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ABSTRACT Recently proposed pre-trained language models can be easily fine-tuned to a wide range of
downstream tasks. However, a large-scale labelled task-specific dataset is required for fine-tuning creating
a bottleneck in the development process of machine learning applications. To foster a fast development by
reducing manual labelling efforts, we propose a Label-Efficient Training Scheme (LETS). The proposed
LETS consists of three elements: (i) task-specific pre-training to exploit unlabelled task-specific corpus
data, (ii) label augmentation to maximise the utility of labelled data, and (iii) active learning to label data
strategically. In this paper, we apply LETS to a novel aspect-based sentiment analysis (ABSA) use-case
for analysing the reviews of the health-related program supporting people to improve their sleep quality.
We validate the proposed LETS on a custom health-related program-reviews dataset and another ABSA
benchmark dataset. Experimental results show that the LETS can reduce manual labelling efforts 2-3 times
compared to labelling with random sampling on both datasets. The LETS also outperforms other state-of-
the-art active learning methods. Furthermore, the experimental results show that LETS can contribute to
better generalisability with both datasets compared to other methods thanks to the task-specific pre-training
and the proposed label augmentation. We expect this work could contribute to the natural language
processing (NLP) domain by addressing the issue of the high cost of manually labelling data. Also, our work
could contribute to the healthcare domain by introducing a new potential application of NLP techniques.

INDEX TERMS Active learning, machine learning, natural language processing, neural networks, sentiment
analysis.

I. INTRODUCTION
Recently proposed pre-trained language models [1]–[3] have
shown their ability to learn contextualised language rep-
resentations and can be easily fine-tuned to a wide range
of downstream tasks. Even though these language models
can be trained without manually labelled data thanks to the
self-supervised pre-training paradigm, large-scale labelled
datasets are required for fine-tuning to downstream tasks.
Data labelling can be labour-intensive and time-consuming
creating a bottleneck in the development process of machine
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learning applications. Moreover, in real-world scenarios,
the labelling scheme can be changed by adding or changing
labels after deployment. Therefore, it is critical to be able to
fine-tune the model with a limited number of labelled data
to reduce manual labelling efforts and foster fast machine
learning applications development.

One of the possible solutions is to apply active learn-
ing to reduce manual labelling efforts. Active learning is
an algorithm designed to effectively minimise manual data
labelling by querying the most informative samples for train-
ing [4]. Active learning has been extensively studied [4], [5]
and applied to various applications, from image recogni-
tion [6], [7] to natural language processing (NLP)
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tasks [8], [9]. Even though active learning guides how to
strategically annotate unlabelled data, it does not utilise the
unlabelled data or labelled data for fine-tuning. For example,
unlabelled data points can be used for self-supervised learn-
ing or already labelled data points can be further utilised dur-
ing supervised learning, such as by using data augmentation
techniques.

To not only effectively reduce manual labelling efforts
but also maximise the utility of data, we propose a novel
Label-Efficient Training Scheme, LETS in short. The pro-
posed LETS integrates three elements as illustrated in Fig. 1:
(i) a task-specific pre-training to exploit unlabelled
task-specific corpus data; (ii) label augmentation to max-
imise the utility of labelled data; and (iii) active learning to
strategically prioritise unlabelled data points to be labelled.
In this paper, we apply LETS to a novel aspect-based sen-
timent analysis (ABSA) use-case for analysing the reviews
of a mobile-based health-related program. The introduced
health-related program is designed to support people to
improve their sleep quality by restricting sleep-related
behaviour.We aim to provide a tailored program by analysing
reviews of individual experience. To the best of our knowl-
edge, this is the first attempt to implement an automated
ABSA system for health-related program reviews. To illus-
trate the success of the novel use-case, we have collected a
new dataset and experimentally show the effectiveness of the
proposed LETS with the collected dataset and a benchmarks
dataset.

FIGURE 1. Overview of the proposed Label-Efficient Training Scheme
(LETS). Task-specific pre-training utilises unlabelled task-specific corpus
data set Dc . Label augmentation exploits labelled data set Dl . Active
learning algorithm selects data from the unlabelled data set Du for
manual labelling.

