
Received July 21, 2021, accepted July 30, 2021, date of publication August 3, 2021, date of current version August 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3102022

Future of TCP on Wi-Fi 6
CARLO AUGUSTO GRAZIA , (Member, IEEE)
Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, 41125 Modena, Italy

e-mail: carloaugusto.grazia@unimore.it

ABSTRACT The Linux TCP/IP stack contributions have recently pointed all in the same direction: maximize
the available throughput while maintaining low latency. These activities started by mitigating the buffebloat
phenomenon at the network bottleneck asmuch as possible. So far, the deployed solutions have been designed
by considering standard models for the bottleneck that could be either wireless or wired. The introduction of
Wi-Fi 6 is dislocating the bottleneck of standard home and office WLAN from the radio access point to the
1 Gbps interface, the wired interface that points to the internet service provider; this bottleneck migration
leads to a new real-case bottleneck model, which is hybrid. Such an environment embraces new technologies
and provides new challenges for the old TCP protocol when applied to hybrid bottlenecks and operating in
conjunction with the TCP side-modules, which are now part of the novel Linux kernels. This paper aims
to highlight the TCP performance considering the new TCP modules and novel scenarios opened by Wi-Fi
6 with real-case hybrid bottlenecks.

INDEX TERMS Congestion control, frame aggregation, latency, pacing, TCP, TSQ, WLAN.

I. INTRODUCTION
In the last ten years, several research activities in the Internet
and networking field have focused on the ‘‘bufferbloat’’,
which is a word to define the excessive buffering of packets
causing high Internet latency. The mantra for mitigating this
phenomenon is well defined and consists of maximizing the
available throughput while maintaining latency as low as
possible; to do so, two families of algorithms have been
introduced, TCP related algorithms and queueing disciplines.
The formers operate on the endpoints of a network path
and include novel congestion controls like BBR (Bottleneck
Bandwidth and Round-trip propagation time), and novel TCP
modules like TCP Small Queues (TSQ) and TCP Pacing (TP).
The latter can instead operate on every node of the path,
operating at the queueing level, and can be divided into Active
Queue Management (AQM) and packet scheduling. AQM
algorithms have the precise goal of mitigating the formation
of large buffers at the bottleneck, and they have been the first
concrete solution implemented by the bufferbloat community
to mitigate the end-to-end latency through the CoDel (Con-
trolled Delay) algorithms family. On the other side, packet
scheduling deals with QoS, prioritizing traffic, and helping
to shape the bandwidth between competitive flows, which is
a complementary task concerning this manuscript’s goal.

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Fu Cheng .

These novel algorithms have been modeled and tested on
wired networks first, particularly in Google data centers. This
is the case, for example, of BBR, which has incrementally
replaced CuBic in the YouTube servers. Studying these algo-
rithms on wired networks means to rely on standard bottle-
neck models. Indeed, there is a large literature study of these
modules in wired networks; the reason is that they have been
proposed, generally, for deployment on the server-side. Mov-
ing the focus to the user side, the configuration of the access
network point changes due to the massive presence of Wi-Fi
access technologies, which have a different bottleneck model
with respect to the wired network. So far in FTTC/FTTH
(Fiber To The Cabinet/Home) world, the scenario has been
a WLAN deployed with IEEE 802.11n or IEEE 802.11ac
technologies, with hundreds of megabits per seconds at the
radio access, followed by a typical 1 Gbps interface to reach
the Internet Service Provider (ISP). This scenario lacks tests,
resulting in inefficiencies investigated in [1]–[3] to adapt
current TCP solutions to deal with the Wi-Fi bottleneck.
The critical difference between wired and Wi-Fi scenarios is
the latter’s presence of a frame aggregation mechanism [4],
[5]. Frame aggregation boosts the throughput by grouping
packets to transmit in a single large frame, maximizing the
radio efficiency but requiring some packets to be available at
the interface. This technique introduces a trade-off between
throughput and latency that must be considered when the
Wi-Fi interface is the bottleneck one.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 107929

https://orcid.org/0000-0003-0534-995X
https://orcid.org/0000-0001-9096-8047


C. A. Grazia: Future of TCP on Wi-Fi 6

But what about now with the introduction of Wi-Fi 6 and
IEEE 802.11ax technology? The main consequence of deal-
ing with Wi-Fi 6 at the radio access is that we are moving the
bottleneck again fromwireless to wired. Due to the high radio
capacity, the bottleneck is plainly the wired 1 Gbps interface,
or better: the bottleneck can be modeled as a function of the
frame aggregation ofWi-Fi 6, moving to the wired bottleneck
model once a minimum threshold of frame aggregation is
reached. We will refer to this as the hybrid bottleneck in this
paper, which is depicted in Figure 2. The hybrid bottleneck
needs a new model which better fits a real-case bottleneck
and does not behave like a standard wired or wireless bot-
tleneck. Moreover, so far, TCP congestion controls have
been designed based on these standard wired or wireless
bottlenecks, leaving an open challenge on the design of new
TCP algorithms. On the one hand, sometimes it is better to
enqueue more packets to create larger aggregates to increase
the throughput despite the latency increment. On the other
end, this mechanism must be avoided if a wired bottleneck is
reached.

A. CONTRIBUTION
The contribution of this paper is to define and provide an ana-
lytical model of the hybrid bottleneck, introduced byWi-Fi 6,
as a function of the packet enqueued by the TCP congestion
control and frame-aggregation size. Moreover, the model is
validated through real tests on a novel Linux kernel involv-
ing state-of-the-art TCP congestion controls. The manuscript
focuses on the endpoints of the communication path, where
the TCP congestion control operates in conjunction with the
TCP modules like TP and TSQ, which are fundamental to
control the packets enqueued by the congestion control and
understand the hybrid bottleneck characteristics. The final
goal is to highlight the role of these algorithms, understanding
how to control the TCP traffic performance over this new
hybrid bottleneck.

In this manuscript, we will focus mainly on endpoints
TCP solutions like TP and TSQ. Indeed, the contribution
of this paper is to model the hybrid bottleneck introduced
by Wi-Fi 6 and highlight the role of these algorithms in the
performance of TCP traffic over this new bottleneck.

