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ABSTRACT Novel two-dimensional (2D) PtO2/GaN van der Waals (vdW) hetero-bilayers (HBL) are
studied here for photocatalytic water splitting (PWS) application under first-principles density functional
theory (DFT). We proposed six HBLs due to the atomic orientational variations and two of them are
found dynamically stable confirmed by phonon dispersion curves. The two stable HBLs, HBL1, and
HBL6 also show negative binding energy depicted by the interlayer distance-dependent binding energy
curves. Among them, HBL1 has the lowest binding energy, suggesting the exothermic practicability of the
material. Electronically both materials show a visible ranged indirect bandgap of∼2.65 (2.69) eV for HBL 1
(HBL6), lowered by∼2 times compared to their intrinsic constituents (2D PtO2, 2DGaN). The bandgaps also
have type-II band orientation, which is highly required for efficient spatial carrier separation in photocatalytic
water splitting (PWS) applications. The optical properties of the HBLs were also calculated, and it’s found
that the HBLs have∼2×105 cm−1 of perovskite material-like absorption coefficient in the visible spectrum,
a key requirement for efficient photocatalysis. Reflectivity is as low as ∼7 % in the visible spectrum,
suggesting the low-loss nature of thematerials. Photocatalytic band-edges with type-II band alignments show
sufficient kinetic overpotential for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER)
in both HBLs, suggesting effective water-splitting capacity. Moreover, we have explored the biaxial strain-
induced tunability of the electronic bandgap, absorption coefficients, and photocatalytic band edges. They
all found responsive due to homogeneous biaxial strain and show bandgap-lowering, absorption coefficient
visible shifting, and band-edges tuning from compressive to tensile strains in the −6 % to +6% range.
These studies suggest that the novel PtO2/GaN vdW layered material can be a probable efficient material
for visible-light-driven photocatalytic water-splitting technology.

INDEX TERMS 2D PtO2/GaN, hetero-bilayer, van der Waals (vdW) concept, first-principles density
functional theory (DFT), optoelectronic property, photocatalytic water splitting.

I. INTRODUCTION
The incremental energy consumption is made globally, caus-
ing a detrimental environmental effect as the energy sources
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are mainly from fossil fuels [1]. This leads to CO2 emission
worldwide to the extent that was never before, resulting in
serious global warming [2], [3]. An energy alternative, poten-
tially high-efficient, renewable, and facilitated by low- or zero
CO2 -emission is highly demanding to reduce this negative
effect. This leads to an eloquently simple concept of hydrogen

109510 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-1698-6922
https://orcid.org/0000-0002-3538-2315
https://orcid.org/0000-0002-8129-8368
https://orcid.org/0000-0001-8073-9750
https://orcid.org/0000-0002-6304-3732
https://orcid.org/0000-0001-6259-3209


M. S. Hasan Khan et al.: Potential Visible-Light Driven PtO2/GaN vdW Hetero-Bilayer Photocatalysts

TABLE 1. 2D GaN and PtO2 based vdW structures in literature as photocatalysts.

(H2) fuel production fromwater using a semiconductor-based
splitting mechanism [4], [5]. The core attractiveness of the
concept is that harnessing the two-dimensional (2D) semicon-
ductor and layered materials-based photocatalysts, the water
can be split into oxygen (O2) and H2 with zero CO2-emission
while the traditional biomass-gasification process of H2 fuel
production comes up with CO2 byproduct [6]. However,
finding an efficient photocatalyst is on the search, and many
scientists are exploring newer and newer possibilities. In this
regard, the key challenge is to seek a material having all
the attributes for photocatalytic water splitting (PWS). The
attributes are the following: the material must possess (i) suit-
able bandgap (∼1.23 eV) and band-edges so that the kinetic
overpotential become sufficient for hydrolysis, (ii) spatial
carrier separation capability and high-surface to volume ratio
so that photocatalytic sites can be increased, and (iii) high-
optical absorption in the visible or near ultra-violet (NUV)
spectrum so that the peak solar irradiations can be utilized.
To acquire these features, nanostructured 2D materials are
the best candidates as they have suitable band-gap, high-
surface to volume ratio, superior carrier mobility, and con-
siderable absorption co-efficient [5], [7]–[9]. The prominent
proof regarding it is the first nanostructured (nanoparticle)
photocatalysts, TiO2 outperforms in water splitting with bet-
ter hydrogen yield than its bulk structure [7], [10]. From
these evidences, many 2D materials are coming into the light
for PWS application. Among them, a nonmetallic graphene-
like C3N4 shows ∼3.2 µmol/h/g of H2 production at
∼ λ > 420 nm visible lights with∼10 m2/g surface area and
∼2.7 eV near-ultraviolet (NUV) bandgap [9], [11]. It shows
almost by ∼35 (∼106 µmol/h/g) times more yields when Pt
co-catalysts are added. Bandgap engineered graphene out-
performs in this respect almost by ∼100 (∼1050 µmol/h/g)
times more yields than the previous one [5]. Besides, 2D tran-
sition metal dichalcogenides (TMDs) show a tangible change
(∼26000,∼62000, and∼2580 µmol/h/g of yields for MoS2,
MoSe2, and WS2, correspondingly) in H2 yields using their
self-polarizing properties [5], [12], [13]. However, the spatial
carrier separation, another key requirement for PWS can-
not be acquired by only 2D materials. Here, comes another
alluring concept, vdW stacked layered materials, as with

