genes into the solution. The NEH insertion heuristic is used
as a constructive procedure to complete the solution. The first
gene SR1 is inserted into all possible n – d+ 1 positions in the
destructed solution SD, which generates n – d+ 1 partial solu-
tions. Among these n – d+ 1 generated partial solution, only
the solution with best quality is chosen and kept for the next
iteration. The second gene is then considered, and the process
continues until SR is empty or final solution is obtained.
Therefore, SD is again with the size of n [10]. In addition,
the Boltzmann probability of SA is used here (see equation
1), where new generated solution is always accepted if it is
better than the best, otherwise the worse one is accepted with
the probability. But one different thing that is the temperature

Algorithm 5: Pseudo-Code of VIG Algorithm
Generate the initial solution x
Set the starting temperature T = T0
Set dmax = n− 1 // dmax is the maximum number for
destruction size.
n is the length of the solution
Repeat

d = 1
// destruction procedure
for i = 1 to d do

remove one job at random from x and add it in
x2

end
// construction procedure
for i = 1 to d do

x ′ = best permutation obtained by inserting gen
x2i in all possible position of x

End
if the quality of is better than the quality of x

x = //accept the new solution
Else

1E = f (x ′)− f (x)
Generate a random number between 0 and 1 (r)
if ( r < e

−1E
T )

x = x ′

d = d+1
else

d = d+1
end

end
Update the best solution

Until Stopping criteria satisfied
Return best found solution.

here is static, means there is no cooling schedule [10]. The
pseudocode of IG is given in Algorithm 6 [10].

F. VARIABLE ITERATED GREEDY ALGORITHM
Variable iterated greedy algorithm (VIG) was proposed by
Framinan and Leisten [28] to solve the permutation flows-
hop scheduling problem. The VIG is inspired from the vari-
able neighborhood search (VNS) algorithm which presented
in [29]. The VIG is developed by using the idea of neighbor-
hood change of the VNS algorithm. The implementation of
VIG is similar to IG but differs in the destruction parameter,
where the maximum destruction size is fixed at d max= n-1.
The destruction size is initially set to d= 1. The current solu-
tion is destructed and reconstructed again with the variable
size of d. Then, destruction size d is incremented by 1 (i.e.,
d = d+1), if the solution is not improved until d max = n-1.
Whenever the solution is improved in any destruction size,
the destruction size is again set to d = 1 and the search starts
from the beginning once again. The pseud-code of the VIG
algorithm is given below [28].
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Algorithm 6: Pseudocode of theModified HCAlgorithm
Input: x as the starting solution, mcfp.
Improve = true.
Generate random number r between 0 and 1
If r < probability then

Repeat
Generate (N (x)). //generate a candidate
neighbor//
if x ′ better than x then //x ′ is the generated
solution//

x = x ′.
improve = true.

else
improve = false.

end
Until improve = true.

Else x = x.
Output: final solution found x.

III. PROBLEMS DESCRIPTION
In this work, the performance of the proposed hybrid
BMO is evaluated over two benchmark problems: The
Travelling Salesman Problem (TSP) and Berth Allocation
Problem (BAP). The following subsections describe these
problems.

A. TRAVELLING SALESMAN PROBLEM
The TSP is a well-known combinatorial optimization prob-
lem that is classified as an NP-hard problem, which means
that it may take an infeasible computational time to solve
it [30]–[32]. The TSP can be described as a search for the
shortest path route between a list of cities, that visits each city
once and only once, and finally return to the origin city [33].

B. BERTH ALLOCATION PROBLEM
BAP is a NP-hard problem and known as a berth scheduling
problem, where it aims to allocate berth space for vessels
in container terminal to be served [34], [35]. The BAP can
be classified into two models: the first one is discrete and
continuous berth space, whilst the second is dynamic and
static vessel arrival time. The berth space is considered as
discrete if the quay is divided into a set of segments (berths),
and continuous if not partitioned and vessels can berth any-
where along the quay. The vessel arrival time is considered as
dynamic if vessels can arrive at any time during the container
operations with planning arrival time, and static if all the
vessels have to arrive in the port before the berth planning step
begins. In this study, we focus on the discrete and dynamic
version of the BAP [36]. This BAP deals with allocating
vessels to berths in the port at the planned arrival time. More
formally, the goal is to assign a berth for each vessel and a
service time at the selected berth. The following assumptions
are considered in the BAP [37]:

1) Each berth can serve only one vessel at a time;

2) Any vessel can be assigned to any berth with a given
handling time taking into account that the handling time of a
vessel can differ from one berth to another;

3) All vessels arrive at their berths before or after the
berths’ opening hours with a known arrival time;

4)When a vessel is moored in a berth, it remains there until
all servicing activities have been completed.

