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ABSTRACT The physiological health and chronic diseases of humans can be monitored by linking up
health management and monitoring (HMM) system with the Internet of things (IoT), which transcends the
restrictions of time and space. However, the IoT network faces several resource constraints, such as limited
storage and initial energy of nodes, long delay of response to system transmission, and low rate of successful
payments. To solve these problems, this paper explores the IoT-based implementation of universal HMM
system in resource-constrained environment. Firstly, the forwarding utility of the communication between
adjacent IoT nodes was estimated, and an incentive strategy was prepared for the IoT nodes in the resource-
constrained environment. Next, a universal HMM system was designed, and the scheme for denoising,
baseline drift filtering, and feature point detection was introduced step by step. After that, the authors
presented the design process of the communication protocol, and the workflow of the cloud server. Through
experiments, themeasurements of the detectionmodules in the proposed universal HMMsystemwere proved
effective, and our algorithmwas confirmed superior in the success rate of message delivery, themean residual
energy of nodes, and the delay of system response.

INDEX TERMS Internet of Things (IoT) network, universal health management and monitoring (HMM)
system, resource-constrained environment.

I. INTRODUCTION
With the rapid progress of economy and society, people
are attaching greater importance to their health conditions.
Meanwhile, the Internet of things (IoT) has gained popularity,
owing to the fast development of communication technol-
ogy [1]–[4]. The physiological health and chronic diseases of
humans can be monitored by linking up health management
and monitoring (HMM) system with the IoT, which tran-
scends the restrictions of time and space [5]–[8]. However,
the application and implementation of the universal HMM
system are severely challenged by the resource constraints of
the IoT network, namely, limited storage and initial energy
of nodes, long delay of response to system transmission, and
low rate of successful payments [9]–[13].

To build an energy-efficient campus,Medrano-Gil et al. [14]
applied the IoT technology to the design of campus energy
consumption monitoring system. The terminal and topology
of the system were constructed based on wireless monitoring
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terminal and ZigBee wireless network. The Web end of
the system was developed based on browser/server (B/S)
architecture and model-view-controller (VMC) pattern. The
designed system realizes such function as energy consump-
tion monitoring, management, and analysis. Feng et al. [15]
summarized the following defects of the existing fire mon-
itoring system: the facilities are not well monitored, the
monitoring is inefficient, the historical data are not thor-
oughlymined, and the future trend is not predicted accurately.
To make up for these defects, the ubiquitous network and
IoT techniques were applied to fire monitoring system. The
ubiquitous network was adopted to collect, transmit, and
preprocess fire data. Then, the data were further analyzed,
combined, and mined by big data algorithm. In this way,
Feng et al. realized unified monitoring and management of
various fire water resources, key monitoring areas, and fire-
fighting equipment. For accurate evaluation of water quality
and forecast of water quality changes in rural areas, Mitr-
panont et al. [16] designed a four-layer architecture of smart
water monitoring network, including a perception layer,
a transmission layer, a processing layer, and an application
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layer. The designed system is a low-delay, large-bandwidth,
expansible, and moveable distributed system.

Based on the number of iterations of performance evalu-
ation, Saelens et al. [17] constructed a wireless sensor net-
work (WSN) for water environment monitoring, effectively
extracted the performance indices, and created a medium- to
long-term water quality prediction model, which couples the
data fusion of recursive least squares (RLS) method and long
short-termmemory (LSTM) neural network. Their model can
accurately forecast eight parameters of drinking water qual-
ity. To control chronic diseases that are hard to cure and easy
to recur, Vicini et al. [18] designed a chronic disease moni-
toring platform, which contains a physiological health signal
acquisition module, a wireless communication module, and a
data cloud processing and storage module. The platform can
calculate and analyze the oscillations of a series of physio-
logical indices, such as heart rate, blood pressure, breathing,
blood oxygen saturation, and blood glucose. To improve the
control of patient conditions, Qiang et al. [19] combined
naïve Bayes (NB)-IoT with cloud platform into a home health
monitoring system, which encompasses a data acquisition
terminal, an online transmission module, a data processing
module, the OneNet cloud platform, and a personal com-
puter (PC) end for app management. The system has several
advantages, namely, wide coverage, low power consumption,
and low cost. It is capable of tracking the motion trajectory,
recording the real-time data on basic physiological health
conditions, and issuing alarms of tripping.