the properties like 2D materials, they also have bandgap
tunability due to stacking patterns, spatial carrier separa-
tion capability, and superior optical absorption [14], [15].
With the advent of nanotechnology, emergent materials, pre-
cisely, graphene, 2D oxides, 2D transition metals dichalco-
genides (TMDs), and 2D group III-V are experimentally
realized and unleashed the astonishingly unique proper-
ties of the materials [12], [16], [17]. As such material is
2D PtO2, having superior thermo-mechanical stability with
∼175.78 N/m of mechanical stiffness, two valley bandgap of
∼1.67 eV (PBE), ∼3.15 eV (HSE06), and ∼3.59 eV (GW),
superior optical absorption and carrier mobility, is numer-
ously used as substrate material for many-layered materials,
hetero-bilayers for photovoltaics and PWS applications [18].
For example, ZnO/PtO2 vdW hetero-bilayer (HBL), with
direct type-II 0.47 eV of bandgap, can be used in pho-
todetector application [19], PtO2/MoS2 vdW HBL with
indirect bandgap shows photocatalysis property [20], exper-
imentally synthesized Ni(OH)2/PtO2 nanostructured array
show enhanced hydrogen evolution reaction (HER) [21],
and PtO2 based nanoparticle show improved HER [22].
Besides, the PtO2 based 2D and vdW structures show
altering bandgap, enhanced HER, and improved optical
absorption. Another promising 2D material, 2D planar GaN
with a large ultraviolet (UV) ranged bandgap ∼4.42 eV
(GW), and ∼4.18 eV-5.2 eV (experimental) bandgap, high
thermal and chemical stability, mechanically robustness
(∼108.37 mechanical stiffness and 0.410 Poisson’s ratio),
self-polarizing capability, and ultra-high carrier mobility
makes it available in wide ranges of application namely, pho-
tovoltaics, coatingmaterial, UV-detector, and dielectric mate-
rial for nano-transistors [23]–[26]. It is also experimentally
realized [24], [27]. Moreover, the vdW concept of 2D GaN is
widely used as direct-Z scheme type-II bandgap photocata-
lysts for water splitting [15], [28]–[30]. Some of the shreds
of evidence are compiled in TABLE 1. Among them, 2D
GaN stacked with TMDs, and transition metal oxides (TMO)
outperforms due to their visible driven PWS capability
with cross-plane spatial carrier separation (SCS). Besides,
MoS2/GaN, phosphorene/GaN, GeC/GaN, BAs/GaN, and
BP/GaN are all show tunable electronic, optical properties
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with tunable PWS band edges due to stacking variations and
external perturbation (biaxial strain, and cross-plane electric
field) [29], [31]–[33].

However, to our best knowledge, the vdW PtO2/GaN
hetero-bilayer is not studied yet for the PWS application,
though 2DPtO2 and 2DGaN possess astounding intrinsic and
tunable optoelectronic properties. Therefore, in this study,
we have introduced the novel vdW PtO2/GaN hetero-bilayer
with all of its stacking variants and explore the PWS attributes
of the materials. Also, to unlock tunability in electronic, opti-
cal, and photocatalytic properties, biaxial strain is introduced.
These studies suggest that the novel vdW PtO2/GaN hetero-
bilayer, with visible ranged bandgap, high-optical absorption,
and tunable photocatalytic properties can be a promising
material for advanced PWS technology.

