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ABSTRACT Data parallel applications in data centers generate, process, and store huge volumes of data.
Coflow Completion time (CCT) is one of the major performance metrics to capture application-level
semantics. This paper is the first one to study the joint consideration of task placement, coflow bandwidth
scheduling, and path choice to minimize the average CCT in intra-data center. This paper proposes a joint
online scheduling framework, which first develops a 2-approximation algorithm to reduce the CCT of a
single coflow, and then follows the Shortest Remaining Time First (SRTF) principle to schedule multiple
coflows. Extensive simulations based on practical trace demonstrate that the proposed framework has better
performance than the state-of-the-art works.

INDEX TERMS Data center, coflow scheduling, task placement, path choice.

I. INTRODUCTION
Nowadays, large volumes of data from games, online video,
data mining, scientific calculation, will be generated and pro-
cessed in data-parallel frameworks such as MapReduce [1],
Pregel [2], and Dryad [3]. A major feature of data parallel
applications is that a collection of flows, termed coflow [4],
will be generated to transfer the intermediate data between
subsequent computation stages. A coflow in a data trans-
fer phase will not finish only until all its flows have
completed [5], [6].

However, a coflow’s completion time (CCT) can cost
more than 50 percent of job completion time [7]. As the
difference between storage devices and computation speed
are witnessed to get greater [8], flow transmission is more
likely to become the performance bottleneck for a task. As in
some previous works [9] and [10], this paper focuses on
the data transfer phase of each job without considering the
computation phase.

The existing works on minimizing the average
CCT have focused on either task placement or coflow band-
width scheduling. For example, in [11] and [12], in order to
use the data locality and reduce the amount of data transfer,
the scheduler places tasks close to their input data. The
papers [9], [10] are another example, in which the scheduler
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changes priority and flow sending rate to minimize the aver-
age CCT with the endpoints of flows prefixed.

Fig. 1 shows the non-blocking model of data center net-
works used by most existing works. In this model, flows
come from host incoming links and finally goes out from
host outgoing links. The model ignores the inner links of
data center networks and bandwidth limitation only occurs
on ingress ports and egress ports. However, the bandwidth on
the inner network are limited and can vary significantly across
different paths [13]. Moreover, coflows in the network might
concurrently compete for the transmission resources [14].

FIGURE 1. Non-blocking model of data center networks.

Thus, Fig. 2 shows the data center network model in this
paper: the path in the inner network is aware, which is practi-
cal [13]. Thus in this model, the bandwidth limitation on each
path should also be considered.
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FIGURE 2. Inner network path-aware model in this paper.

As for the problem studied in this paper, Fig. 3 demon-
strates the major part. When a coflow comes with a few
of flows in it (In this figure, a coflow arrives with 4 flows
inside), each flow should be scheduled to a corresponding
task through the inner path-aware network shown in the
above Fig. 2, and each task should be placed on a host. This
model can be formulated as a large scale, integer, non-convex
problem and proved to be NP-Hard [14], [15].

FIGURE 3. The major part of the problem studied in this paper.

This paper proposes a joint online task placement,
coflow bandwidth scheduling, and path choice framework,
to minimize the average CCT. The framework consists a
2-approximation algorithm for each single coflow and then
follows the Shortest Remaining Time First (SRTF) principle
to schedule multiple coflows by giving the highest priority
to the coflow with the shortest remaining time. The idea to
use SRTF principle as the scheduling mechanism is inspired
by [6], [16].

In summary, the main contributions are as follows:

• This paper is the first one to study the problem of
minimizing the average CCT via jointly considering
task placement, coflow scheduling, and path choice in
intra-data center networks.

• This paper proposes an online coflow-aware optimiza-
tion framework to solve the problem.

• This paper presents theoretical analysis to demon-
strate that the proposed algorithms can achieve a good
competitive ratio.

• Extensive trace-driven simulations evaluate the perfor-
mance of the proposed framework, in terms of aver-
age CCT, algorithm run time, and impacts of 4 coflow
characteristics.