The objective of the BAP is to minimize the overall waiting
time of all the vessels that need to be serviced in the harbor,
which is calculated as an objective function as follows [44]:∑

i∈N

∑
k∈K

(T ki − ai + P
k
i

∑
j∈N∪{d}

xkjj) (2)

where:
– ai : arrival time of vessel i
– K : set of berths,
– N : number of vessels that will arrive in the harbour,
– Pki : handling time of vessel i at berth k
– T ki : berthing time of vessel i at berth k
– xkij : decision variable, x

k
ij = 1 if vessel j is serviced at

berth k immediately after vessel i

IV. THE PROPOSED APPROACH
In the hybridization process, invoking single-based algo-
rithms to the whole society (population) of BMO would be
computationally expensive and also might cause a premature
convergence in the BMO in the early stage of the search [38].
Therefore, the probability of hybridizing every member in
the society is controlled based on a probability rate (hybrid
probability (HP)) which is tuned based on preliminary exper-
iments. As mentioned in Section 1, we are using a low-level
teamwork hybrid, therefore the hybridization process is as
follows. At each iteration, BMO generates a new society
using its five mating systems (monogamous, polygynous,
polyandrous, parthenogenesis, and polyandrous). Next, all
birds in this new society will go through a hybrid probability
rate, and any bird passes the probability rate, will go through
a single-based algorithm, otherwise the bird will remain the
same in the society. Finally, the society will go to society
update step in BMO. The flowchart of the proposed hybrid
algorithm is presented in Figure 1. The Figure 1 shows the
process of hybridizing BMOwithHC, however, the same pro-
cess is applied to the remaining four single-based algorithms
(LAHC, SA, IG, VIG).

Furthermore, the new solution that obtained from the
single-based heuristic algorithms is generated as follows. For
IG and VIG, the new solution is generated based on the
greedy manner as explained in sections 3.4 and 3.5, this is
because they are designed to generate a new solution based
on that greedy manner. Whilst, the new solution generated
from HC, LAHC and SA is generated using neighborhood
structure. Hence, the type of the neighborhood structure
depends on the problem domain. For BAP, the new solution is
generated using swap operator, where two vessels at any berth
are randomly selected, and their positions are exchanged [36].
For TSP, the neighborhood structure is generated using 2-opt
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TABLE 1. Parameter settings of BMO.

neighborhood operator. The 2-opt operator selects two tours
at random from the current solution and swaps the cities
located at the end sections of the selected tours. This operator
is different from the normal swap in the way that the swap
operator only exchanges the places of the two selected cities.

V. EXPERIMENTS
The following sub-sections present the experimental setups,
parameters tuning, and results.

VI. DATASETS
In order to assess the performance of the proposed BMO
variants, the experiments are performed over two COPs: TSP
and BAP. TSP benchmark includes 20 instances that range
from 51 to 318 cities [13]. Whilst BAP involves 30 different
instances, each instance has 30 vessels and 13 berths [35].

VII. PARAMETER SETTINGS
The proposed algorithms were implemented using Java Net-
Beans IDE version 8.1 on a personal computer (Intel Pentium
(R) Core i5 CPU at 3.40 GHz with 4 GB RAM), running a
Windows 10 operating system (64-bit). All algorithms were
executed over 30 independent runs with different random
seeds for all instances of the problem domains.

The parameter settings of the BMO and single-based algo-
rithms are set s follows:

A. BMO PARAMETER SETTINGS
Due to the impact of hybridizing single-based algorithms
with BMO on its performance and diversity, the society
size is carefully tuned. Therefore, the population size (PS)
of the hybrid DBMO is fixed to 30 based on preliminary
experiments for both TSP and BAP. The number of gener-
ations (NG) is also tuned based on preliminary experiments
and set to 4000 and 2000 for TSP and BAP, respectively (see
Table 10, Appendix A). The remaining parameters of BMO
are fixed as suggested in [16] and presented in Table 1.