II. COMPUTATIONAL METHODOLOGY
For the density functional theory (DFT) calculations,
CAmbridge SerialTotalEnergy Package (CASTEP), an aca-
demic opensource version, is used which utilizes a plane-
wave basis set [37]. Electron-ion interactions are described
by the norm-conserving pseudopotential (NCP). To pre-
dict electronic properties, we initially implemented Perdew-
Burke-Erzernhof (PBE) functional with generalized gradient
approximation (GGA) exchange-correlation [38]. Conven-
tionally, GGA-PBE exchange-correlation functional predict
bandgap underestimated from experimental bandgap of a
semiconductor. Heyd-Scusena-Ernzerhof’s (HSE 06) nonlo-
cal hybrid functional was introduced tominimize the bandgap
problem [39]. Besides, customized meta-GGA (MGGA)
functional with 2D PRHG and regularized PBE is utilized to
further reduce the deviation between theoretical and experi-
mental bandgap [40]. We have also evaluated the predicted
bandgap value with experimental and quasi-particle (QP)
bandgap values. The vdW interaction, significant in the
stacked HBLs, is defined by semi-empirical Grimme dis-
persion corrected density functional theory (DFT-D3) [41].
To model the vdW stacked HBLs, a 2 × 2 supercell of 2D
PtO2 and 2D GaN are chosen and oriented in six different
ways. For each 2D layer, a 30 Å vacuum slab model is used.

For structural relaxation Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm is used with energy cut-off 800 eV.
The energy, stress, force, and displacement tolerance cutoff
are 1 × 10−5 eV/atom, 0.05 GPa, 0.03 eV/Å, and 0.001 Å,
correspondingly. The K- points sampling for reciprocal space
are 9 × 9 × 1, 15 × 15 × 1, and 30 × 30 × 1 for electronic
band structure, projected density of states (PDOS), and opti-
cal properties calculations, respectively. For predicting the
exothermic feasibility of the stacking, the binding energy is
introduced equated by the following equation,

Eb =
[
Eheterobilayer −

∑
i
Ei (layeri)

]
(1)

where, Eheterobilayer is the dispersion corrected total energy
of the hetero-bilayer system, and

∑
i Ei (layeri) is the sum

of the energies of i numbers of 2D layers for stacking the

hetero-bilayer. Likewise, the formula used for charge density
difference calculation is the following,

1ρ = ρhetrobilayer −
∑

i
ρi (layer) (2)

here, ρhetrobilayer is the vdW HBL’s charge density and∑
i ρi (layer) is the accumulated charge density of the 2D

layer used for vdW stacking. Besides, to predict the dynam-
ical stability of the HBLs, density functional perturba-
tion theory (DFPT) initiated phonon dispersion curves are
introduced.

For strain-dependent tunability of the properties, the fol-
lowing equation is applied,

as = ±e× au + au (3)

where, as and au denotes strained and unstrained lattice con-
stants, correspondingly. The e with +ve (−ve) sign signifies
the tensile (compressive) strains.

For calculating density functional theory (DFT) based
dielectric function, ε (ω) = ε1(ω) + iε2(ω), the complex
dielectric constant is evaluated first. Interestingly, a singu-
larity between inter-band transition energies and complex
dielectric function is found evaluated by [42], [43],

ε2 =
2e2π
�ε0

∑
k,v,c
|〈9c

k |û× r|9
v
k |
2
〉δ(Eck − E

v
k − E) (4)

where, e = electronic charge, û = vector defining the
polarization of incident filed, � = polarization density, r =
spatial position, ψc

k and ψ
v
k = the conduction band (CB) and

valence band (VB) wave-function at k respectively. Eck = the
conduction band energy, Evk = valance band energy, and
E = Fermi energy.