A. RELATED WORKS
There are a few of related works on coflow scheduling and
task placement for intra-data centers.

1) COFLOW SCHEDULING
Early works are Orchestra [7], Baraat [17], and Varys [9],
which use the concept of the coflow and propose heuristic
methods to minimize the average CCT and meet deadlines
in data centers. Qiu et al. [18] solves the problem of mul-
tiple coflow offline scheduling by designing a deterministic
algorithm with a constant approximation ratio. RAPIER [6]
simultaneously combining coflow routing and scheduling by
a heuristic method, but lacks theoretical performance guaran-
tees. Chowdhury and Stoica [10] uses a multi-level feedback
queues (MLFQ) model and proposes an online algorithm to
schedule coflows. After that Liu et al. [19] identifies the
bottleneck flow in Alao using coflow information-agnostic
model. DeepAalo [20] updates the thresholds of queues in
Alao by deep reinforcement learning. Dogar et al. [17],
Luo et al. [21], and D-CAS [22] study coflow-aware schedul-
ing scheme in a distributed manner. Further, CODA [23]
proposes an algorithm of automatically assigning flows to
coflows before scheduling. BlindFlow [24] proposes an
online algorithm without knowing flow demand volumes
when they arrive. Chen et al. [25] and Wu and Fu [26] study
the problem of achieving lexicographical max-min fairness
among multiple jobs’ utilities, which is a large-scale, nonlin-
ear, integer and multi-objective problem. They take the data
center network as a big non-blocking switch. All the above
works assume that task placement has been fixed.

2) TASK PLACEMENT
To have a larger part of intermediate data and relatively
high link bandwidth to reduce the job completion time,
Iridium [27] and Flutter [28] place tasks close to data centers.
They use linear objective functions which limits the scope
of their algorithms. For each job, Sinbad [5] considers one
computing stage at a time and places the output data flexibly.
CLARINET [29] uses multiple iterations to schedule network
flow and task placement separately. Corral [30], NEAT [31],
and 2D-Placement [32] adopts joint optimization of input
data and task placement to balance between the network
contention and workload transmission. ShuffleWatcher [33]
places both map and reduce tasks on the same set of racks to
improve the locality and reduce cross-rack shuffling without
considering bandwidth scheduling.

The most related works are [14], [34]–[38].
References [14], [34]–[36] jointly consider two of coflow
scheduling, routing and endpoint placement in the envi-
ronment of inter-data center networks to minimize the
average CCT. They first propose an online scheduling
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algorithm for a single coflow and prove its approximation
ratio, then extend it to adopt multiple coflows situation. How-
ever, for example, SmartCoflow [35] is for inter-datacenter
networks, the problem size can be smaller than this paper,
which is for intra-datacenter networks. And SmartCoflow
limits that each task can only be put on one datacenter,
while this paper doesn’t limit each task to be assigned to one
host. Moreover, SmartCoflow proposes scheduling policy for
single coflow and uses it in themultiple coflow situation. This
paper sorts the coflows by remaining time and always deals
with the shortest one. References [37], [38] jointly considers
reducer placement and coflow bandwidth scheduling, which
divides a task into mapper and reducer and focuses on reducer
part. They regard data center network as an non-blocking
switch, so that the network bottleneck exists only on the
incoming and outgoing links. In this paper, a coflow can
be assigned to multiple tasks and inner network bandwidth
limitation is also assumed.

Compared with previous works, this paper involved three
factors (coflow scheduling, task placement, and path choice)
to optimize CCT, while prior works study one or two of
these factors. It’s argued that more factors do not lead
to smarter algorithms, but may result in more efficient
algorithms.

The rest of the paper is organized as follows: Section II
describes the system model. Section III describes the algo-
rithm details and proofs. Section IV describes the sim-
ulation setup and results. And Section V concludes the
paper.

II. SYSTEM MODEL
To minimize the average CCT, this paper abstracts the net-
work as a giant blocking switch that connects physical hosts
by available paths, which means that the inner paths between
coflow and tasks would experience congestion and it is differ-
ent from the other classic non-blocking model [9], [10], [34],
[39], [40]. Coflows arrive at the intra-data center network and
send flows to tasks along some chosen path, while tasks need
to be placed on some chosen host. Note that, physical hosts
in a data center network can be heterogeneous and available
bandwidth on each path can be different because some of
the bandwidth can be occupied by other applications [14].
Flow size and flow length can be extracted from the log and
meta-data files as coflow information [41], [42].