The rest of the paper is organized as follows: Section II
describes the related work, while Section III details the pos-
sible network bottlenecks; in particular, Section IV models
analytically the hybrid bottleneck of Wi-Fi 6. In Section V,
the current TCP stack of Linux systems is described, and
Section VI depicts the testbed used to produce the results
analyzed in Section VII. Finally, Section VIII concludes the
paper.

II. RELATED WORK
The hybrid bottleneckmodel comes from the standardmodels
of wired and wireless bottlenecks defined in [6] and [7],
respectively. This transition from wired to wireless analysis
has been enabled by studies on the frame aggregation impact
over the network performance, as provided in [4] where,

in particular, the overhead of frame aggregation mechanism
is investigated. Furthermore, an analytical model of a single
IEEE 802.11n station in terms of expected throughput is
presented in [5], as a function of the transmission time and
the packet sizes.

Concerning the experimental results on Wi-Fi bottlenecks,
the limit imposed by the TSQ in the wireless station upload
has been investigated in [1], which has been the first literature
contribution that captured this problem with TCP CUBIC.
The reason for this limitation is indeed in the frame aggre-
gation mechanism, which is disturbed by TSQ that limits
the number of available packets in the station Network Inter-
face Card (NIC). From the downlink side, Hassani et al. [8]
elaborated on the server sending rate in IEEE 802.11ac
networks, trying to maintain a steady aggregation size at
the Wi-Fi bottleneck, controlling the throughput and latency
tradeoff.

Additionally, the network congestion introduced by simul-
taneous uploads and downloads on a Wi-Fi network is con-
sidered in [9]; both long and short TCP flows and the Wi-Fi
aggregation level are taken into account. The interest in net-
work congestion and, in general, the real performance of TCP
traffic is growing. To give an example, in [10] Zhou et al.
classified and analyzed stalls at the server-side dealing with
a fundamental TCP characteristic: the Retransmission Time
Out (RTO) value. RTO can indeed affect TCP performance
in the wild. At the same time, in [11], the authors analyzed
the TCP’s initial window in the wild, also in this case with a
massive real test campaign.

Other research studies focus on the Linux kernel main-
line driver for Wi-Fi environment, which is ath9k. In one
work, the driver is modified to accommodate the FQ-CoDel
solution in the firmware, controlling the Wi-Fi environ-
ment’s bufferbloat phenomena without compromising the
maximum aggregation size [3], while another work points
on boosting the TCP fairness between competitive flows [2].
Finally, a TCP variant at the bases of BBRv2 [12], called
BBRp [13], has been proposed to solve the BBRv1 ineffi-
ciency in Wi-Fi bottlenecks, allowing the congestion con-
trol to discover higher available bandwidth exploiting frame
aggregation.

To the best of our knowledge, no literature contributions
focus on different TCP variants together with TSQ or TP
in Wi-Fi environments. This missing is crucial, in particular,
withWi-Fi 6, which impose a new role for theWi-Fi interface,
delegating back the bottleneck role to the standard 1 Gbps
wired interface of the routers. This analysis is necessary
because TSQ, TP, BBR, and FQ-CoDel (to name a few) have
been introduced with a specific goal: mitigate the bufferbloat
phenomena. Anyway, the interaction of these modules with
new Wi-Fi modules in hybrid bottlenecks has not been
investigated.

III. BOTTLENECKS IN A NUTSHELL
The model for the wired network bottleneck is known in
the literature and has been used in concrete to design the

107930 VOLUME 9, 2021



C. A. Grazia: Future of TCP on Wi-Fi 6

FIGURE 1. Wired and wireless bottleneck.

FIGURE 2. Hybrid bottleneck.

TCP BBR congestion control in [6]. This is not the same
for a pure wireless bottleneck that has been recently modeled
in [7] and reports the differences between a wireless interface
with or without the frame aggregation mechanism imple-
mented, which changes the behavior of the bottleneck in
the central region macroscopically when the packets start
to accumulate at the bottleneck queue. These two standard
models are reported in Figure 1 with the wired bottleneck on
the left (Figure 1a) and the wireless bottleneck on the right
(Figure 1b). Figure 2, on the other side, defines the hybrid
bottleneck in which the bottleneck moves from wireless to
wired as a function of the aggregation.

A. WIRED AND WIRELESS BOTTLENECK
The classical wired bottleneck model reports the delivery
rate (throughput) and the round-trip time (RTT) of a TCP
connection as a function of the number of packets in flight,
i.e., the number of packets delivered by the source and still
waiting to be acknowledged. The throughput and the RTT
are strongly coupled and bounded to the network behav-
ior divided into three regions. In the application region,
the bottleneck is software; this means that the connection can
increase the throughput without affecting the RTT since the
amount of data inflight can be absorbed by the network. The
point X, known as Kleinrock’s point, is the optimal operating
point for a TCP connection and correspond to the amount of
data inflight that matches the bandwidth-delay product (BDP)
of the network. Transmitting more data than BDP has the
sole effect of increasing the RTT since the packets start to
accumulate at the bottleneck queue, while the throughput
is capped at the maximum bottleneck speed named BtlBw
in Figure 1a. Starting from the pointX, the RTT grows linearly
as a function of the amount of data inflight up to a point Y,
where the maximum buffer size of the bottleneck is reached,
and the packets start to be dropped. Once reached point
Y, both the RTT and the throughput cannot grow anymore
in ideal conditions. This model has been widely used for
TCP congestion control designing; in fact, TCP BBR has the
model goal to operate close to point X while standard loss-
based congestion controls operate close to point Y, waiting
for drops feedbacks to adjust the amount of data inflight.

The wireless bottleneck has the same behavior as the
wired bottleneck if the frame aggregation mechanism is not
deployed, and points A and C of Figure 1b are equivalent
to points X and Y of Figure 1a. The implementation of the
frame aggregation mechanism increases spectrum efficiency
by sending more than one frame in a single transmission

VOLUME 9, 2021 107931



C. A. Grazia: Future of TCP on Wi-Fi 6

FIGURE 3. Aggregate of k packets in the driver queue.

opportunity, allowing the radio interface to increase the max-
imum throughput, i.e., increasing the BtlBw; additional
details on the frame-aggregation mechanism can be found
in [4], [5]. From point A, increasing the amount of data
inflight and allowing frame aggregation increases both the
throughput and the RTT. The idea is that transmitting more
frames in a single transmission attempt allows increasing the
throughput, non-linearly, by reducing the ratio between the
payload and the radio access overhead. This benefit ends
reaching point B, in which the maximum aggregation size is
reached, and so also themaximum BtlBw in case of aggrega-
tion enabled. Starting from B, increasing the amount of data
inflight has no impact on the throughput and can only increase
the RTT introduced by the queueing delay in the wireless
NIC queue, that accumulates packets. The packets are accu-
mulated as a function of the amount of data inflight up the
maximum buffer size of the wireless bottleneck interface in
point D. After that point, the RTT cannot increase anymore,
in ideal condition, and the packets start to be dropped. The
next Section provides the curves’ formula for throughput and
RTT in points A, B and D.