III. RESULTS AND DISCUSSION
A. STRUCTURAL PROPERTIES
We have first included here the structural details of our
proposed PtO2/GaN vdW HBLs along with the constituents.
The 2D GaN (α-PtO2) is planar (buckling) with a hexagonal
structure (P-3M1). The calculated lattice parameters for 2D
α-PtO2 (GaN) are the following: lattice constant, a ∼ 3.168
(3.248) Å, bond length, dB ∼ 2.07 (1.875) Å, and buckling
height, dH ∼ 1.865 (0.0) Å. These lattice parameters are
well-aligned with other theoretical and experimental stud-
ies [18], [26], [31], [42], [44]–[47]. For stacking the 2D lay-
ers, 2D PtO2(α-phase) is assumed as substrate layer and 2D
GaN is vertically placed on top of that layer. While stacking,
lattice mismatch arises due to the lattice constant discrep-
ancy of the 2D layers and the mismatch is ∼2.5 %, quite
lower compared with other vdW stacked HBLs, as calculated
by % mismatch=100 (a2DGaN − a2DPtO2)/a2DPtO2 [15],
[19], [28], [34]. This mismatch value is also in the allowable
value (below 5%) of the vdW stacking, suggesting the possi-
bility of stacking. The six variants of the HBLs are oriented
in the following manner: First, we defined two oxygen
atoms in the buckling structure of PtO2 as upper oxygen (Ou)
and lower oxygen (Ol). Now, in HBL 1, gallium (Ga) and
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nitrogen (N) atoms stacked on top of platinum (Pt) and Ol
atoms, respectively; in HBL 2, N (Ga) atoms are right on the
Pt (Ol) atoms; In HBL 3, Ga atoms are stacked on the Pt atoms
and N atoms are on the top of Ou; In HBL 4, N (Ga) atoms are
stacked on top of Pt (Ou) atoms; In HBL 5, Ga (N) atoms are
directly on top of Ol(Ou) atoms; finally, in HBL 6, the order
is reversed i.e., N (Ga) atoms are straight on top of Ol(Ou)
atoms. The geometry relaxed structures of the HBLs (HBL 1,
and HBL 6) are shown in Fig 1 (a), and (b). Figure 2 shows
the phonon dispersion curves for 2D GaN (a), 2D PtO2 (b),
HBL 1 (c), HBL 2 (d), HBL 3 (e), HBL 4 (f), HBL 5 (g), and
HBL 6 (h), including the interlayer binding energy curves (i).
The dynamic stability test is done on the HBLs through
density functional perturbation theory (DFPT) and the HBL 1
(Fig.2 (a)), and HBL 6 (Fig.2 (h)) are found dynamically
stable. The other HBLs, HBL 2, HBL3, HBL4, HBL 5 are
dynamically unstable as negative phonon branches are found
in the phonon dispersion curves as depicted in Figs. 2(d - g).

FIGURE 1. VdW stacked models for (a) HBL1, and (b) HBL6. The black
solid lines are for the unit cell of the hetero-bilayer (HBL).

FIGURE 2. Phonon dispersion curves for (a) 2D GaN, (b) 2D PtO2,
(c) HBL 1, (d) HBL 2, (e) HBL 3, (f) HBL 4, (g) HBL 5, and (h) HBL 6, and
(i) interlayer binding energy curves.

We have also excluded the unstable HBLs from our further
studies. The dynamically stable optimized HBLs have lattice
constants ∼3.209 Å (∼3.208) Å for HBL 1 (HBL 6), which
also remains in the lattice constant range of 2D GaN and
2D PtO2, as expected as in the theory. Among the HBLs,
HBL 1 (HBL 6) has the smallest (highest) interlayer spacing
∼2.963 Å (∼3.180 Å).

To reveal the exothermic feasibility of the HBLs, the inter-
layer spacing dependent binding energy is calculated by the
following equation,

Eb = EPtO2/GaN HBL − EGaN − EPtO2 (5)

where, EPtO2/GaN HBL = dispersion corrected total energy
of the HBL, EGaN = the energy of 2D GaN and EPtO2 =
the total energy of 2D PtO2. The binding energy curves are
shown in Fig.2 (i). The binding energies, respective interlayer
distances, optimized lattice constants, and buckling heights,
bond lengths are enlisted in TABLE 2. The binding energy
predicts the most energetically favorable HBL and HBL 1 is
the most favorable. As strong binding energy means strong
interlayer coupling in the HBLs, the HBL 1 has the small-
est interlayer spacing with the highest cross-layer coupling.
These cross-layer spacing variations appear due to the atomic
orientation while stacking. Now, to evaluate whether the
HBLs are vdW bonded or covalent bonded, we have calcu-
lated the sum of vdW and covalent radii of the stacked atoms.
The smallest cross-layer spacing is ∼2.963 Å in HBL 1,
higher than the accumulation of covalent radii of Ga (1.26 Å)
and Pt (1.3 Å) atom i.e., 2.56 Å, indicating the absence of
covalent bonding between the 2D layers. However, the cross-
layer distance is within the accumulated vdW radii of Ga
(1.87 Å) and Pt (1.75 Å) atom i.e., 3.62 Å, referring to the
existence of vdW interaction in between the stacked layers.