Suppose there are |H | hosts and |J | tasks in the data center
network and each task can be placed on any one of the hosts.
It is a general assumption which needs every host has plenty
of resources to hold tasks. However, in practice for example,
RPC [37] treats small coflow and latency-insensitive indi-
vidual flows as background traffic, thus it makes sure that
hosts have enough resources to orchestrate all the coflows
they desire.

The set of unfinished coflows and the set of available path
are denoted as C and P respectively. Ti represents the CCT
of coflow i and Ki represents the set of flows belonging
to coflow i. vik indicates the amount of data that should be

transferred by the k th flow of coflow i, and Dij indicates the
set of flows in coflow i that needs to be fetched by jth task.

Important notations are listed in Table 1.

TABLE 1. Notations and definitions.

III. ALGORITHM DETAILS
The overview of the proposed joint optimization framework
is presented in Algorithm 1, where the available bandwidth
set B is assumed to be known in advance [38] and [39].
At line 5 the algorithm calculates the minimum comple-

tion time and the corresponding task placement, bandwidth
scheduling, and path choice for each single coflow, which is
proved to be 2-approximation. The while loop in the algo-
rithm uses Shortest Remaining Time First (SRTF) with the
unfinished coflow set C , so that the algorithm is invoked
either when a coflow comes or finishes.

For SRTF principle, at line 6-8, the algorithm schedules
the coflows that wait longer than the preset threshold thd.
And at line 9-11, the algorithm selects the coflow with the
shortest remaining completion time. At line 14, the algorithm
schedules the selected coflow and updates corresponding
parameters.

Note that, the major part in Algorithm 1 is at line 5: the
completion time of a single coflow should be minimized
while jointly considering task placement, coflow bandwidth
scheduling, and path choice. To deal with this challenge,
the following of this section first demonstrates the prob-
lem as Problem 1, then reformulates it to an integer linear
programming (ILP) as Problem 2. After that, Problem 2 is
relaxed to Problem 3 in order to be solved timely, and then
transformed into Problem 4 and 5 to derive a feasible solu-
tion. At last, a 2-approximation Algorithm 2 is proposed
to get the solution due to Problem 4 is a classic unrelated
parallel machine scheduling problem known as NP-hard [14].
The whole procedure of solving Problem 1 is summarized
in Algorithm 3.

A. 2-APPROXIMATION FOR A SINGLE COFLOW
The problem of minimizing average CCT jointly consider-
ing task placement, coflow bandwidth scheduling, and path
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Algorithm 1 The Proposed Framework in This Paper
Require: The set of unfinished coflows C , the set of avail-

able bandwidth B, the set of available path P, waiting
time threshold thd

Ensure: Task placement, coflow scheduling, and path choice
1: Non-increasingly sort the coflows in C according to their

waiting time
2: while C 6= ∅ do
3: Set theminimum completion time Tmin = ∞, the cor-

responding coflow cmin = ∅
4: for c ∈ C do
5: Compute the minimum completion time Tc for

coflow c, and the corresponding task placement, band-
width scheduling, and path choice scheme to achieve Tc

6: if wait time of c > thd then
7: Tmin = Tc, cmin = c, break
8: end if
9: if Tc < Tmin then
10: Tmin = Tc, cmin = c
11: end if
12: end for
13: C = C\cmin
14: Assign all the flows in coflow cmin using task place-

ment, bandwidth scheduling, and path choice scheme
derived at line 5, and then update B and P.

15: end while

choice, given the information of coflow i, can be formulated
as Problem 1:

Problem 1

minimize T i (1a)

s.t.:
∑
k

r ikhl(t) ≤ bhl(t), ∀t ≥ 0, l ∈ P, h ∈ H . (1b)

∑
l

∑
h

∫ T i

0
r ikhl(t)dt = vik , ∀k ∈ Ki. (1c)

r ikhl(t) ≤ x
i
jhlbhl(t), ∀h ∈ H , t ≥ 0, j ∈ J ,

l ∈ P, k ∈ Dij. (1d)∑
h

x ijhl = 1, ∀j ∈ J , l ∈ P. (1e)

x ijhl ∈ {0, 1}, ∀j ∈ J , h ∈ H , l ∈ P. (1f)

In Problem 1, the objective T i is the CCT of coflow i.
Constraint (1b) is used to limit the rate of flows sent to host h
on path l, where bhl(t) is the bandwidth limitation of the
path l to host h at time t , and r ikhl(t) is the rate of sending
the k th flow in coflow i to host h along the path l at time t .
Constraint (1c) means that the data should be sent out before
coflow i completes, where vik is the amount of data that should
be transferred by the k th flow of coflow i and Ki is the set of
flows belonging to coflow i. Constraint (1d) is to denote if
the task j is placed on host h, where Dij is the set of flows in
coflow i that needs to be fetched by the jth task and x ijhl is

a binary variable to denote if task jth is placed onto host h
and coflow i sends data to this task along path l. According
to [14], [15], this problem can be proved to be NP-hard.