B. HYBRID BOTTLENECK
Once defined the pure wired or wireless bottlenecks, it is
possible to discuss a hybrid bottleneck where the throughput
and RTT are affected by four different regions. Indeed, after
the application-limited area, we have an aggregate limited
region in which packets start to accumulate at the wireless
NIC to create aggregates and increase the throughput, as well
as the RTT as a side effect, moving from point L to point M.
The connection can increase the throughput and exploit a
higher BtlBw thanks to the frame aggregation, which takes
advantages of the increasing number of data inflight to form
larger aggregates and increase the throughput. This mecha-
nism allows to exploit higher bandwidth up to point M, where
the wired bottleneck limits the exploitation. This migration
moves where the extra amount of packets inflight gets accu-
mulated: it moves from the wireless interface (that allows at
least a bandwidth equal to the wired interface with the current
aggregation size) to the wired interface. Indeed, from point M
to point N the throughput cannot increase anymore, limited
by the wired bottleneck. The RTT increases as a function
of the queueing delay at the wired bottleneck, in the same
way as what happened between points X and Y of Figure 1a.
It is essential to notice that this hybrid bottleneck can exist
if and only if the maximum aggregation size is not reached,
otherwise the bottleneck would be a pure wireless bottleneck
as in Figure 1b.

TABLE 1. Aggregation parameters.

IV. HYBRID BOTTLENECK MODEL
In this section, we formalize the hybrid bottleneck model that
describes analytically Figure 2. The model derives from the
wireless bottleneck one reported in [7] that, instead, describes
analytically Figure 1b. The main critical portion of Figure 2 is
between the points L and M, which has the same non-linear
curve of delivery rate of Figure 1b between points A and B.
The absence of linearity, with respect to the previous known
wired model of Figure 1a, is due to the presence of frame
aggregation at the bottleneck NIC, which changes the deliv-
ery rate as a function of the bottleneck queue length, i.e., as
a function of the aggregate size, the larger is the aggregate,
the lower is the overhead and the higher is the throughput.

To model the frame aggregation mechanism and the hybrid
bottleneck behavior, we refer to the parameters reported
in Table 1. We assume the Wi-Fi 6 station to transmit at a
constant bitrate r of 2.4 Gbps, which is the initial bottleneck
of the hybrid system.1 If the aggregate is composed of a single
packet, the length of the frame transmitted will be:

one packet frame size = (l + loh) · 8 (1)

where l · 8 is simply the conversion of a packet size from
bytes to bits, and loh is the physical overhead introduced by
Wi-Fi 6. If, instead, the number of packets at the bottleneck
allows the formation of aggregate packets, like the situation
depicted in Figure 3, the length of the frame transmitted will
be:

k packets frame size = (k · l + loh) · 8 (2)

where k is the number of packets included in the aggregate.
The only constraint is that 1 ≤ k ≤ mxg, where mxg is the
maximum aggregation size imposed by the Wi-Fi medium.

Before continuing our analysis, it is important to clarify the
hypothesis under which it is possible to talk about a hybrid
bottleneck. The Wi-Fi delivery rate must exceed the wired
bottleneck capacity with an aggregate of size k̄ which is:

1 < k̄ < mxg.

In other words, k̄ is the aggregation size at which theWi-Fi
throughput match the wired bandwidth bottleneck. This con-
dition is crucial because if the wired bottleneck bandwidth
is lower than the Wi-Fi bottleneck bandwidth without frame

1Without frame aggregationmechanism, indeed, even if theWi-Fi 6 bitrate
is 2.4 Gbps, the available TCP data-rate is less than 100 Mbps.

107932 VOLUME 9, 2021



C. A. Grazia: Future of TCP on Wi-Fi 6

aggregation (k̄ = 1), it means we are in front of a stan-
dard wired bottleneck. In a similar scenario, the bottleneck
model is simply the one depicted in Figure 1a, and the Wi-Fi
hop is not introducing significant changes since it is never
the bottleneck of the path. On the other side, if the wired
bottleneck bandwidth is higher than the Wi-Fi bottleneck
bandwidth at the maximum aggregation size (k̄ = mxg),
it means that we are in front of a standard wireless bottleneck.
In this scenario, instead, the bottleneck model is simply the
one depicted in Figure 1b, and the wired path is not intro-
ducing significant changes since it is never the bottleneck of
the path. If the initial condition holds, the Wi-Fi hop is the
bottleneck until the aggregation size of k packets is below k̄ .
In contrast, the wired interface becomes the bottleneck once
the Wi-Fi reaches aggregation sizes of, at least, k̄ packets.
This bottleneck migration, from wireless to wired, introduces
the need for a newmodel as a function of the aggregation size.

Now we need to formalize the delivery rate and the RTT
of the hybrid bottleneck. To simplify the discussion, we refer
to a steady-state case in which the NIC queue is backlogged.
We start by describing the average transmission time needed
by the Wi-Fi interface to transmit a generic aggregate of k
packets:

TxTw(k) =
(k · l + loh) · 8

r
+ toh (3)

where toh is the per-transmission overhead, which encapsu-
lates the inter-frame spacing, the average block acknowledg-
ment time, and the average back-off time before transmission.
A detailed explanation of toh overhead is given in [4]. Simi-
larly, the effective Wi-Fi throughput, assuming to work with
only one station, without collisions and errors is:

Thr(k) =
k · l · 8
TxTw(k)

(4)

which is simply the payload size divided by the time needed to
transmit the associated frame. At the same time, the transmis-
sion time needed by the wired ethernet interface to transmit a
generic queue of k packets is:

TxTe(k) = k ·
(l + leoh) · 8

rwired
(5)

where toh is not included since it is negligible on ethernet
interface with respect to Wi-Fi ones, and leoh is the host-to-
network standard overhead for gigabit ethernet.