In the context of industrial intelligence manufacturing,
the maintenance of industrial production equipment has
become extraordinarily difficult, owing to the changingwork-
ing environment, complex principles and operation pro-
cesses, and demand for high stability [20]–[23]. Marques
and Pitarma [24] optimized the neural network model with
genetic algorithm (GA) to predict the failure of industrial
production equipment, achieved the collection, transmission,
storage, and processing of the monitoring data on industrial
production equipment based on industrial IoT (IIoT), pro-
vided detailed designs of software and hardware, and com-
pleted the full-scale test on the monitoring platform.

Overall, the existing studies on IoT application in human
health management mainly concentrate on the communica-
tion connections between IoT modules and cloud server,
the simplification of human data acquisition terminal, and
the functional update of wireless sensors for data acquisition.
Nevertheless, little attention has been paid to the message
transmission of IoT nodes under resource-constrained envi-
ronment. The future of our world is the connection between
all things. However, the IoT is prone to network attacks,
owing to the limited computing resources. To prevent the
attacks, this paper discusses the implementation of a uni-
versal HMM based on the IoT in resource-constrained envi-
ronment. The main contents cover the following aspects:
(1) combing through and summarizing the existing research
results; (2) giving an incentive strategy for system IoT nodes
in resource-constrained environment based on the resources

FIGURE 1. Structure of universal HMM system.

and attributes of IoT nodes, transaction rules, and message
forwarding, and estimating the forwarding utility of the com-
munication between adjacent IoT nodes; (3) designing a uni-
versal HMM system, providing the methods for denoising,
baseline drift filtering, and feature point detection, and setting
up the communication protocol and the workflow of the cloud
server; (4) testing the measurements of the detection modules
in the proposed universal HMM system, and demonstrating
the superiority of our algorithm in the success rate of message
delivery, the mean residual energy of nodes, and the delay of
system response.

This paper combines the IoT and universal health manage-
ment into the monitoring plan, and designs an IoT-based uni-
versal HMM under resource-constrained environment. The
proposed plan is more reasonable than the current universal
HMM plans, as indicated by a survey on existing plans and
a comparison against domestic and foreign plans. Our plan
helps to detect chronic diseases of humans early on, prewarn
the serious illness and deterioration accurately and reliably,
and improve the completeness and availability of universal
health management equipment. Drawing on the thinking of
IoT Plus, our plan can also enhance the quality and expertise
of doctors and other health management practitioners, with
the aid of information technology.

II. INCENTIVE STRATEGY FOR IoT NODES IN
RESOURCE-CONSTRAINED ENVIRONMENT
A. ESTIMATION OF FORWARDING UTILITY
Figure 1 shows the structure of the proposed universal HMM
system. The system monitors a diversity of scattered objects.
The monitoring terminal mostly connects wireless public net-
works and the nearest base station to transmit the monitoring
information. As a result, the continuous HMM signals are
often interrupted, causing anomalies to the network. Inspired
by the delay tolerant network, the opportunistic network is
a self-organizing network that realizes the communication
between IoT nodes, based on the store-carry-forward routing
model. It is capable of transmitting signals, even if there is
no complete link between sending and target nodes. Thus,
the network canmeet the communication demand and support
the access of universal HMM system under limited resources,
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and mitigate the divided state and time delay of that system.
Sensitive medical data involve security and privacy issues.
To handle these issues, our system is supported by a perfect
discovery algorithm to pinpoint the sensitive IoT data, and is
combined with decision warning and threat information pro-
cessing to monitor abnormal accesses/operations of medical
data. The positioning and monitoring enable the system to
prevent data leakage.

In the opportunistic network, the IoT nodes all have limited
resources. Under such a resource-constrained environment,
every IoT node often refuse to assist other IoT nodes for free
in completing message forwarding task, in order to save its
own resources. To enhance the efficiency of data transmis-
sion, it is necessary to effectively detect this selfish behav-
ior of the IoT nodes, and properly incentivize cooperation
between them. This paper adopts the single-copy routing
algorithm to design an incentive strategy for selfish nodes.
The strategywas designed under three assumptions: the nodes
have limited cache space and energy; the IoT nodes in the
network are selfish; each node treats the cached messages
fairly.