In order to solve Problem 1, the following Problem 2 is
constructed and Theorem 1 is proposed.

Problem 2

maximize f i (2a)

s.t.:
∑
k

r ikhl ≤ bhl, ∀l ∈ P, h ∈ H . (2b)∑
l

∑
h

r ikhl = vik f
i, ∀k ∈ Ki. (2c)

r ikhl ≤ x
i
jhlbhl, ∀h ∈ H , j ∈ J , l ∈ P, k ∈ D

i
j. (2d)∑

h

x ijhl = 1, ∀j ∈ J , l ∈ P. (2e)

x ijhl ∈ {0, 1}, ∀j ∈ J , h ∈ H , l ∈ P. (2f)

In Problem 2, it is assumed that the bandwidth limitation of
each path is constant, which is possible when the time interval
is short and before the global information updates [37]. Under
this assumption, due to the following Theorem 1, solving
Problem 2 can get the same solution as solving Problem 1.
Theorem 1: When the bandwidth of each path are con-

stant, suppose r̂ ikhl and x̂
i
jhl are the optimal solutions, and f̂

i

is the objective value of the Problem 2. Then, T i = 1
f̂ i
is the

optimal objective value of Problem 1.

r ikhl(t) =


r̂ ikhl, t ∈ [0,

1

f̂ i
],

0, t ∈ (
1

f̂ i
,∞).

(3)

and x ijhl = x̂ ijhl are the solutions to achieve the optimal
objective value.

Proof: Suppose Topt is the optimal objective of Prob-
lem 1, and roptkhl (t) is the corresponding solution. By setting

r ikhl =

∫ Topt
0 roptkhl (t)dt

Topt
(4)

it turns out ∑
k

∫ Topt

0
roptkhl (t)dt =

∑
k

r ikhlTopt (5)

Since∑
k

∫ Topt

0
roptkhl (t)dt =

∫ Topt

0

∑
k

roptkhl (t)dt (6a)

≤

∫ Topt

0
bhldt = Toptbhl (6b)

The relation
∑

k r
i
khl ≤ bhl is known. In the same way, r ikhl

satisfies constraints (2c) and (2e). For constraint (2d), it can
be seen that∑

h

∫ Topt

0
roptkhl (t)dt =

∑
h

r ikhlTopt = vik (7)
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Let f i = 1
Topt

, and get

∑
h

r ikhl =
vik
Topt
= vik f

i (8)

The above contents show that r ikhl =
∫ Topt
0 roptkhl (t)dt

Topt
and

f i = 1
Topt

are feasible solution of Problem 2. Therefore

f̂ i ≥
1
Topt

(9)

In addition, it can be easily verified that the variable
settings claimed in Theorem 1 are feasible solutions of
Problem 1. Therefore

f̂ i ≤
1
Topt

(10)

Accordingly, f̂ i ≤ 1
Topt

. �
Next, to deal with the binary variables in Problem 2,

assume all the hosts are packed together into a single ‘‘huge’’
host. Then the following Problem 3 can be constructed, which
is a linear programming problem.

Problem 3

maximize f i (11a)

s.t.:
∑
k

r ikl ≤
∑
h

bhl, ∀l ∈ P. (11b)∑
l

r ikl = vik f
i, ∀k ∈ Ki. (11c)

Note that the solution of Problem 3 is an upper bound of
Problem 2. Suppose the solution of Problem 3 can be got, then
the solution needs to be scaled down in order to be feasible
to Problem 2. Denote the scale down ratio to be α, then the
following Problem 4 can be derived to solve α.