The main contributions of this paper include the
followings:
• A novel use-case of natural language processing and
machine learning techniques for the healthcare domain
is introduced (Sec. III);

• A novel label-efficient training scheme that integrates
multiple components is proposed (Sec. IV);

• A label augmentation technique is proposed tomaximise
the utility of labelled data (Sec. IV-B2);

• A new query function is proposed to search different
boundaries with two uncertainty scores for active learn-
ing with the imbalanced dataset (Sec. IV-B3);

• A new evaluation metric for an ABSA system is pro-
posed to correctly evaluate the performance of a system
in the end-to-end framework (Sec. V-C).

II. RELATED WORK
A. ASPECT-BASED SENTIMENT ANALYSIS
ABSA is a special type of sentiment analysis that aims
to detect opinion toward fine-grained aspects. Since ABSA
can capture insights about user experiences, ABSA has
been widely studied in various industries, from consumer
product sector [10], [11] to service sector [12]–[15].
ABSA entails two steps: aspect category detection and aspect
sentiment classification [16]. During the first step, Aspect
Category Detection (ACD), a system aims to detect a set
of the pre-defined aspect categories that are described in
the given text. For example, in the domain of restaurant
review, the pre-defined set of aspects can be {Food, Price,
Service, Ambience, Anecdotes/Miscellaneous} and the task
is to detect {Price, Food} out of the text ‘‘This is not a
cheap place but the food is worth to pay’’. During the sec-
ond step, Aspect Category Polarity (ACP), a system aims
to classify a text into one of sentiment polarity labels
(i.e., Positive, Negative, Neutral, etc) given a pair of text
and aspect categories. For example, the task to produce a
set of pairs, such as {(Price, Negative), (Food, Positive)}
given the set of ground truth categories {Price, Food} and the
text.

There has been significant improvement in ABSA sys-
tems over the past few years thanks to the recent progress
of deep neural network (DNN) based NLP models, [10],
[12], [13], [15], [17]. For example, Sun et al. [15] pro-
pose a Bidirectional Embedding Representations from Trans-
formers (BERT) [1] based ABSA system by casting an
ABSA task as a sentence-pair classification task. Even though
this sentence-pair approach shows the state-of-the-art per-
formance by exploiting the expanded labelled data set with
sentence-aspect conversion1 [15], it still requires a large
amount of labelled data.

Later, Xu et al. [10] propose a post-training to utilise
unlabelled corpus datasets to further train a pre-trained model
for ABSA. The proposed post-training exploits both the
general-purpose corpus dataset (i.e., texts from Wikipedia)
and task-related corpus dataset (i.e., reading comprehension
dataset) for the end task (i.e., review reading comprehen-
sion). Xu et al. [10] showed utilising multiple unlabelled
corpus datasets can enhance the performance of the end
task. Extensive studies on utilising unlabelled corpus for
further pre-training showed that the importance of using
domain-relevant data [18], [19]. However, domain-related
corpus datasets for further pre-training are possibly not

1As it is described in the original paper [15], a sentence si in the original
data set can be expanded into multiple sentence-aspect pairs (si, a1), (si,
a2), . . . , (si, aN ) in the sentence pair classification task, with aspect cate-
gories an where n ∈ {1, 2, ..,N }.
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available in some domain (e.g., healthcare) because of privacy
issue.2

B. ACTIVE LEARNING ALGORITHM
Active learning that aims to select the most informative data
to be labelled has been extensive studied [4], [5], [20], [21].
The core of active learning is a query function that com-
putes score for each data point to be labelled. Existing
approaches include uncertainty-based [22], [23], ensemble-
based [24], [25], and expected model change-based meth-
ods [4]. Thanks to their simplicity, uncertainty-basedmethods
belong to the most popular ones. Uncertainty-based methods
can use least confidence scores [8], [20], [26], max margin
scores [27], [28], or max entropy scores [29] for querying.