In the universal HMM system, an opportunistic network
can be modeled as a directed graph (ES, DS), where ES and
DS are the vertex set of all IoT nodes, and the edge set of all
the edges linking up these nodes. To compute the forwarding
utility between two IoT nodes, the first step is to calculate the
mean connection duration h∗C−(i,j) and mean disconnection
duration h∗D−(i,j) of the edge between nodes i and j in time
window H:

h∗C−(i,j) =
∑NM (i,j)

l=1

hlE−(i,j) − h
l
S−(i,j)

NM (i, j)

h∗D−(i,j) =
∑NM (i,j)

l=1

hl+1S−(i,j) − h
l
E−(i,j)

NM (i, j)

(1)

where, NM (i,j) is the number of connections between nodes i
and j in H; hlS−(i,j) and h

l
E−(i,j) are the start time and end time

of the l-th connection between nodes i and j in H, respectively.
From the h∗C−(i,j) and h∗D−(i,j), the forwarding utility V(i,j)
between nodes i and j in H can be calculated by:

V (i, j) =
1
H
× ψ

h∗D−(i,j)−h
∗

U−(i,j)
A (2)

where, ψA ∈ [0, 1] is the aging constant. The weighted aver-
age between the forwarding utility V O-(i, j) in the current
time window and that V N-(i, j) in the nearest time window
is the mean forwarding utility V (i, j) of nodes i and j:

V (i, j) = δW × VN (i, j)+ (1− δW )× VO (i, j) (3)

where, ∂δW ∈ [0, 1] is the weight constant. Formula (3)
shows that theV (i, j) between any two IoT nodes is positively
correlated with the connection duration and the probability
of next connection between the two nodes. Therefore, it is
assumed that the forwarding utility V (i, j) of nodes i and j is
transmissible. As a result, nodes i and j not only update their
forwarding utility V (i, j) in each connection, but also update
its own forwarding utility with any other node according to

the forwarding utility between the other node and any other
node. In other words, each of the two nodes update its own
forwarding utility with any other node, whose forwarding
utility with the other node is greater than the forwarding
utility V (i, j) between the two nodes.
Let V (i, s) and V (j, s) be the forwarding utilities between

nodes i and s, and between nodes j and s, respectively; γZ ∈
[0, 1] be the scaling constant of the transmissivity of forward
utility. Then, the forwarding utility can be updated by:

V (i, s) = VO (i, s)+ γZ × [V (i, s)− VO (i, j)] (4)

B. DESIGN OF INCENTIVE STRATEGY
Our incentive strategy for node communication consists of
three parts: resources and attributes of IoT nodes, transaction
rules, and message forwarding.

1) RESOURCES AND PROPERTIES OF IoT NODES
Under resource constraints, the IoT nodes in the universal
HMM system include storage space, node energy, and virtual
chip number. When an IoT node assists another node in
message forwarding, the current storage space, node energy,
and chip number are all viewed as the residual resources of
the node. The three basic concepts were defined as follows to
facilitate the description of residual storage space and residual
energy of the IoT nodes.

The residual storage space of the i-th node was described
by the percentage βi of the residual cache of the node:

βi =
βgi

βMi

× 100% (5)

where, βgi and βMi are the residual caches of node i at the
current moment and the initial moment, respectively. Let εMi
be the fixed initial energy of node i; εRi be the residual energy
of node i in assistingwithmessage forwarding, i.e., the energy
of the node at the current moment. Then, the percentage
εi of residual energy of node i can be defined as the ratio
of εRi to εMi:

εi =
εRi

εMi

× 100% (6)

The greater the εi value, the more residual energy the node
possesses to help with other nodes in message forwarding.
At the beginning of communication, every IoT node in the
system owns a certain number CM of virtual chips used to
request for assistance in message forwarding. During the
communication, the residual virtual chip number of the IoT
nodes changes dynamically, owing to their difference in the
issuance and acceptance of such requests. Here, the residual
virtual chip number is divided into three levels: I, II, and III.
Let CA and CQ be the virtual chip number corresponding to
the thresholds of levels I and III, respectively; Ci(t) be the
virtual chip number of node i at time t. Then, the level of
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residual virtual chip number of node i can be determined by:

Ri =


Ci (t)
CA

Ci (t) > CA Level I

1 CQ ≤ Ci (t) > CA Level II
Ci (t)
CQ

Ci (t) > CQ Level III

(7)

If the residual virtual chip number Ci(h) of node i at the
current moment is greater than CA, the node belongs to level
I, i.e., the residual virtual chips are sufficient; if Ci(h) is
smaller thanCQ, the node belongs to level III, i.e., the residual
virtual chips are insufficient; if Ci(h) is between CA and CQ,
the node belongs to level II, i.e., the residual virtual chip
number is in equilibrium state. Depending on the levels of
residual virtual chip number, the IoT nodes in the system have
different willingness to assist with message forwarding.

2) TRANSACTION RULES
Suppose the sending node, intermediate node, and target node
of a message are the i-th, j-th, and s-th node in the network,
respectively. To assist in message forwarding of another node,
node i firstly compares the forwarding utility V (i, s) between
nodes i and s with that V (j, s) between nodes j and s. If V
(i, s) is smaller than V (j, s), node i will request node j for
forwarding; otherwise, node i will prioritize the sending of
the next message. Then, node i as the request issuer and node
j as the request accepter offer prices according to the pricing
mechanism. The chip number offered by nodes i and j are
noted as OP and APM , respectively. If OP is greater than
APM , the forwarding request is successful, and node i will
treat node j as satisfying the forwarding requirements. Finally,
the sending node will choose a node with relatively low price
among all the nodes that satisfy the forwarding requirements.
If no node satisfies the requirements, the sending node will
skip the current message and send the next message.

The residual storage space, message survival time, and
node energy were assigned their respective weights α, τ , and
θ to better characterize their impacts on the prices offered by
the nodes. Let kS be the size of the message from the sending
node; βi and εi be the percentage of residual cache and per-
centage of residual energy of the sending node, respectively;
HR and HM be the initial survival time and residual survival
time of the message, respectively. Then, the cost function of
the pricing by the sending node can be defined as:

OP = kS ×
[
α (1− βi)+ τ

(
1−

HR
HM

)
+ θ (1− εi)

]
× R̂i

(8)

The level of residual chip number of the sending node can
be calculated by:

R̂i =

{
Ri Level I
1 Another level

(9)

During the communication, every IoT node might request
for forwarding assistance, or receive such a request from
another node. Therefore, the resources of every IoT node

change constantly. As a result, the biddingwillingness of each
node, which is characterized by its storage space, energy,
and virtual chip number, varies from moment to moment.
To ensure the reasonability of the pricing mechanism, α,
τ , and θ were determined by adaptive weighting method.
Specifically, α, τ , and θ can be respectively defined by:

α =
(1− βi)

(1− βi)+
(
1− HR

HmM

)
+ (1− εi)

(10)

τ =

(
1− Hc

HM

)
(1− βi)+

(
1− HR

HM

)
+ (1− εi)

(11)

θ =

(
1− εi

HM

)
(1− βi)+

(
1− HR

HM

)
+ (1− εi)

(12)

Let kM be the size of the message to be forwarded when
the intermediate node offers assistance; βi and εi be the per-
centage of residual cache and percentage of residual energy
of the intermediate node, respectively. The pricing function
of the assistance receiver can be defined as:

APR = kM ×
[
σ
(
1− βj

)
+ ρ

(
1− εj

)]
× R̂j (13)

where, σ and ρ (σ+ρ = 1) are theweight coefficients reflect-
ing the situation of the residual cache and residual energy
of the intermediate node at the current moment, respectively.
The residual virtual chip number of the intermediate node can
be obtained by:

R̂j =

{
Rj Level III
1 Another level

(14)

The transaction price is TP= 0.5× (OP+ APM ), when the
forwarding request is successful. To characterize the proba-
bility for the sending node to successfully transmit a message
to the target node at the cost of a unit of virtual chips, the cost
performance of the delivery probability of the forwarding
assistance task can be evaluated by:

CP =
V (j, s)
TP

(15)

The greater theCP value, themore likely for the target node
to successfully receive the message.