Problem 4

minmize α (12a)

s.t.:
∑
j

(
∑
k∈Dij

r ikhl)x
i
jhl ≤ αbhl, ∀h ∈ H , l ∈ P. (12b)

∑
h

x ijhl = 1, ∀j ∈ J , l ∈ P. (12c)

x ijhl ∈ {0, 1}, ∀j ∈ J , h ∈ H , l ∈ P. (12d)

Problem 4 is a classic NP-hard unrelated parallel machine
scheduling problem [38], which, however, can be solved by a
method based on relaxation and rounding technique [43].

By defining eijhl =

∑
k∈Dij

r ikhl

bhl
, Problem 4 can be modified

to be Problem 5 by relaxation.

Problem 5

minmize α (13a)

s.t.:
∑

{j|eijhl≤α}

eijhlx
i
jhl ≤ α, ∀h ∈ H , l ∈ P. (13b)

∑
{h|eijhl≤α}

x ijhl = 1, ∀j ∈ J , l ∈ P. (13c)

x ijhl ≥ 0, ∀j ∈ J , h ∈ H , l ∈ P. (13d)

For a fixed α, Problem 5 is a linear programming. In order
to get a feasible solution to Problem 4, the solution of Prob-
lem 5 needs to be handled by rounding, since the results can
be fractional.

In the following, Lemma 1 and Lemma 2 are proposed for
the aim of rounding the fractional solution.
Lemma 1: No more than (|J | + |H |) · |P| variables are

non-zero in the optimal solution of Problem 5.
Proof: When Problem 5 is feasible, objective α is min-

imized. For a given α, denote u as the number of variables
in problem 5, then the feasible region is a single point deter-
mined by u linearly independent rows of the constraints with
the equality.

There are |H | · |P| constraints in (13b) and |J | · |P| con-
straints in (13c) with a total of u+(|J |+|H |)·|P| constraints in
Problem 5. Then in (13d) there are at least u−|J |·|P|−|H |·|P|
constraints holding with the equality. Thus, in (13d) at most
(|J | + |H |) · |P| constraints do not hold with equality, which
means at most (|J | + |H |) · |P| variables are non-zeros. �
Lemma 2: A bigraph G(x) = {U ,V ,W } can be

constructed according to the solution of Problem 5, where
U = {u1, u2, · · · , u|H |·|P|} is the set of host nodes, and V =
{v1, v2, · · · , v|J |·|P|} is the set of task nodes. There exists an
edge w ∈ W between vj and uh if and only if x ijhl > 0. Under
this circumstance, without increasing the scale down ratio,
any connected component S in G(x) can be constructed to be
a tree with at most one more edge.

Proof: If Problem 5 is solved by only using the tasks,
hosts and paths associated with S and denote the solution
as x ′, it is clearly that the scale down ratio is less or equal to
that derived by using all the tasks, hosts, and paths. In the light
of Lemma 1, the number of non-zero values in the solution
is no more than the number of nodes in S. Thus, S can be
constructed to be a treewith atmost onemore edge by altering
the edges according to x ′. �
Based on Lemma 1 and Lemma 2, Algorithm 2 is designed

for task placement, where N (S) is the set of nodes in S and
E(S) is the set of edges in S.
In Algorithm 2, at line 2, tasks with only one host to place

are handled. The rest of the task nodes have at least two node
degrees. At line 4, one cycle exists in S and can be found and
removed by depth first search, otherwise there is a forest of
trees.

The following theorem shows that Algorithm 2 has an
approximation ratio of 2.
Theorem 2: The approximation ratio of Algorithm (2) is 2.
Proof: A lower bound of the objective value of

Problem 4 is denoted as αmin, which is also the optimal
objective value of Problem 5. At line 2 of Algorithm (2), all
the unsplit tasks are placed, the contribution of which to the
scale down ratio is less than αmin. In Algorithm (2), line 3-13
make sure that every host holds at most one split task,
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Algorithm 2 Get the Solution of Task Placement

Require: The solution of Problem 5, {x ijhl}
Ensure: Task placement
1: Construct a bigraph BG according to {x ijhl} as in Lemma 2
2: Remove all the tasks nodes with only one node degree

and place these tasks onto the corresponding connecting
hosts

3: for all connected components S ∈ BG do
4: if |N (S)| == |E(S)| then
5: Find the unique cycle in S with depth-first search
6: Arbitrarily orient the cycle in either of the two

directions and place each task onto the host on the cycle
subsequent to it

7: Remove this cycle from S, and the rest are a forest
of trees, each of which contains at most one task leaf node