B. ELECTRONIC PROPERTIES OF
HETERO-BILAYER SYSTEM
To implement our user-defined meta-GGA (MGGA) for the
rest of the electronic properties, we have evaluated the func-
tional by comparing with experimental value and quasiparti-
cle (QP) GW bandgap value. The comparison of GGA-PBE,
HSE 06, GW, and experimental bandgap with customized
MGGA (2D PRHGwith 2D corrected PBE) is depicted along
with the band structures in Fig. 3 (a)-(h), (i). The bandgap
values we have calculated using various functionals are in
correspondence with the other theoretical and experimental
studies. The wonder is that the customized MGGA well-
predicts the bandgap with acceptable accuracy as compared
with the GW bandgap (∼5% deviation from GW in 2D GaN)
and experimental (our proposed MGGA underestimates 2D
GaN bandgap ∼0.82 eV while GW approximation underes-
timates the bandgap ∼1.04 eV). These comparisons suggest
that the customized MGGA is well-suited for almost ∼90%
reducing of computational cost within acceptable accuracy
(e.g., GW requires 64 CPU hours while MGGA requires
only 2 CPU hours for the same type of calculations). The

VOLUME 9, 2021 109513



M. S. Hasan Khan et al.: Potential Visible-Light Driven PtO2/GaN vdW Hetero-Bilayer Photocatalysts

TABLE 2. Optimized lattice constant a (Å), bond length dB (Å), buckling Height, dH (Å), cross-layer binding energy, Eb(meV), cross-layer spacing, D (Å),
bandgap EPBE

g (eV) using GGA-PBE functional, bandgap EHSE06
g (eV) using HSE-06 non-local functional, and bandgap EMGGA

g (eV) using Meta-GGA (MGGA)
functional with 2D PRHG.

FIGURE 3. The band-structures calculated by GGA-PBE, and HSE06 for (a) 2D GaN), (b) 2D PtO2, (c) HBL 1, (d) HBL 6. The band
structures calculated by customized MGGA functional for (e) 2D GaN, (f) 2D PtO2, (g) HBL 1, (h) HBL 6. (i) Comparative bandgap
values. (j) Relative band alignment for 2D GaN, 2D PtO2, HBL1, and HBL6 for photocatalytic water splitting.

MGGA band structures of the HBLs are also depicted in
Fig. 3 (e)-(h). As depicted, the bandgap values are highly
receptive in the value due to stacking. The HBL 1 and HBL
6 both have indirect bandgap with almost ∼2 times lowering
of the bandgap values from their constituents, facilitating for
the PWS application.

To evaluate the photocatalytic water splitting activity of
the VdW HBL, the relative band edges are to be calculated.
For this purpose, the MGGA bandgap values are considered

utilizing the equation ECB = X−Ee−(
EMGGAg

2 ) for conduction

band edge (CBE) and EVB = X − Ee + (
EMGGAg

2 ) for valance

109514 VOLUME 9, 2021



M. S. Hasan Khan et al.: Potential Visible-Light Driven PtO2/GaN vdW Hetero-Bilayer Photocatalysts

band edge (VBE) calculation. Where, the Mulliken elec-
tronegativities of the comprising atoms of the hetero-bilayers
are denoted by X, Ee represents the standard hydrogen poten-
tial (4.45 eV). The Mulliken electronegativity for 2D GaN
(PtO2) is 4.83 eV (6.80 eV). Fig 3 (j) demonstrates the VBE
and CBE for the 2D GaN, 2D PtO2, HBL 1, and HBL 6. The
relative band-edge positions suggest that VBE is contributed
by 2D GaN, and CBE contributed by 2D PtO2, outlining the
type-II band edge (staggering). At, pH level zero, the standard
potential with respect to vacuum for (2H+/H2) reduction
and (H2O/O2) oxidation potentials are at −4.46 eV, and
−5.67 eV energy levels, respectively. In comparison with
these reference values, both HBL 1 and HBL 6 have adequate
kinetic overpotential for initiating the reduction and oxida-
tion (redox) reactions, facilitating the hydrolysis potentiality.
Moreover, the valance band offset (VBO) (conduction band
offset (CBO)) is∼2.25 eV (1.69 eV), high enough to separate
the carrier spatially. This high-VBO and CBO thus facilitates
the potentiality of the photocatalysis of the water.