3) MESSAGE FORWARDING
Figure 2 illustrates the message forwarding flow under
resource constraints.

III. DESIGN AND IMPLEMENTATION OF UNIVERSAL
HMM SYSTEM
A. DENOISING
The universal HMM system receives signals that character-
ize human body health, including heart rate, electrocardio-
gram (ECG), blood oxygen, electromyogram (EMG), and
trajectory, etc. The ECG could combine the results of chest
computed tomography (CT), and nucleic acid test to support
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FIGURE 2. Message forwarding flow under resource constraints.

FIGURE 3. Workflow of information acquisition terminal.

the tracking of COVID-19 cases. These noises are more or
less interfered by noises from 50Hz power supply frequency
and baseline drift of 0.05-2Hz, or other random noises.
Figure 3 presents the workflow of information acquisition
terminal. It can be seen that this paper preprocesses the col-
lected signals by denoising, thereby enhancing the accuracy
of human physiological data.

Let a(e), RS(e), and b(e) be the original input signal, refer-
ence signal, and actual output signal of the filter, respectively;
FA(e) be the adjustment coefficient of the adaptive filter.
By the adaptive weighting method, the weight coefficient ωA
was adjusted and updated continuously according to the error
signal fed back in the iterative process, such as to stabilize the
error.

Let a(e) = [a(e-1), a(e-2), . . . . . . , a(e-OF)]T , OF, and
ωA = [ω1

A, ω
2
A, . . . , ω

M
A ]T be the input signal, order, and

weighting vector of the adaptive filter, respectively. Then,
the relationship between output signal b(e) and the input
signal a(e) can be expressed as:

b (e) =
∑OF

i=1
ωiAa (e− i) (16)

The error signal can be obtained by:

FO (e) = RS (e)− b (e) (17)

Combining formulas (16) and (17):

FA (e) = RS (e)−
∑OF

i=1
a (e− i) = RS (e)− aT (e) ωA

(18)

Let λ be the step length. Then, the weighting vector ωA can
be adjusted and updated by:

ωA (e+ 1) = ωA (e)+ 2λFA (e) a (e) (19)

λ can be replaced with a variable step length:

λ = 0.8
{
1−

1

FA|FA(e)|1.2

}
(20)

In early iterations, λ changes significantly and converges
quickly. With the growing number of iterations, λ changes
less significantly, the algorithm has a small steady-state error,
and the weight vector is optimal.

B. ELIMINATION OF BASELINE DRIFT
After denoising, the monitoring signal must be removed of
baseline drift. This paper resorts to the sparse baseline esti-
mation and denoising algorithm. Let I andO be the input and
output of the algorithm, respectively; 1a be the data signal
with positive sparsity; I = 1a + O be the model of m-point
input data I ; η be the ratio of the asymmetric penalty function;
W and E be banded convolution matrices; the elements in
banded convolution matrix E be:

[ei]m×m =
1− η
2

(21)

µi be the regularization parameter. Then, the i-th order
difference operator matrix can be expressed as:

DO = ETEW−1I − µ0W T ei (22)

Let 1a = I be the initial value of iteration. Then, there
exists a diagonal matrix:

[8]m×m =


1+ η
4 |1am|

, |1am| ≥ ϕ

1+ η
4ϕ

, |1am| ≤ ϕ
(23)

Let ζ be the penalty function. Then, the m×m banded
convolution matrix W can be expressed as:

[wi]m×m =
ζ ′ (|DO ·1a|m)
|DO ·1a|m

(24)

The number of parameters can be calculated by:

NC = 2µ08+
∑NC

i=1
µiDOT8iDO (25)

Suppose:

P = ETE +W TNCW (26)

Then,

1A = WP−1DO (27)

138748 VOLUME 9, 2021



M. Zheng, S. Bai: Implementation of Universal HMM System in Resource-Constrained Environment

FIGURE 4. Workflow of synchronous communication.

Formulas (23)-(26) were repeated until the algorithm
converges. The low-frequency baseline signal SL can be
expressed as:

SL = I −1a− EW−1 (I −1a) (28)

Then, the positive sparse signal1a can be derived from the
low-frequency baseline signal SL .