One of the earliest studies of active learning with DNN is
by Wang et al. [6] for image classification. They proposed
a Cost-Effective Active Learning (CEAL) framework that
uses two different scores for querying. One is an uncertainty
score to select samples to be manually labelled. And the
other is a certainty score to select samples to be labelled
with pseudo-labels which are their predictions. Both scores
are computed based on the output of DNN. Wang et al. [6]
showed that the proposed CEAL works consistently well
compared to the random sampling, while there is no signifi-
cant difference in the choice of uncertainty measures, among
the least confidence, max-margin, and max entropy.

However, other researchers claim that using the output of
DNN to model uncertainty could be misleading [7], [30].
To model uncertainty in DNN, Gal and Ghahramani [30]
proposed Monte Carlo (MC) dropout as Bayesian approxi-
mation that performs dropout [31] during inference phase.
Later, Gal et al. [7] incorporated uncertainty obtained
by MC dropout with Bayesian Active Learning by Dis-
agreement (BALD) [32] to demonstrate a real-world appli-
cation of active learning for image classification. Also,
Shen et al. [8] applied BALD to an NLP task and experimen-
tally showed that BALD slightly outperforms the traditional
uncertainty method that uses the least confidence scores. The
results from the large-scale empirical study Siddhant and
Lipton [9] also showed the effectiveness of BALD for various
NLP tasks. Even though BALD outperforms the random
sampling method, the differences between BALD and active
learning methods with the traditional uncertainty scores
(i.e., least confidence, max margin, and max entropy) are
marginal [8], [9]. Also, BALD is computationally more
expensive than the traditional methods because it requires
multiple forward passes. Therefore, the traditional uncer-
tainty scores are reasonable options when deploying active
learning in a real-world setting.

Practical concerns on how to implement active learn-
ing in real-world settings include the issue that a model
can perform poorly when the amount of labelled data is

2For example, General Data Protection Regulation (GDPR) includes the
purpose limitation principle mentioning that personal data be collected for
specified, explicit, and legitimate purposes, and not be processed further in
a manner incompatible with those purposes (Article 5(1)(b), GDPR).

minimal [33]. This issue is referred to as the cold-start issue.
Ideally, active learning could be most useful in low-resource
settings. In practice, however, it is more likely that the model
might work poorly with the limited number of labelled data at
the beginning of active learning [34]. Therefore, introducing
a component to ensures a certain level of performance with
the limited labelled data is important to address the cold-start
issue.

III. ASPECT-BASED SENTIMENT ANALYSIS FOR
HEALTH-RELATED PROGRAM REVIEWS
This section describes a mobile-based health-related pro-
gram use-case that we call Caffeine Challenge. To conduct
aspect-based sentiment analysis on the reviews of Caffeine
Challenge, an experimental dataset is collected and anno-
tated. The next subsections explain the details of the use-case,
data collection protocol, and data labelling scheme with the
initial data analysis result.

A. CAFFEINE CHALLENGE USE-CASE
In this study, we introduce a health-related program that
is designed to help people improve their sleep quality by
restricting behaviour that might negatively affect their sleep
quality. Having caffeinated beverage or desserts during the
late afternoon and evening is selected as a target behaviour
for this study. A challenge rule is restricting a caffeine
intake after 13:00 for two weeks. During the program,
participants use a mobile application to log their progress
and receive notifications and recommendations of relevant
information. At the end of the program, an in-app chatbot
(conversational agent) asks about challenge experience and
the participants are allowed to provide answers in free-text
sentences. Our goal is to understand users’ sentiments
towards different aspects of the program by analysing the
review data. To this end, we aim to develop an automated
ABSA system for health-related program reviews as illus-
trated in Table. 1 where a system detects opinions (senti-
ment polarity) expressed towards multiple aspects. Since the
ABSA system can capture detailed user opinions, it can be
used to tailor the health-related program to individual users.

TABLE 1. An example of aspect-based sentiment analysis based on the
free-text user review of a health-related program.