For the deep insights, we have evaluated the atomic
orbital projected density of states (PDOS) (as shown in
Fig. 4 (a), and (b)) so that the band-edge contributing atoms
and their orbitals can be revealed. In both HBLs, the CBE is
mainly subsidized by the d-orbital of Pt atom of the 2D PtO2
layer, and the VBE is dominantly donated by p-orbital of N
atom of the 2D GaN layer, marking the type-II (staggering)
band positions. This finding is also theoretically in line with
the relative band-edge calculation mentioned in the previous
paragraph.

FIGURE 4. Atomic orbital projected density of states (PDOS) (GGA-PBE)
for (a) HBL 1, and (b) HBL 6.

To gain the insights of charge transfer and contributing
layers, the charge density difference is shown using, 1ρ =
ρHBLs − ρ2DPtO2 − P2DGaN , where, ρHBLs is the charge
density of HBL, ρ2DPtO2 is the charge density of 2D PtO2

FIGURE 5. The charge density differences plot for (a) HBL 1, and
(b) HBL 6. The yellow (green) color represents the charge depletion
(accumulation). The iso value is assumed ∼0.001 e Å−3. Effective average
potential differences for (c) HBL 1, and (d) HBL 6 are shown by red solid
lines concerning the z-axis.

and P2DGaN is the charge density of the 2D GaN. The yel-
low (green) region refers to the charge depletion (accumu-
lation). In both HBL (Fig 5. (a), (b)), N (O) predominantly
depletes (accumulates) the charges. This nature signifies the
charge transfer direction fromN atoms of 2DGaN to O atoms
of 2D PtO2. The transfer is also confirmed by the comparative
electro-negativities of the atom.As, theO atoms (∼3.44) have
higher electro-negativity than N atoms (∼3.04), resulting in
the charge transfer from N to O direction.

To find out the effective carrier separation capability,
the spatial effective average potential along the cross-plane
direction is calculated from the Poison equation. It turns out
that 2D PtO2 has a higher potential than 2D GaN which is
reliable with the charge transmission as well. A significant
amount of effective potential difference ∼3.25 V is found.
A strong electrostatic electric field arises due to the high-
potential difference which results in spatially discretizing the
charge carriers, operating as anti-recombinant, highly sug-
gestive for photocatalysis applications. To proceed further,
we have calculated the electron and hole effective masses
of the HBLs and comprising 2D layer from dispersion band
theory as summarized in TABLE 3. The values reveal that
the electron and hole effective masses are highly responsive
to the stacking orientation of the HBLs. However, the HBLs

TABLE 3. Calculated effective mass m∗
e/m0.
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show a low value of effective masses compared with their
constituents, suggesting high-carrier mobility in the HBLs.
Moreover, effective carrier separation is also suggestive due
to the low recombination time as mobility is higher, also
confirming the potential of spatial carrier separation and
facilitating the PWS.

C. ELECTRONIC PROPERTIES OF HBLS: BIAXIAL
STRAIN CONTRIBUTION
Biaxial strain, an intrinsic feature of vdW stacked HBL,
arisen from the lattice mismatch is used here to alter the
electronic properties. The biaxial strain tuned band struc-
tures for HBL l and HBL 6 are shown in Fig. 6 (a), (b).
Unstrained HBL 1 shows an indirect bandgap ∼2.65 eV

FIGURE 6. Biaxial strain-tuned band structures upon 6% compressive to
6% tensile strain range for (a) HBL 1, and (b) HBL 6. Dotted lines show
unstrained bands and solid lines represent strained bands.

at K (VBM) to M∗ (CBM). With increasing the compres-
sive strains, the bands at the K point become lower and at
the gamma (G) point pushed up, resulting in the bandgap
increment from ∼2.65 eV to 2.82 eV at 4% compressive
strain. Simultaneously, the conduction band minima (CBM)
are shifted toward the G point and pushed down due to the
application of compressive strains. This trends also lower the
bandgap value at 6% compressive strain and the bandgap
becomes∼2.71while at 4% compressive strain it is∼2.82 eV.
Tensile strains, on the other hand, push up the band near
the K point in the VBM and shift the band in the CBM
from M∗ to M, resulting in the bandgap lowering with the
increase of tensile strains. As a whole, both compressive and
tensile strains seem to lower the bandgap value. In HBL 6,
a similar fashion is observed with compressive and tensile
strains. However, the highest bandgap is attained ∼2.87 eV
at 4% compressive strain.