8: for the rest trees do
9: Rooting any task node or the unique task leaf

node if there is one
10: Place each task onto its child host that holds

the largest fraction of it
11: end for
12: else
13: Mark any task as the root to form a tree and place

each task onto its child host that holds most of it
14: end if
15: end for

which increases the scale down ratio no more than αmin.
Thus, the scale down ratio of Algorithm (2) is no more
than 2αmin. �
The whole procedure of solving Problem 1 is shown in

Algorithm 3, in which Algorithm 2 only determines task
placement, and Algorithm 3 uses Algorithm 2 to determine
coflow bandwidth scheduling and path choice.

Algorithm 3 The Whole Procedure of Solving Problem 1

Require: The size of each flow vik , available bandwidth {bhl}
Ensure: Task placement {x ijhl} and flow transmission

rate {r ikhl}
1: Solve Problem 3 and get the maximum transmission

rate r ikl
2: Use the solution of Problem 3, formulate Problem 4, get

the result from Algorithm (2)
3: for all host h do
4: r ikhl = r iklx

i
jhl,∀k ∈ D

i
j, αhl =

∑
k r

i
khl

bhl
5: if αhl > 1 then
6: r ikhl =

r ikhl
αhl

7: end if
8: end for

The following theorem shows that Algorithm 3 has an
approximation ratio of 2.
Theorem 3: The approximation ratio of Algorithm 3 is 2.

Proof: Algorithm 3 introduces approximation only at
line 2 via Algorithm 2. The bottleneck at each path can be got
by solving Problem 3. Then at each path, Algorithm (3) scales
down the coflow transmission rate in order to be feasible,
which results in an approximation factor loss of 2. �

IV. PERFORMANCE EVALUATION
A. SIMULATION SETUP
To demonstrate the performance of the proposed framework,
this paper compares it with two state-of-the-art works shown
as follows. The reason to choose these two works is that they
are the recent works after 2019 [14], [31], [35], [37] and
represent two typical online algorithm designs.
• Baseline 1 [31]: considering task placement for new
requests.

• Baseline 2 [37]: considering task placement and coflow
scheduling only with incoming and outgoing links.

The range of evaluation consists the average CCT, algo-
rithm run time, impacts of 4 coflow characteristics for
Baseline 1, Baseline 2, and the proposed framework. And this
paper develops a trace-driven simulator based on macOS Big
Sur 11.0.1, with 32GB 2400MHz DDR4 and 2.3GHz 8 cores
Intel i9.

The data used for simulation comes from a Hive/Map
Reduce trace, which was collected on a 150-rack
3000-machine cluster with 10:1 oversubscription ratio [44]
and was used in [9], [10], [14], [35]. As in the [45], the orig-
inal coflow communication pattern is maintained.

As shown in Table 2, the non-zero coflows in the trace can
be divided into 4 categories [9], [18]. The boundary between
long coflow and short coflow is 5MB, and the boundary
between narrow coflow and wide coflow is 50 flows inside.

TABLE 2. 4 coflows categories in the trace by length and width.

Use Linux Traffic Control [46], the path capacities and
bandwidth limitation of each path can be set in the range
of 100Mbps and 2Gbps randomly, in order to simulate the
practical environments [45].

B. SIMULATION RESULTS
1) THE PERFORMANCE ON CCT
Fig. 4 demonstrates the average CCT of coflows achieved
by different schemes, in which the measurement unit on
y-axis is ms× 104. Across all types of coflows, the proposed
framework can speed up the average CCT by 6% − 12%
than Baseline 1 and Baseline 2. The reason is that the pro-
posed framework jointly optimizes task placement, coflow
bandwidth scheduling, and path choice, while the other two
schemes ignore bandwidth scheduling and path choice.
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FIGURE 4. The average CCT of coflows, achieved by the proposed
framework, Baseline 2, and Baseline 1.

To measure CCT of coflows at a microscopic level, Fig. 5
further plots CDF (Cumulative Distribution Function) of
the completion time of three coflows schemes. Obviously,
the curve of the proposed framework lies on the top of the
other two. The percentages of coflows completed within
15 × 103ms are 70.1%, 46.3%, 42.1% by the proposed
framework, Baseline 2, and Baseline 1, respectively. And
all coflows can be completed within 264020ms, 320320ms,
35144ms respectively.