B. EXPERIMENTAL DATA COLLECTION
In the real-world machine learning application implemen-
tation process, multiple cycles on iterative development are
often required: firstly, implementing a baseline model with
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FIGURE 2. Annotation result of the collected caffeine challenge dataset. Sentiment class distribution per aspect
category (a) and the number of aspect-sentiment labels per text (b) are shown.

experimental data and then gradually updating themodel with
real-world data. To develop the first version of the ABSA sys-
tem, we conducted a pilot study with a semi-realistic dataset
that is collected from an online survey via a crowd-sourcing
platform (Amazon Mturk). At the beginning of the sur-
vey, an instruction containing details of the Caffeine Chal-
lenge (i.e., its purpose, goal, procedure, and consent form),
is given to the survey participants. Then each participant
has received a questionnaire regarding the experience of the
Caffeine Challenge. Then the participants have requested
to answer the questions by imagining that they have done
this challenge. In total, we recruited 1,000 participants and
collected 12, 000 answers and examples of collected data are
shown in Appendix A.

C. DATA LABELLING
We annotated a random subset of the collected data for
aspect-based sentiment analysis. Based on both health-related
program and app development perspectives, seven different
aspects are defined:

1) Sleep Quality (SQ)
2) Energy (E)
3) Mood (M)
4) Missing Caffeine (MC)
5) Difficulty Level (DL)
6) Physical Withdrawal Symptoms (PWS)
7) App Experience (AE)

Each aspect category is annotated with one of the senti-
ment values as follows: Positive, Neutral, Negative, and Not
Mentioned. Not Mentioned class is introduced as a place-
holder for an empty sentiment value. For example, when
a sample does not describe any opinion towards a specific
aspect, then it is labelled as Not Mentioned for that aspect

category. A labelling scheme of each aspect category is given
in Appendix B.
Fig. 2 illustrates annotation results and Fig. 3 shows the

example of annotated data point. As it is shown in Fig. 2a,
the majority of sentiment label within all aspect categories is
an empty sentiment label (Not Mentioned). Some categories
(Sleep Quality, Energy, and Mood) appeared more frequently
compared to other categories (Missing Caffeine, Difficulty
Level, Physical Withdrawal Symptoms, and App Experi-
ence). The former group is denoted as majority aspect cat-
egories and the latter group is denoted as minority aspect
categories. Fig. 2b shows the distribution of the number of
aspect-sentiment labels per text, excluding Not Mentioned
labels. It is observed that most of the annotated texts have
either one or two aspect-sentiment labels and only a few have
more than three aspect-sentiment labels.

IV. LABEL-EFFICIENT TRAINING SCHEME FOR
ASPECT-BASED SENTIMENT ANALYSIS
We develop an automated ABSA system by utilising a
pre-trained language model. Also, a label-efficient train-
ing scheme is proposed to reduce effectively manual
labelling efforts. The following subsections will explain the
ABSA system and the proposed label-efficient training
scheme in detail.

A. ASPECT-BASED SENTIMENT ANALYSIS SYSTEM
Similar to the previous work by Sun et al. [15], we refor-
mulate ABSA task as sentence-pair classification by using
a pre-trained language model, BERT [1]. Fig. 4 illustrates a
sentence-pair classification approach for ABSA. As shown in
the figure, the proposed ABSA system produces the probabil-
ity distribution over sentiment classes C , including polarised
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FIGURE 3. An example of annotated data. Each annotated data point
includes free-text and labels which are pairs of aspect category and
sentiment class.

FIGURE 4. Illustration of aspect-based sentiment analysis (ABSA) as a
sentence-pair classification by using bidirectional embedding
representations from transformer (BERT).

sentiment classes S (e.g., Positive, Neutral, Negative, etc) and
an empty placeholder (e.g., Not Mentioned), for the given
free-text sentence xi and aspect category ak . This formal-
isation allows a single model to perform aspect category
detection and aspect sentiment classification at the same
time. Also, adding an aspect category as the second part of
input can be seen as providing a hint to the model where to
attend for creating a contextualised embedding. Moreover,
this formalisation allows expanding the training data set by
augmenting labelled data, which will be explained in the
following section (Sec. IV-B2).

Formally, an input is transformed into a format of xki =
[[CLS], xi, [SEP], ak , [SEP]], where xi = [w1

i ,w
2
i , . . . ,

wnii ] is the tokenised i-th free-text, ak = [a1k , a
2
k , . . . , a

mk
k ] is

the tokenised k-th aspect category in K aspect categories, and
[CLS] and [SEP] are special tokens indicating classifica-
tion and separation, respectively. Then the input is fed to the
BERT model (fθ ) that produces contextualised embeddings
for each token by using multi-head attention mechanism [1].