According to [7], the latency contribution at the Wi-Fi
bottleneck is 2 · TxTw(k), when k < mxg, so the RTT
associated to the hybrid bottleneck can be easily formalized
with:

RTT (k) =

{
RTTbase + 2 · TxTw(k) if k ≤ k̄
RTTbase + 2 · TxTw(k̄)+ TxTe(k-k̄) otherwise

(6)

with the RTT that grows following the Wi-Fi slope, when the
bottleneck is wireless (k ≤ k̄), and grows, instead, following
the standard wired slope, once the bottleneck became the
wired interface (k > k̄).

Similarly, the hybrid bottleneck bandwidth is:

BW (k) =

{
Thr(k) if k ≤ k̄
Thr(k̄) otherwise

(7)

since the available bandwidth grows with k , thanks to frame
aggregation, up to k̄ when the bottleneck migrates from the
Wi-Fi to the wired interface without growing anymore.

V. LINUX TCP/IP STACK
The current and up to date TCP-IP Linux stack is depicted
in Figure 4.We report the threemain blocks involved in a TCP
flow transmission with the whole TCP transport block on
the left, the Queueing Layer that corresponds to the TCP-IP
networking layer in the middle, and the host-to-network
Driver block on the right. The role of TCP congestion control
algorithm did not change recently, so the TCP socket is still
calculating the congestionwindow (CWND) and dealingwith
the ACK reception according to the algorithm used. The
most significant change in the last years has been in the
way packets are delivered by the TCP socket, now regu-
lated by TSQ and TP. These new submodules are reported
in Figure 4. Once the TCP socket delivers the packets, they are
enqueued in the lower layers. The Queueing Layer, depicted
in the middle of Figure 4, deploys a standard FQ-CoDel
algorithm, which is the default solution in recent kernels with
many Linux distributions [14]. Once the scheduler delivers
the packets, they move in the last block, where the driver
firmware implements the last hardware queue before moving
to the physical medium channel. Once a packet is physically
transmitted, a completion signal is cross-passed to the TSQ
algorithm.

Algorithm 1 TCP Pacing Rate
Input: TCP_SOCKET sk, int baseRTT ;
1: int rate = mss * sk→cwnd / baseRTT ;
2: if sk→cwnd < sk→ssthresh / 2 then
3: rate *= tcp_pacing_ss_ratio; // SlowStart phase
4: else
5: rate *= tcp_pacing_ca_ratio; // Cong.Avoid. phase
6: end if

A. TP AND TSQ
The most significant change experienced by the TCP-IP
stack in the last years has been the introduction of
TP and TSQ. The cooperative work of these two
TCP submodules strongly impacts the way packets
are delivered by the TCP socket, affecting the TCP
RTT and the system latency. TP is controlled by two
system variables, i.e., tcp_pacing_ss_ratio and

2We include in the packet size the MPDU delimiter size, MAC header,
frame check sequence and padding for simplicity.

3According to the IEEE 802.11ax standard, the maximum size of an
aggregate is 256MPDU,which is more than 1000 ethernet frames. On Linux,
this limit is further reduced to 4 ms of data at the current rate, that results in
a limit of circa 800 packets with our iwlwifi driver.

VOLUME 9, 2021 107933



C. A. Grazia: Future of TCP on Wi-Fi 6

FIGURE 4. TCP-IP Linux Stack.

tcp_pacing_ca_ratio, used in the slow start and the
congestion avoidance phases, respectively, as reported in
Algorithm 1. The mathematical equivalence of Algorithm 1
is, instead:

TCP_paced_rate =
(
CWND ·MSS

baseRTT

)
· pacing_ratio (8)

where MSS is the Maximum Segment Size and, conse-
quently, CWND·MSS

baseRTT
corresponds to the current TCP rate.

The TCP socket’s final TCP paced rate to deliver data
is then adjusted with the pacing_ratio that changes
according to the TCP transmission phase. By default,
tcp_pacing_ss_ratio is equal to 2 in the slow-start
phase, and tcp_pacing_ca_ratio is equal to 1.2 in the
congestion avoidance phase. This means that the TCP flow
doubles the slow-start phase rate and increases it by 20%
in the congestion-avoidance phase. This mechanism allows
probing for more bandwidth without forming excessive bursts
of packets in the path’s network queues.

Algorithm 2 TCP Small Queue
Input: TCP_SOCKET sk;
1: int limit;
2: limit = max(2 * sk→pktsize, sk→tcp_pacing_rate �

10);
3: limit = min(limit, tcp_limit_output_bytes);

On the other side, the TCP paced rate is used to calculate,
in conjunction with the TSQmechanism, the number of pack-
ets that a TCP socket can enqueue in the sender stack. This
quantity is a dynamic value that responds to the following
equation:

TSQ_limit = min
(
bytes,

max
(
pkts ·MSS,ms · pacing_ratio

))
(9)

which is the mathematical equivalent of Algorithm 2, where
pkts and ms are converted in bytes for consistency. Equa-
tion 9 guarantees that the TSQ limit (expressed in bytes)
is always higher than a minimum amount of packets pkts

(2 packets by default) and lower than a maximum amount of
bytes bytes (128 KB by default). The dynamic limit moves
through these two bounds and is the amount of data that corre-
sponds to a latency equal to ms, 1 ms by default. Algorithm 2
clarifies this behavior: the dynamic amount of data that can
be enqueued is calculated through sk→tcp_pacing_rate �
10, which is a 10-bit shift of the current pacing rate, that
corresponds to the amount of data transmitted in 1 ms at the
current paced rate. This mechanism helps the sender conges-
tion control mitigate the queueing delay inside the node and
accurately calculate RTTs. The bit shift quantity changes the
latency introduced by TSQ, while the TP ratio changes the
TSQ limit size.