FIGURE 5. CDFs of per coflow CCT of the proposed framework,
Baseline 2, and Baseline 1.

Fig. 6 illustrates the algorithm run time for three schemes.
Note that the measurement unit on y-axis is now ms×10. It is
easily seen that the run time of the proposed framework is
much higher (2 − 3 times) than it of the other two schemes.
The reason may be that the proposed framework jointly con-
siders 3 factors (task placement, coflow bandwidth schedul-
ing, and path choice) which needs more computation than
Baseline 2 (task placement, and coflow bandwidth schedul-
ing) and Baseline 1 (task placement). However, compared
with the unit on y-axis of average CCT (ms× 104) in Fig. 4,
the effect of algorithm run time (ms × 10) is relatively
small.

FIGURE 6. The algorithm run time, spent by the proposed framework,
Baseline 2, and Baseline 1.

2) IMPACTS OF 4 COFLOW PARAMETERS
As in the reference [14], this subsection studies the
impacts of 4 coflow parameters on average CCT: the total
coflow number, the coflow width, the coflow size, and
the inter-coflow arrival interval. In the following figures,
the comparison baseline is the scheduling optimization with
random task placement and path choice. It can be seen that the
proposed framework has better performance than Baseline 2
and Baseline 1 under different scenarios.

a: COFLOW NUMBER
The coflow width, the coflow size and the mean inter-coflow
arrival interval are set as 100, 500MB and 100ms, respec-
tively [14], [35]. Fig. 7 shows that the performance of the
average CCT increases with the growth of the coflow number
for three schemes. The reason may be that the bandwidth
scheduling and path choice strategy will get goodness when
there exists a severe competition of network resource origi-
nated from more coflows. And the proposed framework has
at least 15.4% more augmentation than the other two.

b: COFLOW WIDTH
The coflow number, the size and themean inter-coflow arrival
interval are set as 100, 500MB and 100ms, respectively [14],
[35]. Fig. 8 shows that more improvement of average CCT is
gained by all three schemes, due to the similar reason as
above. And the proposed framework outperforms the other
two schemes by at least 11.5%.

c: COFLOW SIZE
The coflow number, the width and the mean inter-coflow
arrival interval are set as 100, 100 and 100ms, respec-
tively [14], [35]. Fig. 9 shows that the performance improve-
ment caused by three schemes are decreasing when coflow
sizes increase. The reason may be that bigger coflow size
means greater number of flows and bigger size of flows,
which need more time for computation and transportation.
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FIGURE 7. The impact of number of coflows on the average CCT of the
proposed framework, Baseline 2, and Baseline 1 compared to the random
case.

FIGURE 8. The impact of coflow width on the average CCT of the proposed
framework, Baseline 2, and Baseline 1 compared to the random case.

FIGURE 9. The impact of coflow size on the average CCT of the proposed
framework, Baseline 2, and Baseline 1 compared to the random case.

The proposed framework has 7%more augmentation than the
other two schemes.

d: INTER-COFLOW ARRIVAL INTERVAL
The other 3 parameters are prefixed as the previous parts [14],
[35]. Fig. 10 shows that as the intervals increase, the slopes
of improvement is greater at first and then become smaller.

FIGURE 10. The impact of inter-coflow arrival interval on the average CCT
of the proposed framework, Baseline 2, and Baseline 1 compared to the
random case.

And it can be observed that when the intervals are small,
the curve of the proposed framework is relatively lower. The
reason may be that the algorithm run time can not be ignored
compared with the average CCT at this time. However, as the
arrival intervals increase, the proposed framework has higher
improvement on average CCT over the other two schemes.

V. CONCLUSION
This paper is the first one to jointly consider minimizing the
average CCT of task placement, coflow bandwidth schedul-
ing, and path choice in intra-data centers. The proposed
framework consists a 2-approximation algorithm for single
coflow and follows the SRTF principle for multiple coflows.
Extensive trace-driven evaluations have shown that the pro-
posed framework is better than the state-of-the-art works.
Jointly considering coflow optimization of transmission cost
and routing policy might be a promising future direction,
since the trade-off between cost and bandwidth consuming
is a critical metric.
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