The contextualised embedding vector eki ∈ Rd×1, corre-
sponding to the classification token [CLS], is used as the
final representation of the given input xki . Then a classifica-
tion layer projects eki into the space of the target classes:

eki = fθ (xki ) (1)

ŷki = softmax(W · eki + b) (2)

where ŷki ∈ [0, 1]|C| is the estimated probability distribution
over the sentiment classes C for the given free-text sample xi
and aspect category ak pair, and fθ ,W ∈ R|C|×d , and b ∈ R|C|
are trainable parameters.

B. LABEL-EFFICIENT TRAINING SCHEME
One of the bottlenecks in developing an ABSA system
with a pre-trained language model is to create a large-scale
labelled task-specific dataset for fine-tuning which requires
a labour-intensive manual labelling process. To mitigate this
issue, we propose a Label-Efficient Training Scheme, which
we refer as LETS. The proposed LETS consists of three
elements to effectively reduce manual labelling efforts by
utilising both unlabelled and labelled data. Fig. 1 illus-
trates the overview of the proposed LETS. The first ele-
ment is task-specific pre-training to exploit the unlabelled
task-specific corpus data. The second element is label aug-
mentation to maximise the utility of the labelled data. The
third element is active learning to efficiently prioritise the
unlabelled data for manual labelling. The followings will
describe the details of each element.

1) TASK-SPECIFIC PRE-TRAINING
Task-specific pre-training is used to exploit the unlabelled
task-specific corpus data. We adopt a novel pre-training strat-
egy of Masked Language Modelling (MLM) from BERT [1]
to train an Attention-based model to capture bidirectional
representations within a sentence. More specifically, during
the MLM training procedure, the input is formulated with
a sequence of tokens that are randomly masked out with a
special token [MASK] at a certain percentage p. Then the
training objective is to predict those masked tokens. Since
ground truth labels are original tokens, MLM training can
proceed without manual labelling.

2) LABEL AUGMENTATION
Label augmentation is proposed to not only address the
cold-start issue in active learning but also to maximise the
utility of the labelled data. The proposed label augmentation
algorithm multiplies the labelled data set by replacing aspect
categories with similar words. This might look similar to
common data augmentation techniques proposed by Wei and
Zou [35] that includes synonym replacement, random inser-
tion, random swap, and random deletion. Our method, how-
ever, modifies only the second part of the input (i.e., aspect
category) while keeping the original free-text part. The pro-
posed label augmentation technique is applied to pre-defined
aspect categories with polarised sentiment classes S
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(e.g., Positive, Neutral, Negative, etc). Algorithm 1 sum-
marises the proposed label augmentation technique.

Algorithm 1 Label Augmentation
Data: Labelled training set Dl , a dictionary of similar

words per aspect category Dict , polarised
sentiment classes S

Result: Augmented training set D̂l
D̂l ← Dl
for dl ∈ Dl do

txt ← getFreeText(dl)
asps← getAspects(dl)
for asp ∈ asps do

senti← getSentimentLabel(dl , asp)
if senti ∈ S then

ˆasps← Dict(asp)
for ˆasp ∈ ˆasps do

d̂l ← (txt , ˆasp, senti)
D̂l ← addData(d̂l)

end for
end if

end for
end for

3) ACTIVE LEARNING
Active learning is used to prioritise the unlabelled data points
to be manually labelled and added to the training pool. The
core of active learning is a query function that scores the
data points to use a labelling budget effectively in terms of
performance improvement.