B. QUEUEING LAYER AND DRIVER
The default structure of FQ-CoDel, reported in Figure 4,
works as follows: a separate software queue serves each TCP
flow, and each queue is managed by the CoDel algorithm to
control the latency and is served in a round-robin fashion.
The default CoDel threshold is set at 5 ms, which means
that packets with sojourn time greater than the threshold will
be dropped at the dequeue stage. The Queueing layer and
the NIC Driver block are strongly coupled in their behavior.
Indeed, through the usage of the mq Linux queueing disci-
pline, one separate packet scheduler for each NIC hardware
queue is implemented; Figure 4 represents a simple scenario
in which a single hardware queue is present. The driver
also implements the Byte Queue Limit (BQL) for all the
hardware queues, which is the last algorithm to control the
global latency of the system [15]. The BQL mechanism tries
to store enough data to avoid starvation and, at the same
time, tries to avoid accumulating excessive data increasing
the latency. The BQL algorithm is not tested in our paper, and
the drivers’ default configurations are maintained, this means
that the BQL is working during the experiments with default
parameters.

VI. TESTBED
This section describes our testbed, which is depicted
in Figure 5. Each test involves a single client, a server, and
the WiFi 6 Access Point. The end nodes run the Arch Linux

107934 VOLUME 9, 2021



C. A. Grazia: Future of TCP on Wi-Fi 6

FIGURE 5. Physical testbed layout.

TABLE 2. Testbed parameters.

distribution with a 5.4-lts kernel version, while the access
point is an ASUS RT-AX92U device with 4 × 4 MIMO that
can provide Wi-Fi 6 connectivity with the IEEE 802.11ax
standard. The testbed represents an FTTH environment that
is widespread nowadays for both home and office networking
with a high capacityWi-Fi access network and a 1Gbpswired
interface through the ISP.

The client station connects to the access point through an
AX201NGW chipset, with 2 × 2 MIMO, supported by the
iwlwifi Linux driver. The client uses six possible TCP
congestion control algorithms (reported in Table 2) and can
set different possible TSQ limits and TP rates.

To overcome the inflexible standard behavior of TSQ,
we patched the kernel to expose the TSQ core parameters
and make it possible to disable or tune the TSQ logic. While
standard TSQ allows each socket to enqueue ‘‘1 ms of data’’
at the current rate, our patch allows changing the amount of
data that can be enqueued at the current rate on the basis of
additional time-windows. This limits the amount of data in
the stack as a function of the ms parameter, resulting in a
dynamic constraint, i.e., autotuning the number of bytes to
enqueue as a function of the current rate. In this paper, we use
values of 1 (standard TSQ), 2, 4, 8, 16, and 32 ms, because,
at the kernel level, the TSQ size is managed as a bits shift
operation, and power of 2 integers are preferred. Moreover,
static TSQ sizes can be imposed, which means that the actual
TSQ value does not depend on the current rate but can be
expressed in bytes or packets. The latter feature is used to
verify the hybridmodel described in Figure 2 by controlling at
a fine-grained level the TSQ size and, consequently, the data
amount in flight.

The other most critical parameter introduced and tested
in this paper is the TP rate. TCP BBR does not react to

any modification to the standard pacing value offered by the
current Linux systems, so we used the BBRp patch [13] to
allow BBR to use the same pacing rate of other congestion
controls. The pacing rates used in this paper are named 1p,
2p and3p: where1p represents the standard pacing rate used
by all the TCP variants, 2p doubles the values and so on.
Details about the BBRp patch and results not included here
for space limitations, can be found in [16].

We followed the best practice document [17] provided by
the bufferbloat community to configure our test computers
and avoid the most common testing pitfalls. We then dis-
abled all hardware offload features, turning them off (e.g.,
TSO/GSO/GRO/LFO). All of these adjustments serve to
reduce sources of delay rather than those induced by the
algorithms themselves.

All the experiments reported in this paper have been orga-
nized by using the Flent [18] tool, a flexible network tester
that gives the possibility tomanage different traffic typologies
efficiently as well as to auto collect many performance met-
rics. Tests are organized as follows. We start a standard TCP
flow in upload from the wireless client to the server. Each test
runs for 40 seconds, of which five initial seconds with only
ICMP traffic, 30 seconds for the actual TCP transmission,
and five final seconds where, again, only the ICMP traffic
is maintained. In this way, it is possible to highlight the
impact of the TCP traffic on the ping RTT, as well as
many other parameters related to the TCP traffic itself like
throughput and TCP RTT. Summarizing, all the parameters
used to configure our experiments are summarized in Table 1
and Table 2.

VII. RESULTS
A. HYBRID MODEL: FROM THEORY TO PRACTICE
The first set of tests has been configured with static values
of TSQ. This has been necessary to control the number of
packets in flight at a fined-grain level, i.e., acting directly on
the Wi-Fi bottleneck queue in the upload stream thanks to the
TSQ property. By doing this, it has been possible to profile
the x-axis of Figure 2 controlling it with TSQ values from 1 to
2048 packets with steps of 32. The TCP congestion controls
used in this first test are TCP Cubic and TCP BBRv2 due
to their different behaviors on pure bottlenecks. Each run
has been repeated 20 times for collecting statistics. Figure 6
shows the result of this first experiment and reports both the
TCP throughput and the latency. It is possible to notice how
both the throughput and the latency of Figure 6 reflect the
delivery rate and RTT curves of Figure 2; the points M and
N of the model has also been reported on the collected data
to simplify the reading. With a number of packets in flight
close to 512, the Wi-Fi 6 station is able to reach the 1 Gbps
bottleneck of the Ethernet wired bottleneck, indicating that
512 is k̄ of our testbed, while mxg is circa 800 packets. This
point is indicated with M, recalling the same point of the
model depicted in Figure 2: from the point M, indeed, it is
not possible to increase the overall throughput higher than
1 Gbps, due to the wired bottleneck, while the RTT can grow,

VOLUME 9, 2021 107935



C. A. Grazia: Future of TCP on Wi-Fi 6

FIGURE 6. Throughput and RTT on Wi-Fi 6 hybrid bottleneck.

changing the slope, up to point N which is between 1405 and
1536 packets. The point N position reflects the hardware
characteristics of our testbed, since the wired bottleneck is
able to accommodate 1000 packets4 and the Wi-Fi interface
needs 512 packets to reach the wired bottleneck throughput,
the number of packets inflight to discover point N must be
the sum of the two. The real data of TCP Cubic and TCP
BBRv2 does not follow themodel from pointM to pointN, due
to their intrinsic characteristics. TCP Cubic is a loss-based
congestion control: once the bottleneck moves from wireless
to wired, the control of the bottleneck queue length is not
in charge anymore to the TSQ mechanism. This fact allows
TCP Cubic to operate, as known from the literature, over
a standard remote wired bottleneck, moving straight to the
operating pointN, reacting only in the presence of losses. TCP
BBRv2, instead, is a model-based variant, and it is designed
to maintain an operating point close to M, without filling
the wired bottleneck queue, which does not provide extra
throughput and only provides extra latency.5 The only way to
draw the model line from M to N, is controlling the drop limit
at the wired queue, from 1 to 1000, and using TCP Cubic,
which always operates filling the queue, but it is not the goal
of this paper.