B. SINGLE-BASED PARAMETER SETTINGS
In this experiment, the stopping conditions of all single-based
algorithms for both BAP and TSP are fixed based on the exe-

cution time. Based on the preliminary test, the execution time
is fixed to 0.2 sec for BAP and to 0.0015 sec ∗ number of cities
for TSP. Therefore, the results of the proposed algorithms
can be fairly compared with each other. For the remaining
parameters of the single-based algorithms, the settings are as
follows:

• For HC parameters, HC has only one parameter,
the maximum number of iterations. This parameter has
been set based on the execution time as mentioned.

• LAHC has a list size (L) parameter, which is fixed
to 10 for BAP and 50 for TSP based on preliminary
experiments.

• SA has another two parameters in this work: Initial
temperature (T ) and cooling rate (β). The β is fixed
at 0.85 and the T is fixed to be 50% of the value of
the initial solution as suggested in [39], [40] for both
BAP and TSP. Note that that loop will stop when the T
reaches 0.

• IG has also a destruction size parameter (d), which is
randomly selected in range of 4 to 7 as suggested in [41]
for both TSP and BAP domains.

• VIG has another parameter which is the temperature
level T . This parameter is fixed to 1000 for TSP based
on preliminary tests, and to 0.05 × TP/NBS for BAP
as suggested in [41]. Where TP denotes total handling
time (service time of a vessel on a berth), which is the
summation of handling times of all vessels; NBS is the
total number of allowable vessels for each berth, and is
the number of vessels. For each berth, if the vessel can be
served, it is considered an allowable vessel for the berth.

VIII. RESULTS AND DISCUSSION
All results obtained from the proposed hybrid BMO variants
are presented in this section. The basic BMO are compared
to it hybridized variants to assess the effect of hybridiz-
ing single-based algorithms to the basic BMO. To find
out the best hybridized approach among the proposed five
approaches, all approaches are compared together in one
table. In addition, the best approach is compared to the
state-of-the-art algorithms to verify the effectiveness of the
proposed approach. Statistical analysis is also conducted to
verify the significance of the best hybridized BMO variant
over other variants.

In the subsequent tables, the results for each instance are
presented as average (Avg.), standard deviation (Std), the best
(Best), and percentage deviation (Gap%) with respect to the
quality of solution produced by the compared algorithms. The
best results are highlighted in bold and the Gap is calculated
as follows:

BCA− BKS
BKS

(3)

where BCA show the best obtained from the compared
algorithms and BKS stands for best-known solution in the
literature.
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Algorithm 7: Pseudocode of the DBMO Algorithm
Determine the society size (SS), maximum number of
generations (genmax ), number of mates (nm) and
mutation control factor (mcf).
Generate SS feasible birds.
for t = 1 to genmax do

Rank the birds in ascending order based on their
quality.
Classify the society into five groups: parthenogenetic
polyandrous, monogamous, polygynous and
promiscuous. //the classification is based on the
quality of each bird.
for i = 1 to SS do

case parthenogenetic:
Produce new brood using NI-HC
(Algorithm 4.3)

case polyandrous:
Select nm birds from the male group.
Produce new brood using MPPMX.
If r < mcf then //r is a random number
between 0 and 1//

Mutate the new brood using Insertion
operator.

end
case monogamous:

Select one mate bird from females group.
Produce new brood using OX.
If r < mcf then

Mutate the new brood using Insertion
Operator

end
case polygynous:

Select nm birds from females group.
Produce new brood using MPPMX.
If r < mcf then

Mutate the new brood using Insertion
operator.

end
case promiscuous:

Select one mate bird from females group.
Produce new brood using OX.
If r < mcf then

Mutate the new brood using Insertion
operator.

end
end

end
Perform replacement stage: replace the new generated
broods with their parents if they have better quality.
//update the society for the next generation

end
Return the best bird

A. COMPARISON BETWEEN BMO AND ALL PROPOSED
HYBRID APPROACHES
In this section, we investigate the effectiveness of the hybrid
BMO with single-based algorithms by comparing the results
of the basic BMO with its hybrid approaches. The hybrid
approaches with BMO are as follows: BMO-HC, BMO,
LAHC, BMO-SA, BMO-IG, and BMO-VIG. In addition,
we compare the five hybrid BMO approaches against each
other to investigate which hybridized algorithm is better for
each problem domain.

Table 2 and Table 11 (see Appendix A) present the results
of BMO vs. BMO-HC, BMO-LAHC, BMO-SA, BMO-IG
and BMO-VIG for the BAP. Whilst, Table 3 and Table 12
(see Appendix A) report the comparison results of BMO vs.
BMO-HC, BMO-LAHC, BMO-SA, MO-IG and BMO-VIG
for the TSP. Best results are shown in bold.