Even though most of the existing active learning meth-
ods consider balanced datasets, one typical feature of a
real-world dataset is that it can be imbalanced [36]. As it
is shown in Sec. III-C, the collected dataset is also highly
imbalanced: there are majority aspect categories that more
often appear in the training set and minority aspect cate-
gories that less often appear in the training set. We observe
that a fine-tuned ABSA model performs differently towards
majority and minority aspect classes. For example, Fig. 5
illustrates the vector representations before the final clas-
sification layer3 plotted into 2-dimensional space by using
a dimensionality reduction algorithm [37]. From the figure,
it is observed that the fine-tuned model can create distinctive
representations between sentiment labels within the Sleep
Quality aspect category, while the model fails to learn to
differentiate data points among sentiment classes and empty
sentiment class within the App Experience aspect category.
This shows that a fine-tunedABSAmodel performs relatively
well towards majority aspect categories and its prediction
is reliable, whereas a model works poorly towards minority
aspect categories and it tends to fail to even detect the aspect
categories.

3The fine-tuned model at the initial step of active learning experiment
(Sec. V-D1) is used.

FIGURE 5. The final vector representations of inputs plotted
in 2-dimensional space for Sleep Quality (a) and App Experience
(b) aspect categories. green, yellow, red, and grey color indicate inputs
with Positive, Neutral, Negative, and Not Mentioned sentiment labels,
respectively. All data points were not used during the training phase.

Therefore, we propose two uncertainty measures for
majority aspect categories and minority aspect categories,
respectively:

umajor = 1− Pr(ŷki = argmax
c∈C

(ŷki )|x
k
i ) (3)

uminor = 1− |Pr(ŷki = nm|xki )−
∑
S

(Pr(ŷki = s|xki ))| (4)

= 1− |1− 2Pr(ŷki = nm|xki )| (5)

where Pr(ŷki = argmax
c∈C

(ŷki )|x
k
i ) is the highest probability in

the estimated probability distribution over sentiment classes
given xki , nm refers Not Mentioned, and S refers a polarised
sentiment classes set (e.g., Positive, Neutral, Negative, etc).
umajor is the traditional least confidence score and uminor is
themargin of confidence score between an empty placeholder
(i.e., Not Mentioned) and sum of other sentiment classes.
As it is shown in (5), uminor treats the model’s prediction as
binary classification result (i.e.,NotMentioned orMentioned)
producing high uncertainty scores when Pr(ŷki = nm|xki ) is
close to 0.5. The intuition of introducing uminor is allowing
a model to focus on detecting whether the aspect category
is mentioned or not. The proposed two uncertainty measures
allow the model to search different boundaries during active
learning: the boundaries where the model is uncertain about
its aspect category sentiment classification result towards
majority classes is described by umajor . And the boundary
where the model is uncertain about aspect category detection
result towards minority classes is described by uminor .
Algorithm 2 shows the proposed LETS that integrates three

elements. Firstly, a pre-trained model is further pre-trained
with an unlabelled task-specific corpus data set. Then the
task-specific pre-trained model is used for initialisation dur-
ing active learning iterations. Active learning is repeated t
times and each time a model is fine-tuned with the labelled
data set that is augmented by the proposed label augmentation
technique. At the end of each iteration step, n samples are
queried from the unlabelled set for manual labelling. For
querying, each Query function Qmajor and Qminor select n/2
samples where umajor and uminor are the highest, respectively.
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Algorithm 2 Label-Efficient Training Scheme (LETS)
Data: Pre-trained modelMpt , unlabelled task-specific

corpus data set Dc, initial training set Dl ,
unlabelled training set Du, total iteration t ,
labelling budget n, query function for majority
categories Qmajor , query function for minority
categories Qminor

Result: Fine-tuned modelMt , Labelled data set Dt
Mtspt ← task-specificPre-train(Mpt , Dc,)
i = 0
Di← Dl
while i < t & |Du| > 0 do

D′i← augmentLabel(Di)
Mi← fineTune(Mtspt , D′i)
dmajor ← Qmajor (Du,Mi, n/2)
dminor ← Qminor (Du,Mi, n/2)
Di+1← Di
Di+1← addData(addLabels(dmajor ∪ dminor ))
Du← Du − {dmajor ∪ dminor }
i+ = 1

end while

V. EXPERIMENTS
A. DATASETS
We evaluate the proposed method on two datasets. One is the
custom dataset that we collected for the Caffeine Challenge
use-case. The other is SemEval-2014 [16] task 4 dataset4 that
is the most widely used benchmark dataset for aspect-based
sentiment analysis.