C. FEATURE POINT DETECTION
This paper extracts and detects multiple feature points from
the monitoring signal collected by the universal HMM sys-
tem, including starting point, peak point, coincidence point,
and valley point. To detect these points, the first-order differ-
ence algorithm was combined with sliding window to search
for the local maximum or minimum of the signal. Let MP be
the data capacity of discrete monitoring signal a[k]. Then,
the first-order difference result of the signal can be obtained
by:

b [MP − 1] =
{
(a [1]− a [0]) , (a [2]− a [1])
, . . . . . . , (a [MD]− a [MD − 1])

}
(29)

If the monitoring signal b[k] after differential treatment is
positive, the feature point of the signal is ascending; if it is
negative, the feature point is descending. If b[k] × b[k + 1]
is smaller than zero, then the discrete monitoring signal a[k]
reaches an extreme at i+ 1; whether the extreme is maximum
or minimum needs to be judged by comparing b[k] with 0: if
b[k] is greater than zero, the extreme is maximum; if b[k] is
smaller than zero, the extreme is minimum.

D. SOFTWARE DESIGN OF COMMUNICATION PROTOCOL
The information acquisition terminal of the universal HMM
system communicates with the cloud server in a synchronous
manner. Before the communication, the system counter is
given a fixed threshold. Once the terminal sends the collected
data, the timer will start counting. If the cloud server does not
respond when the count of the timer is above the threshold,
the terminal will package the cached data, and resend them to
the cloud server. If the cloud server makes an ACK response
when the count is below the threshold, both the server and the
terminal will continue with the subsequent data processing.
If the monitoring data packet received by the server contain
errors, the cloud server will make a NACK response; then, the
terminal needs to repackage the cached data, and send them
again to the server.

FIGURE 5. Workflow of cloud server.

TABLE 1. Blood glucose detection effect.

E. WORKING PRINCIPLE OF CLOUD SERVER
Figure 5 shows the workflow of cloud server. It can be
inferred that the cloud server mainly receives and parses
the collected data transmitted by the naïve Bayes (NB)-IoT
module, which integrates the client program of user data-
gram protocol (UDP). To improve its communication with
the NB-IoT module, the cloud server must remain in sync
with that module, and be able to realize the client program of
UDP.

After setting up the communication connection with the
information acquisition terminal, the cloud server can receive
the collected data transmitted by every terminal. Then, the
server will parse each field of the collected data, calculate
the data frames by cyclic redundancy check algorithm, and
compare the 2nd to 4th fields with the check data. If the two
are equal, the server will make an ACK response; otherwise,
it will make a NACK response. Upon obtaining the handler
of the form corresponding to the data type, the cloud server
will import the normal data into the corresponding form in the
database for storage. After that, the handler will be released,
marking the completion of data processing in the cloud
server.
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FIGURE 6. Variation of blood oxygen with linear proportional coefficient.

FIGURE 7. Variation of blood pressure with pulse wave transit time.

IV. EXPERIMENTS AND RESULTS ANALYSIS
Our universal HMM system adopts low-cost sensors to mea-
sure the signals that characterize human body health, includ-
ing heart rate, ECG, blood oxygen, EMG, and trajectory.
Therefore, the overall equipment has a high cost effective-
ness. The product quality has been fully tested, indicating that
the functions and operations of the system are harmless to the
human body.

To verify the detection accuracy of our universal HMM
system for blood glucose, the blood glucose detectionmodule
of the system was applied to measure blood glucose solutions
with different concentrations. The data collected by our sys-
tem were compared with the test results of a common blood
glucose meter. As shown in Table 1, the measured values
deviated from the reference values from the blood glucose
meter by 10.18% at the maximum, which is smaller than
the error standard of 15% specified by American Diabetes
Association.

The blood oxygen detection module of our system was
applied to measure the blood oxygen of five subjects, while
changing the linear proportional coefficient. Then, the vari-
ation of blood oxygen with the coefficient was fitted into
a curve, and the detection results were compared with the
test results of a common smart bracelet (Figure 6). It can
be seen that the blood oxygen, which was fitted from linear

FIGURE 8. Test results on feature point detection.