From Tables 1, 2 and 11 (see Appendix A), we can make
the following observations:

� For BAP problem, across all instances, all hybrid BMO
algorithms outperformed BMO not only in terms of
percentage deviation, but also on average, standard devi-
ation (see Table 2 and Table 10). We can observe that
hybrid BMO with single-based algorithms enhanced
the exploitation of BMO and produced better results.
In comparison between all proposed hybrid BMO
approaches, it’s clear that BMO-HC performed better
than BMO-LAHC, BMO-SA, BMO-IG and BMO-VIG
not only in terms of percentage deviation, but also,
on average results. Table 11 (see Appendix A) also
shows that the standard deviation produced by BMO-HC
is better than BMO-LAHC, BMO-SA, BMO-IG and
BMO-VIG on 28 out of 30 instances. In addition, BMO-
HC improved the BMO by 1.13% on the average of
all instances in terms of solution quality (as shown
in the last column in Table 2). On average computa-
tional time as can be seen in Table 12 (Appendix A),
the values obtained from the BMO are less than those
obtained from the hybrid BMOs. This is because the
BMO suffers from poor exploitation ability, which led
the algorithm to converge at an early stage of the search
space. Thus, the best results are obtained with less time
but with poor quality solution. In addition, the hybrid
DBMOs require more time due to the use of SBH algo-
rithms during the search, and this is still acceptable as
the hybrid algorithms still run in a reasonable amount
of time. Meta-heuristic techniques aim to provide a
good quality solution with a reasonable amount of time,
and this is what the hybrid BMO in this paper has
achieved.

� For TSP, the results reported in Table 3 and
Table 12 demonstrated that BMO-HC, BMO-LAHC
and BMO-SA obtained better results for all tested
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TABLE 2. Comparison between BMO and hybrid approaches for BAP over 30 independent runs (with respect to the quality of solutions).

instances, in terms of the percentage deviation, average,
standard deviation. Whilst, BMO-IG and BMO-VIG
outperformed BMO on 17 and 13 out of 20 instances
in terms of average results, respectively, and on 9 and
8 out of 20 instances in terms of standard deviation,
respectively. Comparing the hybrid approaches against
each other, we can see that BMO-SA outperformed
BMO-HC, BMO-LAHC, BMO-IG and BMO-VIG on
19 out of 20 instances. On average and results, BMO-
SA outperformed the four compared hybrid BMO
approaches in 10 out of 20 instances (see Table 3).
Table 13 (see Appendix A) also shows that BMO-SA
produced better standard deviation compared to BMO-
HC, BMO-LAHC, BMO-IG and BMO-VIG on only
5 out of 20 instances. In addition, BMO-SA improved
the BMO by 4.13% on the average of all instances
in terms of solution quality (as shown in the last col-
umn in Table 3). For computational time, as shown
in Table 13, all hybrid BMO algorithms consumed more
computational time compared to BMO. That is due to
the early convergence in BMO and to the use of SBH in
the hybrid approaches.

To verify whether the results are statistically different,
we have conducted a pairwise comparison using Wilcoxon
test with significant level of 0.05 for comparing BMO against
hybrid approaches (Tables 15 and 15)7 and a multiple com-
parison statistical test to compare the hybrid approaches to
each other (Tables 4-7). Table 15 and Table 16 show the p-
values computed for the tested instances of the BAP and TSP,
respectively. In this table, ‘‘+’’ indicates hybrid DBMO is
statistically better than BMO (p-value< 0.05), ‘‘–’’ indicates
hybrid DBMO outperformed by DBMO (p-value> 0.05) and
‘‘=’’ indicates both hybrid BMO and BMO have the same
performance (p-value = 0.05).
Based on p-value reported in Table 15 and Table 16, it

can be concluded that BMO-HC, BMO-LAHC, BMO-SA,
MO-IG and BMO-VIG results are statistically significant and
better than from those produced by BMO across all instances
of BAP problem domain (see Table 15). For the TSP, the p-
values demonstrate that BMO-HC, BMO-LAHC and BMO-
SA are statistically better than BMO on all tested instances,
whilst BMO-IG and BMO-VIG are statistically better than
BMO on 16 and 12 out of 6 instances, respectively (see
Table 16).
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TABLE 3. Comparison between BMO and hybrid approaches for TSP over 30 independent runs (with respect to the quality of solutions).

TABLE 4. The average rank of hybrid BMO algorithms obtained by
Friedman, Aligned Freidman and Quade tests for BAP.