To evaluate the band edge tunability due to the biaxial
strain, we have calculated the CBE and VBE upon applying
biaxial strains as depicted in Fig 7 (a), (b). It is found that

FIGURE 7. Photocatalytic overpotential (PO) with relative band positions
for (a) HBL 1, and (b) HBL 6.
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FIGURE 8. Photon energy-dependent (a) real dielectric function (b) imaginary dielectric function, and
photon wavelength-dependent (c) absorption co-efficient for intrinsic, (d) reflectivity of the HBL systems.

the HBL 1 has sufficient photocatalytic overpotential (PO) up
until 4% tensile strain. It has sufficient PO from 6% compres-
sive to 4% tensile strains. The highest PO is attained at 4%
compressive strain, and the overpotential for hydrogen evo-
lution reaction (HER) is ∼0.13 eV, and that for oxygen evo-
lution reaction (OER) is∼1.47 eV. Conversely, the HBL6 has
sufficient PO in all the biaxial strains either compressive or
tensile in the 6% compressive to 6 % tensile strains range.
Again, the highest PO is achieved at 4% compressive strain
and the potential for HER (OER) is ∼0.15 eV (1.50 eV).
Interestingly, 4% compressive strain the PO, facilitating the
visible-light-driven PWS.

D. OPTICAL PROPERTIES AND ITS TUNABILITY
UPON BIAXIAL STRAINS
Exploring optical properties and tunability of it is significant
to evaluate the key performance of photocatalysts. To do
so, we have calculated the core optical properties namely,
real and imaginary part of the dielectric function, absorption
coefficients, and reflectivity using density functional theory
(DFT). The complex and imaginary part of the dielectric
functions is calculated for 0 eV to 15 eV of photon energy
range as demonstrated in Fig. 8 (a), (b). Amazingly, no nega-
tive portion is found within the energy range in the real part of
the dielectric function, revealing the semiconducting nature
of the HBLs in the energy range. This property signifies
the high refraction of light through the HBLs, suggesting
higher photocurrent in the HBLs. The imaginary part of the

dielectric function shows the nature of the peak in the HBLs.
The first peaks are also depicted in the imaginary part of the
dielectric function is shown inFig. 8 (b). The first peaks are at
∼1.8 eV, and ∼2.01 eV for HBL 1, and HBL 6, respectively,
denoting the exciton energy of the materials. Both the parts
of the dielectric function follow the trend of the dielectric
function of 2D PtO2 in a red-shifted manner, suggesting a
strong influence on the HBL’s optical property of the sub-
strate material. Static dielectric constant, signifying electric
field supporting capability, is also calculated for the HBLs
and the constituent 2D layer and the HBLs show higher value
compared with the constituents. The values are as following:
In HBL 1 ∼2.74, in HBL 6 ∼2.5, in 2D PtO2 ∼1.8, and
in 2D GaN ∼1.45. Clearly, a ∼1.89 times increment of the
static dielectric function value upon stacking of the layer,
which indicates a significant amount of photo-induced charge
supporting capability.

The optical absorption coefficient is also calculated with
respect to photon wavelength which signifies the photon
conversion efficacy. In our proposed HBLs, ∼106 cm−1 of
absorption coefficient, 10 times greater than the perovskite
materials, is attained at the ultra-violet (UV) photon wave-
length, suggesting the material’s high-absorption capability
of photons [48], [49]. The absorption peaks again follow the
trends of 2D PtO2 in a red-shifted way. The gray lines in
the Fig. 8(c), (d) represents solar flux (spectral irradiance),
adopted in the curves for pointing out the spectrum range
utilizes the most of the solar flux. It turns out that visible
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TABLE 4. Benchmarking for PtO2/GaN with 2D GaN (2D PtO2) based VdW HBLs.

and near infrared (NIR) hold most of the solar irradiances.
The absorption coefficients and reflectivity values calculated
in our work, hence compared and commented with the flux
value so that the optical performance improvements of the
material can be revealed.

Surprisingly, though both comprising 2D layers have zero
absorption coefficient in the visible spectrum, the HBLs
have ∼2 × 105 cm−1 (at 380 nm) of absorption coefficient,
highly recommended for PWS application. To proceed fur-
ther, the reflectivity of the HBLs is calculated and the highest
reflectivity is ∼7% (at 407 nm) in the visible spectrum,
significantly low, suggesting the low-loss nature of the mate-
rials. These high-absorption and low-reflectivity in the visible
spectrum for the HBLs suggest the visible-light-driven PWS
capability of the material, as well.