B. CHANGING TSQ SIZE
We continue our analysis using the standard representation
of TSQ, where the TSQ size is expressed as a function of
the milliseconds’ parameter, starting first with tests in which
the TSQ size is left at its default value of 1 ms. This first
set of tests indicates that the initial bottleneck must be con-
sidered the Wi-Fi 6 interface, unable to exploit the avail-
able network bandwidth if frame aggregation is not properly
utilized. We report the results of 6 selected TCP variants,
namely Cubic, BBRv2, New Vegas, YeAH, New Reno, and
HighSpeed, performing a TCP upload. These are the most
representative group of TCPs for our tests; we also tested
all the other Linux default variants, and the results can be
found in [16], not here included. Figure 7 shows that none
of the different TCP variants is able to reach the available
1 Gbps of network bandwidth; all the congestion controls
are indeed blocked close to 100 Mbps. The latency registered

4For this experiment FQ-CoDel has been disabled at the wired bottleneck,
to allow to appreciate the slope between M and N.

5We used BBRv2 instead of the original BBR to allow the congestion
control to aggregate packets and reach the M point.

by all the TCP variants is very close to the base RTT of our
network of 2.5 ms. The only difference is between the group
formed by Cubic, BBR, and New Vegas that reports uploads
slightly lower than YeAH, New Reno, and HighSpeed TCPs.
This small gap resides in the TSQ limit interpretation of the
different TCP variants, allowing the last three TCPs to aggre-
gate a bit to take advantage of small aggregates and reach
slightly higher throughput. These differences are reduced
moving from a single TCP upload to 4 TCP uploads simulta-
neously active in the experiment reported in Figure 7b. This
latter plot tells us two things: first, the intrinsic differences
between the TCP variants disappear with negligible varia-
tions of throughput and latency between them, and second,
increasing the number of TCP streams does not mitigate the
limit of 100 Mbps imposed by TSQ due to the absence of
effective frame aggregation at the Wi-Fi 6 NIC.

Our TSQ patch help to overcome the TCP upload through-
put limit, relaxing the amount of ms for the TSQ and allowing
almost all the different congestion controls to effectively
aggregate packets at the Wi-Fi 6 NIC to exploit the available
network data-rate. Figure 8 reports the same experiment of
Figure 7, whit a single TCP upload, but including different
TSQ sizes, from the standard 1 ms up to 32 ms. On one
side, it is clear how relaxing the TSQ constraint helps many
congestion controls reach the system’s maximum data-rate;
on the other side, it is clear how different TCP variants behave
differently to this change.

The first observation is on New Vegas, which through the
TSQ relaxation, increases the throughput up to 350 Mbps
without reaching the optimal value. The reason is the
delay-based nature of TCP New Vegas, which cannot aggre-
gate appropriately as the frame aggregation impacts the
latency, increasing the queueing delay. Instead, almost all
the other TCP variants can easily saturate the Wi-Fi 6 hop
reaching the 1 Gbps limit imposed by the following wired
hop through values of 16TSQ or 32TSQ. Some different
behaviors are crucial by observing the latency; the loss-based
variants Cubic, New Reno, and HighSpeed increase the
latency between 15 and 17 ms with 16 and 32TSQ, due to
their nature to operate at the point N of wired bottlenecks.
The delay-based variant of New Vegas instead maintains the
latency close to the base RTT. The only congestion con-
trols that move in the trade-off region are TCP YeAH and
TCP BBRv2: TCP YeAH reaches an almost optimal value
of TCP throughput, increasing the latency more gently than

107936 VOLUME 9, 2021



C. A. Grazia: Future of TCP on Wi-Fi 6

FIGURE 7. TCP upload: Standard TSQ, Goodput vs. Ping.

FIGURE 8. One TCP flow in upload: different TCP & TSQ, Goodput vs. Ping.

loss-based variants, while TCP BBRv2 manifests the best
trade-off reaching the optimal throughput with 16 and 32TSQ
like the loss-based TCP group, but maintaining a latency
slightly close to 7 ms, which corresponds to the M operating
point.

C. CHANGING TP
The second set of experiments aims to analyze the impact
of TP on throughput and RTT. We considered again dif-
ferent TSQ sizes and different TCP congestion controls,
replacing BBRv2 with BBR, since BBRv2 has a custom
pacing engine, while with BBR we can appreciate differ-
ent TCP pacing speeds as well as on the other congestion
controls.6 TP impacts the TSQ size computation, as seen
in Section V, by boosting the ability of each TCP variants
to discover higher data-rate available. Figure 9 shows the
effect of increase the TP rate from 1p to 2p and 3p on
throughput and latency, including TCP RTT, maintaining
a default TSQ configuration on a single TCP upload. The
results are significant since TCP YeAH, TCP New Reno,
and TCP HighSpeed reach almost 500 Mbps of throughput
without significative impact on both ping latency and TCP

6Details on our second patch that allows BBR to react to global TP
variables are reported in [16].

RTT. Simultaneously, TCP Cubic reacts with a smaller effect
to the TP changes increasing the throughput only partially.
Even in this case, TCP BBR and TCP New Vegas privilege a
low latency without effective frame aggregation.