TABLE 5. The average rank of hybrid BMO algorithms obtained by
Friedman, Aligned Freidman and Quade tests for TSP.

For multiple comparison between the hybrid approaches,
Table 4 and Table 5 show the average ranking (the lower the
better) computed by Friedman, Friedman Aligned and Quade
tests for the hybrid BMO approaches (BMO-HC, BMO-
LAHC, BMO-SA, MO-IG and BMO-VIG) for both BAP and
TSP domains, respectively. The tables highlighted that BMO-
HC and BMO-SA obtained the first rank out of five compared
methods for BAP and TSP problem domains, respectively.
The p-value computed through the statistics of each of the
test considered are less than 0.05 and the Iman-Davenport

TABLE 6. The adjusted p-values computed by Friedman test for the
compared methods for BAP instances.

TABLE 7. The adjusted p-values computed by Friedman test for the
compared methods for TSP instances.

(<0.05) prove that there is a significant difference among
the methods considered for both BAP and TSP. Therefore,
post-hoc procedures are performed to detect the significant
difference between all tested methods.

Table 6 shows the adjusted p-values of Holm andHochberg
statistical tests using the ranks computed by Friedman, Fried-
manAligned andQuade tests, respectively where DBMO-HC
is the controlling method. Table 6 demonstrate that BMO-HC
outperforms other hybrid BMO approaches with a criti-
cal level of 0.05 (adjusted p-values < 0.05) for all tests
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TABLE 8. Comparison between the proposed approaches and the state-of-the-art approaches for BAP in terms of best obtained solution (minimum cost).

TABLE 9. Comparison between the proposed approaches and the state-of-the-art approaches for TSP in terms of best obtained solution (minimum cost).

considered for BAP. Whilst for TSP, it can be seen in Table 7
that the BMO-SA outperforms BMO-IG and BMO-VIG
with a critical level of 0.05 (adjusted p-values < 0.05).
However, the results in Table 7 indicate that BMO-SA

does not outperform BMO-SA and BMO-LAHC (adjusted
p-values > 0.10).
From the above comparison, we can conclude that

hybridizing single-based algorithms with BMO enhances the
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TABLE 10. Parameter tuning for BMO algorithm using 5 BAP and TSP instances based on best solution quality over 10 runs.

TABLE 11. Standard deviation comparison between BMO and hybrid approaches for BAP over 30 independent runs.

search process and the performance of BMO. It can be
stated that BMO with single-based algorithm is a robust
algorithm that balances between exploration and exploita-
tion when searching for global optimum. The single-based
algorithm improves the exploitation ability of BMO and

at the same time, it does not damage its exploration
ability.

To show the hybrid algorithm improves the exploitation
ability of the algorithm, we have conducted an analysis using
one BAP instance as shown in Figure 2. The figure shows that
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TABLE 12. Average computational time comparison between BMO and hybrid approaches for BAP over 30 independent runs (time in second).

TABLE 13. Standard deviation comparison between BMO and hybrid approaches for TSP over 30 independent runs.

the hybrid BMO-HCmaintained the exploitation ability of the
algorithm and continuously improve BMOuntil the end of the
search. Parts (a), (b), (c) and (d) in Figure 2 show the ability

of the algorithm in exploring the search space followed by
the ability of exploiting it (Figure 2 (e), (f), (g) and (h)). This
behavior directs the algorithm toward a superior convergence.
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TABLE 14. Average computational time comparison between BMO and hybrid approaches for TSP over 30 independent runs (time in second).

TABLE 15. P-value of Wilcoxon test of hybrid BMO algorithms against BMO for BAP.

In this figure, it can be clearly seen that the algorithm tries to
explore the search space until 30% of the search space and
then starts to exploit it after the 30% of the search space and
continues the exploitation until finding the best solution and
final convergence.

To summarize, the results achieved by hybrid BMO
approaches show that these approaches perform better than
the BMO. In addition, the hybrid approaches matched the
best-known results in the literature on 30 out of 30 instances

for BAP and on 17 out of 20 instances for TSP. From
these results, it is clear that embedding single-based meta-
heuristics with the BMO outperform the BMO algorithm
alone. In fact, that is mainly due to the ability of single-based
meta-heuristics to improve the exploitation process of the
algorithm and produce good quality solutions. In addition, the
statistical tests revealed that BMO-HC outperforms the other
hybrid BMO approaches for BAP, whilst BMO-SA outper-
forms BMO-IG and BMO-VIG for TSP. However, although
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TABLE 16. P-value of Wilcoxon test of hybrid BMO algorithms against BMO for TSP.

the results of Holm and Hochberg suggest that BMO-SA is
not statistically better than BMO-HC and BMO-LAHC for
TSP nevertheless, the best and the average results shown
in Table 3 and Table 11 reveals that BMO-SA produced better
results compared to BMO-HC and BMO-LAHC.