1) CUSTOM DATASET: CAFFEINE CHALLENGE
The custom dataset, which is described in Sec. III, is named
as a Caffeine Challenge dataset. We annotate a random
subset of the Caffeine Challenge dataset with 7 different
aspect categories (i.e., Sleep Quality, Energy, Mood, Missing
Caffeine, Difficulty Level, Physical Withdrawal Symptoms,
App Experience) and 3 sentiment labels S ={Positive, Neu-
tral, Negative} and an empty placeholder (i.e., Not Men-
tioned). The aspect categories distribution of the Caffeine
Challenge dataset is imbalanced as described in Sec. III.
Aspect categories are divided into subgroups of majority
and minority aspect categories based on the frequency in
a training set: {Sleep Quality, Energy, Mood} as majority
aspect categories and {Missing Caffeine, Difficulty Level,
Physical Withdrawal Symptoms, and App Experience} as
minority aspect categories.

The unlabelled corpus data set are used for task-specific
pre-training and the annotated data set is used for
fine-tuning. Table 2 summarises the sizes of the Caffeine
Challenge dataset used for the experiments. For task-specific
pre-training, sentences from the unlabelled corpus data set
are used. For the fine-tuning, 5-fold cross-validation splits

4https://alt.qcri.org/semeval2014/task4/

TABLE 2. Size of Caffeine Challenge dataset used for the experiments.
Sentences from the unlabeled corpus data set used as the task-specific
corpus data for task-specific pre-training. S-A pairs indicate
sentence-aspect pairs and sentence-aspect pairs from the
training set are used for fine-tuning.

are created at the sentence level and sentence-aspect pairs are
used for training.

2) BENCHMARK DATASET: SemEval
The SemEval-2014 task 4 dataset contains restaurant reviews
annotated with 5 aspect categories (Food, Price, Ser-
vice, Ambience, Anecdotes/Miscellaneous) and 4 senti-
ment labels S ={Positive, Neutral, Negative, Conflict5}.
Since the SemEval dataset is also imbalanced, as illus-
trated in Appendix. C, we define majority and minority
categories: {Food, Anecdotes/Miscellaneous} and {Service,
Ambience, Price} as majority and minority aspect categories,
respectively.

We used the original SemEval train set for the experiments
to create 5-fold cross-validation splits. Table 3 summarises
the size of SemEval dataset used for the experiments. For
task-specific pre-training, sentences from the training set are
used. For the fine-tuning, sentence-aspect pairs are created
with an empty placeholder (Not Mentioned) for the sentences
that do not contain a sentiment label towards specific aspect
categories.

TABLE 3. Size of SemEval dataset used for the experiments. Sentences
from the training set are used as the task-specific corpus data for
task-specific pre-training. S-A pairs indicate sentence-aspect pairs and
sentence-aspect pairs from the training set are used for fine-tuning.

B. EXPERIMENTAL SETTINGS
1) TASK-SPECIFIC PRE-TRAINING AND FINE-TUNING
We use the pre-trained uncased BERT-base model as
the pre-trained model (PT). The task-specific pre-trained
model (TSPT) is created by further training the pre-
trained model on the task-specific corpus data with the
masked-language modelling (MLM) objective with masking
probability p = 0.15. The TSPT is used to initialise the pro-
posed method and the PT is used to initialise other methods
during the active learning process. For fine-tuning, the final
classification layer is added and entire model parameters are

5The conflict label applies when both positive and negative sentiment is
expressed about an aspect category [16]
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updated. More detailed implementation and hyperparameter
settings are given in Appendix. D.

2) LABEL AUGMENTATION
Label augmentation multiplies the amount of labelled data
by generating synthesised pairs of sentence and aspect cat-
egories by replacing aspect categories with similar words.
The pre-defined dictionary containing a list of similar words
is used for label augmentation and label augmentation is
applied to the only minority aspect categories to avoid inef-
ficient augmentation. The pre-defined dictionaries are given
in Appendix E.