It is now interesting to observe the same experiment repro-
duced with 4TSQ instead of the default one. The value
of 4TSQ is interesting since it is the selected value from
the wireless Atheros drivers in the Linux kernel mainline
for allowing packet aggregation at the NIC. All the results
involving other TSQ values are available in [16] and are not
included here to avoid redundancy. In this case, all the TCP
variants have a specific reaction to the TP change, thanks to
the more relaxed TSQ value that leaves room for appreciating
different behaviors. TCP Cubic manifests the largest hops in
throughput from less than 300 Mbps with 1p, up to a satu-
rated value of 1 Bbps with 3p, maintaining the latency and
TCP RTT increment close to 4 ms. This helps to appreciate
how much TCP Cubic is reactive to TP changes, and this
is reasonable since the TP mechanism has been introduced
when TCP Cubic was the default congestion control on Linux
systems. TCP BBR increases the throughput relaxing the
TSQ policy at 4TSQ, and combining it to a TP increment.
The throughput reached is more than 600 Mbps with 4TSQ,
without significative changes between 2p and 3p. TCP New
Vegas has a good spectrum of results with 4TSQ, in which the

VOLUME 9, 2021 107937



C. A. Grazia: Future of TCP on Wi-Fi 6

FIGURE 9. Effect of TP: Standard TSQ.

FIGURE 10. Effect of TP: 4TSQ.

difference between 2p and 3p can be appreciated moving to
250 and almost 500 Mbps of throughput, respectively. TCP
Vegas provides the remarkable characteristic to avoid latency
to become higher than 5 ms, which forbids the formation of
the necessary aggregates to increase further the throughput.
To conclude the description, again, TCP YeAH manifests the
best tradeoff between throughput and latency with the 4TSQ
configuration, reaching 850 Mbps with less than 2 ms of
increment for both latency and TCPRTT. TCPNewReno and
TPCHighSpeedmanifest very similar behavior, moving from
800 Mbps with 1p, to saturated values of circa 1 Gbps, with
both 2p and 3p. With this experiment, it can be noticed that
saturating the wired bottleneck using an aggressive configu-
rationwith high TSQ and TP leads only to a latency increment
and even more TCP RTT, which, in this case, is greater than
ping RTT. A similar conclusion is reached by TCP New
Reno and TCP HighSpeed, indeed they start to saturate at
4TSQ with 2p, which leads only to performance degradation
in terms of TCP RTT that reaches 12 ms with 2p.

D. REAL-TIME RESPONSE UNDER LOAD
We conclude our experimental results with the RRUL test,
which is integrated into the Flent tool and consists of 8
streams of TCP traffic, 4 in download and 4 in upload, where
we used the same TCP congestion control, changed each time
as before. In other words, upload and download streams are
always of the same TCP variant in each test, avoiding to
incur in friendliness problem between a specific couple of
TCP variants. Together with the 8 TCP streams, the RRUL
test also creates an ICMP and a UDP traffic simultaneously.

The Bufferbloat community has indeed proposed the RRUL
test to challenge a network with heavy traffic load, leading
to buffers’ formation at the bottleneck and packet drops,
enabling the evaluation of a network, and internet protocols
under realistic congestion scenarios.

Figure 11 shows the performance of our network under
the RRUL test, reporting the average throughput of the four
upload streams, the four download streams, and the average
ping RTT. We replicated the experiment with standard TSQ
configuration and 32TSQ. Change the TSQ limit at the server
has no impact on the results since the server is attached to the
network through a wired ethernet connection and has no lim-
itations related to TSQ and frame-aggregation mechanisms.
The first result, in Figure 11a, manifests a huge unbalance
between download and upload, with a distribution of data-rate
which is close to 850 Mbps in download and 150 Mbps
in upload; this happens for two reasons, the difference in
terms of hardware characteristics between the access point
and the client station, that privileges the download stream,
and the presence of TSQ at the client, that mitigate the upload
capacity according to what we have seen in the previous
sets experiments. Simultaneously, despite the presence of
standard TSQ, the ping latency is very high due to the
congestion at the bottleneck wired link of the access point,
leading to values of 50 ms for loss-based congestion controls
like TCP Cubic, TCP New Reno, and TCP HighSpeed. At the
same time, TCP BBR and TCP YeAH contain the latency
to values close to 20 ms. The only exception is TCP New
Vegas, which mitigates the latency to 5 ms and shares slightly
better the available data-rate between the downstream and the
upstream. The second result, in Figure 11b, reports the RRUL

107938 VOLUME 9, 2021



C. A. Grazia: Future of TCP on Wi-Fi 6

FIGURE 11. RRUL test: Standard TSQ vs. 32TSQ.

FIGURE 12. RRUL test with 32TSQ: varying TP.

test when the TSQ at the client station is relaxed at 32TSQ.
The overall latency is not impacted, with negligible changes
moving from standard TSQ to 32TSQ. Indeed, the larger
contribution of ping RTT comes from the congestion at the
wired bottleneck. From a balancing point of view between
downstream and upstream, the impact of TSQ is evident,
but still not enough to mitigates the hardware differences
between the access point and the stations. Anyway, the gap
between download and upload is reduced from standard TSQ
to 32TSQ, for all the TCP variants. The only TCP variant able
to split, almost equally, the data-rate in the two directions is
TCP Vegas. The reason resides in the non-aggressive nature
of the TCP congestion control, which cares only about the
latency, leaving room for the upstream to grow and split the
bandwidth with the downstream without taking advantage of
the hardware characteristic.

To conclude the analysis, we also observed the impact of
TP on the RRUL test with 32TSQ. The results are reported
in Figure 12. Despite the effect of increasing the TP has a
minor impact in this experiment with respect to the previous
ones, it is mainly visible in TCP BBR, which a significant
throughput increment in the upload stream, followed by a cor-
related downstream throughput reduction. All the congestion
controls manifest the same effect, but with a minor impact
with respect to TCP BBR.