B. COMPARISON WITH THE STATE-OF-THE-ART
APPROACHES
In the previous section, we found from analyzing the results
that BMO-HC and BMO-SA outperformed other hybrid
approaches in terms of solution quality for BAP and TSP,
respectively, on all tested instances. In this section, we com-
pare the performance of the of the best hybrid approaches
against the most related approaches in the BAP and TSP
literature. The following subsections present the comparison
for BAP and TSP.

1) COMPARISON RESULTS FOR BAP
Table 8 presents the comparison results of percentage devia-
tion according to solution quality between BMO-HC and the
following approaches: Adaptive Large Neighborhood Search
(ALNS) [42], Column Generation (CG) [43], Simulated
Annealing with Restart Strategy (SAr.s) [44], Tabu Search
Algorithm (TS) [35], Iterated Greedy Heuristic (IG) [41].
Best results are highlighted in bold.

As shown in Table 8, the proposed BMO-HC performed
better than 2 out of 5 algorithms and produced results
same as the remaining algorithms in which they match the
best-known solutions across all tested BAP instances. TS is
the worse as it matched the best-known solutions on 13 out
of 30 instances, while CG comes next as it matched 27 out
of 30 instances. That means the BMO-HC results are very
competitive and stable across all instances. This can be
interpreted by the improved exploitation ability of BMO-HC
which helps to search for high-performance regions of search
space.

2) COMPARISON RESULTS FOR TSP
Table 9 reports the comparison results of percentage devi-
ation according to solution quality between BMO-SA and
the following approaches: discrete spider monkey optimiza-
tion (DSMO) [45], swap sequence based Artificial Bee
Colony algorithm (ABCSS) [46], velocity tentative PSO
(VTPSO) [47], GA [17], and PSO [17].

Table 9 demonstrate that the proposed BMO-SA algo-
rithms performed better than GA and PSO algorithms across
all tested instances, and better than the remaining approaches
on 12 out of 15 tested instances. Even though DSMO perform
better than other approaches on 3 instances, BMO-SA still
in the first place where it outperformed all other approaches
on 80% of the instances. In addition, BMO-SA matched the
best-known solutions on 17 out of 20 tested TSP instances
whilst none of the compared approaches has matched any
of best-known solutions. This is due to the impact of SA
algorithm in improving the search space and attaining well-
balance between exploration and exploitation of BMO.

IX. CONCLUSION
In this work, we proposed five hybrid approaches of BMO
algorithm for solving combinatorial optimization problems:
BMO-HC, BMO-LAHC, BMO-SA, BMO-IG, and BMO-
VIG. The proposed approaches employed the single-based
algorithms using low-level teamwork hybrid model.

Single-based algorithm used inside the BMO as a local
search operator in which it searches the neighborhood of each
solution in the population after each iteration. A hybridization
probability is implemented to every solution before hybridiz-
ing to avoid early premature convergence. To evaluate the
proposed methods, we tested them on the travelling salesman
problem and berth allocation problem and all approaches
are compared against each other. In addition, a comparative
study was conducted against five recent methods in the lit-
erature including: GA, PSO, VTPSO, ABCSS, and DSMO.
The computational results demonstrated that the hybrid BMO
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approaches were able to outperform the original BMO across
all instances in both problem domains BAP and TSP. Further-
more, the BMO-HC and BMO-SA matched the best-known
solutions.

across all instances for BAP and across most of TSP
instances, respectively. Also, the hybrid BMO approaches
showed very competitive results when compared to the state-
of-the-art methods for BAP and TSP and ranked as among the
best performing approaches. In conclusion, we proved that
hybridizing BMO with single-based algorithms managed to
improve its exploitation and attain the well-balance between
exploitation and exploration of the algorithm.

In future work, it might be beneficial to investigate the
possibility of proposing an online framework of the hybrid
BMO to solve different combinatorial optimization problem
without the need to select the single-based algorithm man-
ually. On other words, proposing a BMO model that can
automatically adjust the components of the hybrid BMO
according to the search status.

APPENDIX A
See Tables 10–16.
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