FIGURE 9. Relationship between node resources and success rate of data
delivery.

proportional coefficient and blood oxygen saturation, was
within ±3% of the results measured by the smart bracelet.
Therefore, the algorithm in our system can effectively fit the
blood oxygen.

Similarly, the variation of blood pressure measured by our
system with pulse wave transit time was fitted by the least
squares (LS) method (Figure 7). Obviously, the pulse wave
transit time is negatively correlated with the systolic and
diastolic blood pressures of human hearts. That is, the blood
pressure of human body decreases with the extension of the
pulse wave transit time.

Table 2 lists the heart rates of 9 subjects before and after
strenuous exercise, which were measured by our universal
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TABLE 2. Absolute error of heart rates before and after strenuous
exercise.

FIGURE 10. Relationship between node resources and mean residual
energy.

HMM system. The errors between the measured data were
calculated against the test results of a common smart bracelet.
Each error is the average of ten groups of heart rate errors.
As shown in Table 2, the heart rate error of the subjects
was minimum before strenuous exercise, and relatively large
after the exercise. This is consistent with the actual situation,
calling for proper environment and conditions for heart rate
detection by the universal HMM system.

The data collected by our system have cyclic features, and
may change abruptly. Therefore, this paper takes the end
point of a cycle as the start point of the next cycle, and
designs a rectangular window with a width within [T , 2T ],
where T is the width of the signal acquisition cycle. The peak
and valley of the waveform can be identified by searching
for the local maximum and minimum within the window.

FIGURE 11. Relationship between node resources and response delay.

Figure 8 presents the test results on feature point detection of
all collected data. The maximum andminimum feature points
of local signals are marked in boxes.

Next, the performance of our algorithmwas compared with
that of broadcast incremental power algorithm (reference
algorithm), as the IoT nodes underwent changes in storage
space and initial energy: the storage space was changed from
0MB to 40MB at the step size of 5MB, and the initial energy
was changed from 0J to 1,600J with a step size of 200J.
Figure 9 presents the relationship between node resources and
success rate of data delivery. For both algorithms, the success
rate of data delivery increased with the storage space and
initial energy of the IoT nodes. Comparatively, our algorithm
achieved a much higher success rate than the reference algo-
rithm, thanks to the additional step of choosing the most cost-
effective intermediate nodes for message forwarding.

Figure 10 provides the relationship between node resources
and mean residual energy. As shown in Figure 10(a), both
our algorithm and the reference algorithm saw an increase in
the mean residual energy with the growth of initial energy of
the IoT nodes, but our algorithm had relatively high resid-
ual energy. This is because our algorithm selects the most
cost-effective intermediate nodes for message forwarding,
which means a message can arrive at the target node with
fewer hops, without consuming too much initial energy of
the nodes. As shown in Figure 10(b), the packet loss prob-
ability decreased with the expansion of storage space of the
nodes. The mean residual energy of the nodes did not change
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significantly, because both our algorithm and the reference
algorithm are single-copy routing algorithms.

Figure 11 displays the relationship between system
response delay and the storage space and initial energy of the
IoT nodes. As shown in Figure 11(a), the system responses
of the two algorithms both decreased with the growing initial
energy of the nodes, and the system response of our algorithm
was smaller than that of the reference algorithm. This is
mainly because the pricing mechanism and residual energy
of intermediate nodes of our algorithm suppress the delay
of message forwarding induced by excessively fast energy
consumption by active nodes.

V. CONCLUSION
This paper mainly explores the implementation of an IoT-
based universal HMM system under resource-constrained
environment. Firstly, the forwarding utility between adjacent
IoT nodes was calculated, and an incentive strategy was
designed for the IoT nodes under resource-constrained envi-
ronment. Afterwards, a universal HMMsystemwas designed,
and data preprocessing was realized, including denoising,
baseline drift removal, and feature point detection of the
collected data. Further, the authors gave the design flow of
system communication protocol and the work flow of cloud
server. Experiments show that the detection modules of our
system are effective in measurement, and provide the feature
points detected on all collected data. Finally, our algorithm
was proved superior than broadcast incremental power algo-
rithm in terms of success rate of data delivery, mean residual
energy of nodes, and system delay.
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