To find the further visible shifting of the absorption coef-
ficients, we have calculated the biaxial strain-dependent
absorption coefficients with respect to photon wavelength.
The biaxial strain tuned absorption coefficients are shown
in Fig 9 (a), (b). In HBL 1, the unstrained absorption peak
∼9×105 cm−1 is at 210 nm in the UV range and in the visible
range it is 2× 105 cm−1. Upon applying compressive strains
from −2% to −6%, the absorption coefficients are shifted
towards the UV spectrum. Interestingly, due to the tensile
strains ranges from 2% to +6%, the absorption coefficient
is increased by almost ∼2 times in the visible spectrum
(from 290 nm to 400 nm), significant for the PWS appli-
cation. The highest absorption peak achieved in the visible
spectrum for HBL 1 is ∼4.1 × 105 cm−1, comparable to
perovskite materials. In the HBL 6, the same phenomenon
is observed for the absorption co-efficient, precisely, at 6%
of tensile strain, the absorption peaks in the visible region
appear almost∼2.1 times more compared with the unstrained
condition, emulating high-photocatalytic carrier generations.
In the visible spectrum for HBL 6, the tensile strain tuned
absorption becomes as high as ∼4.2× 105 cm−1, predicting
enhanced carrier generation probability of HBL 6 compared
with HBL 1. Interestingly, in both HBLs, for 6% tensile
strain, another absorption peak is arisen at ∼300 nm. This
peak is due to the extra inter-band transition states originated

FIGURE 9. Biaxial strain-tuned absorption coefficient for (a) HBL 1, and
(b) HBL 6. Spectral irradiance is denoted by gray line.

by the proximal transition of CBM from M∗ to M and the
bandgap lowering. These values also suggest that within
the permissible bandgap and PO range, tensile strains in
the HBL6 are more advantageous than in the HBL 1.
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Concisely, the key performance factors of a photocatalysts
are namely, the highest obtained bandgap, Eg, the highest
optical absorption attained in the visible spectrum at a spe-
cific wavelength, αs, reflectivity, r, photocatalytic overpo-
tential (PO), conduction band offset (CBO), and valance
band offset (VBO) are summarized in the TABLE 4 for
benchmarking of this PtO2/GaN with other 2D GaN (2D
PtO2) based vdW HBLs. These values also suggest that the
PtO2/GaN vdW HBLs can be more potential compared with
their constituent layer based vdW HBLs.

IV. CONCLUSION
Harnessing first-principles density functional theory (DFT),
we have explored the novel GaN/PtO2 vdWHBL and its elec-
tronic, optical, and photocatalytic water splitting (PWS) capa-
bility. Two HBLs, HBL 1, and HBL 6 are found dynamically
stable confirmed by phonon dispersion curves. Among them,
the HBL 1 shows the lowest binding energy (∼820 meV),
suggesting the chemical formation feasibility of the vdW
stacking. Both HBLs show visible ranged type-II bandgap.
The bandgap becomes biaxial strains responsive in a manner
that for both compressive and tensile strain, it tends to lower.
However, some anomaly is found at 4% compressive strains
due to the CBM-VBM shifting, forming the highest bandgap
at this strain (∼2.82 eV for HBL 1, and∼2.87 eV for HBL 6).
The low-effective masses and interlayer effective potential
show the spatial carrier separation probability of the HBL.
Both the HBLs have sufficient photocatalytic overpotential
(PO) for the HER and OER. The overpotentials are also
responsive to the biaxial strains and HBL 1 has the permis-
sible strain range is −6 % to +4 % while for HBL 6 it
is −6% to + 6%. The optical absorption coefficient in the
visible spectrum is ∼2 × 105 cm−1 (at ∼380 nm) and the
value can be further improved by ∼2 (at ∼383 nm) times
upon applying 6% tensile strain, suggesting visible-light-
driven PWS capability. Concisely, the visible ranged type-
II bandgap, spatial carrier separation capability, improved
visible ranged absorption coefficient and tunability of the
properties suggest that the novel GaN/PtO2 VdW HBL can
be a potential visible-light-driven photocatalysts candidate,
fulfilling almost all the PWS attributes.
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