VIII. CONCLUSION
In this paper, we have presented, analyzed, and tested the
TCP performance on Wi-Fi 6, including the most up-to-
date modules of the TCP-IP Linux kernel, such as novel
and different TCP congestion controls, TCP Small Queues,
and TP. Thanks to the characteristics of Wi-Fi 6 and current
Internet networks, we defined and modeled the concept of a
hybrid bottleneck, where the Wi-Fi interface is initially the
wireless bottleneck, up to the formation of a certain level of
frame aggregation that allows the Wi-Fi 6 to reach the typical
1 Gbps of wired Ethernet bottleneck. The bottleneck migra-
tion has been modeled analytically and proved by experimen-
tal results. Continuing, the paper analyzed the performance of
different TCP over this hybrid bottleneck, investigating it as
a function of the TSQ size, a fundamental parameter to allow
the wireless interface to match the wired bottleneck, and TP.
Results show that relaxing the TSQ standard limit is funda-
mental to exploit the available Wi-Fi 6 throughput with TCP
uploads. The optimal balance between TSQ relaxation and
higher TP depends on the TCP variant used, with TCP YeAH
and TCP BBRv2 that interoperate well with the tradeoff
between throughput and latency increment. The first scenario
considered, with only TCP uploads in place, has highlighted
the performance of TCP YeAH. The reason is the nature
of TCP YeAH, a hybrid algorithm which interoperates well

VOLUME 9, 2021 107939



C. A. Grazia: Future of TCP on Wi-Fi 6

with the tradeoff between throughput and latency increment.
In the second scenario considered, with heavy congestion
through the RRUL test, the sole TCP able to guarantee fair-
ness between downstream and upstream has been TCP New
Vegas, which also manifested the lowest latency, close to the
base network RTT, despite the high congestion. This paper
poses the basis for optimizing TCP performance in novel
Wi-Fi 6 environments and future ones, highlighting the role
of fundamental end-node algorithms to control the latency
and exploit the throughput, finding the optimal tradeoff as a
function of the frame aggregation.

REFERENCES
[1] C. A. Grazia, N. Patriciello, T. Hoiland-Jorgensen, M. Klapez, M. Casoni,

and J. Mangues-Bafalluy, ‘‘Adapting TCP small queues for IEEE 802.11
networks,’’ inProc. IEEE 29th Annu. Int. Symp. Pers., IndoorMobile Radio
Commun. (PIMRC), Sep. 2018, pp. 1–6.

[2] T. Høiland-Jørgensen, P. Hurtig, andA. Brunstrom, ‘‘The good, the bad and
the WiFi: Modern AQMs in a residential setting,’’ Comput. Netw., vol. 89,
pp. 90–106, Oct. 2015. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1389128615002479

[3] T. Hoiland-Jorgensen, M. Kazior, D. Taht, P. Hurtig, and A. Brunstrom,
‘‘Ending the anomaly: Achieving low latency and airtime fairness in
WiFi,’’ in Proc. USENIX ATC, 2017, pp. 139–151.

[4] T. Y. Arif and R. F. Sari, ‘‘Throughput estimates for A-MPDU and
block ACK schemes using HT-PHY layer,’’ J. Comput., vol. 9, no. 3,
pp. 678–687, Mar. 2014.

[5] M. Kim, E.-C. Park, and C.-H. Choi, ‘‘Adaptive two-level frame aggrega-
tion for fairness and efficiency in IEEE 802.11n wireless LANs,’’ Mobile
Inf. Syst., vol. 2015, pp. 1–14, Jan. 2015.

[6] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
‘‘BBR: Congestion-based congestion control,’’ Commun. ACM, vol. 60,
no. 2, pp. 58–66, 2017.

[7] C. A. Grazia, ‘‘A performance model for Wi-Fi frame aggregation con-
sidering throughput and latency,’’ IEEE Commun. Lett., vol. 24, no. 7,
pp. 1577–1580, Jul. 2020.

[8] H. Hassani, F. Gringoli, and D. J. Leith, ‘‘Quick and plenty: Achieving low
delay and high rate in 802.11ac edge networks,’’ 2018, arXiv:1806.07761.
[Online]. Available: http://arxiv.org/abs/1806.07761

[9] S. R. Pokhrel, H. L. Vu, andA. L. Cricenti, ‘‘Adaptive admission control for
IoT applications in home WiFi networks,’’ IEEE Trans. Mobile Comput.,
vol. 19, no. 12, pp. 2731–2742, Dec. 2020.

[10] J. Zhou, Z. Li, Q.Wu, P. Steenkiste, S. Uhlig, J. Li, and G. Xie, ‘‘TCP stalls
at the server side: Measurement and mitigation,’’ IEEE/ACM Trans. Netw.,
vol. 27, no. 1, pp. 272–287, Feb. 2019.

[11] J. Ruth, I. Kunze, and O. Hohlfeld, ‘‘TCP’s initial window—Deployment
in the wild and its impact on performance,’’ IEEE Trans. Netw. Service
Manage., vol. 16, no. 2, pp. 389–402, Jun. 2019.

[12] N. Cardwell, ‘‘BBR v2: A model-based congestion control,’’ in Proc.
ICCRG IETF 104th Meeting, Mar. 2019, pp. 1–36. [Online]. Available:
https://datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-an-
%update-on-bbr-00

[13] C. A. Grazia, M. Klapez, and M. Casoni, ‘‘BBRp: Improving TCP BBR
performance over WLAN,’’ IEEE Access, vol. 8, pp. 43344–43354, 2020.

[14] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys, and E. Dumazet.
(Jan. 2018). FlowQueue-CoDel. [Online]. Available: https://tools.ietf.
org/html/rfc8290

[15] N. Mareev, D. Kachan, K. Karpov, D. Syzov, and E. Siemens, ‘‘Efficiency
of BQL congestion control under high bandwidth-delay product network
conditions,’’ in Proc. Int. Conf. Appl. Innov. (IT), vol. 7, no. 1, 2019,
pp. 19–22.

[16] (Jun. 2021). Linux KErnel Patches, Source Scripts and Tests. [Online].
Available: http://netlab.unimore.it/sw/sourceHB.zip

[17] D. Taht and J. Gettys. (2014). Best Practices for Benchmarking CoDel and
FQ CoDel. [Online]. Available: http://goo.gl/FpSW5z

[18] T. Hoiland-Jorgensen, C. A. Grazia, P. Hurtig, and A. Brunstrom, ‘‘Flent:
The flexible network tester,’’ in Proc. ValueTools, 2017, pp. 120–125.

CARLO AUGUSTO GRAZIA (Member, IEEE)
received the Ph.D. degree from the Department
of Engineering Enzo Ferrari (DIEF), University of
Modena and Reggio Emilia (UNIMORE), in 2016.
He is currently an Assistant Professor holding
the course ‘‘automotive connectivity’’ with the
DIEF, UNIMORE. He has been involved in the EU
FP7 Projects: E-SPONDER and PPDR-TC. His
research interests include computer networking,
with an emphasis on wireless networks, queuing
algorithms, and V2X.

107940 VOLUME 9, 2021