3) ACTIVE LEARNING
Active learning experiments are repeated 5 times with 5-fold
cross-validation splits. At each fold, the initial labelled data
set (i.e., seed data) is randomly selected from the training
set at the sentence level and transformed into sentence-aspect
pairs. For the Caffeine Challenge dataset, 20% of the training
set (n=455) is used as seed data (Dl) and the remaining data is
used as unlabelled data (Du). For the SemEval dataset, 10%
of the training set (n=1,220) is used as seed data (Dl) and
the remaining data is used as unlabelled data (Du). Active
learning is iterated with 10 steps with a fixed labelling budget
(n=|Du|/10). At the initial iteration step (t=0), a model is
trained on the seed data. During active learning steps, more
data are iteratively added to the training set by selecting
unlabelled data.

For comparison, we implemented BALD by using MC
dropout [30], Cost-Effective Active Learning (CEAL) [6],
least confidence scores, and random sampling. For BALD,
we use the same approximation by Siddhant and Lipton [9]
to compute uncertainty score as the fraction of models which
disagreed with the most popular choice. The number of
stochastic forward passes for BALD is set to 10. For CEAL,
the least confidence score is used for calculating uncertainty
and the threshold for pseudo-labelling is set to 0.05 with a
decay rate of 0.0033. Since pseudo-labels are not included
in the labelling budget, the active learning with CEAL can
be terminated early when there is no more data for manual
labelling. More details of these methods can be found in the
original papers [6], [9].

C. EVALUATION METRICS
In this paper, we used two different metrics to evalu-
ate the performance of an ABSA system. One metric is
aspect category detection (ACD) and the other metric is
aspect category sentiment classification (ACSC). Aspect cat-
egory detection (ACD) is proposed by Pontiki et al. [16]
and limited to evaluating aspect category detection ignor-
ing the performance of aspect category sentiment classifi-
cation. Aspect category polarity (ACP) metric is proposed
to assess the sentiment classification performance of a sys-
tem [16]. However, as it is mentioned in the previous study by
Brun and Nikoulina [14], the ACP metric presumes the
ground truth aspect categories and cannot be used to

correctly evaluate an ABSA system end-to-end. To address
this issue, we introduce a new metric of aspect category sen-
timent classification (ACSC) which is the modified version
of ACP taking into account false aspect category detection
results.

1) ASPECT CATEGORY DETECTION (ACD)
ACD is used to evaluate how a system accurately detects a set
of aspect categories mentioned in the input text. F1 score is
used which is defined as:

F1 = 2 ·
P · R
P+ R

where precision (P) and recall (R) are:

P =
|E ∩ G|
|E|

, R =
|E ∩ G|
|G|

where | ∗ | denotes the cardinality of a set *, E is the set of
aspect categories that a system estimates for each input, and
G is the set of the target aspect categories. Micro-F1 scores
are calculated at sentence-level and averaged over all inputs
and macro-F1 scores are calculated and averaged at aspect
category-level.

2) ASPECT CATEGORY SENTIMENT CLASSIFICATION (ACSC)
ACSC is used to evaluate the performance of an ABSA sys-
tem end-to-end. Since the proposed ABSA system produces
multiple sentence-pair predictions for a single text input,
the predictions are aggregated to compute (aspect, polarity)
pairs at sentence-level while eliminating the pairs that contain
Not Mentioned as a target as well as a predicted sentiment
class. F1 scores are calculated on the (aspect, polarity) pairs
at aspect-level following:

P =
TP

TP+ FP
, R =

TP
TP+ FN1+ FN2

where TP, FP, FN1, and FN2 are defined as in Table 4. Similar
to ACD, both micro- and macro-averaged F1 are used.

TABLE 4. Types of error used to compute aspect category sentiment
classification (ACSC) scores. TP, NA, FN1, FN2, FP refer to true positive,
not applicable, false negative type 1, false negative type 2, false positive,
respectively. TARG and PRED refer to a target sentiment class and a
predicted sentiment class where S is a set of polarised sentiment
classes (e.g., positive, neutral, negative, etc).

D. RESULTS AND ANALYSIS
1) EXP 1: CAFFEINE CHALLENGE
Fig. 6 illustrates the active learning results with the Caffeine
Challenge dataset. Active learning results in ACD metrics
are illustrated in Fig. 6a and Fig. 6b. All active learning
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FIGURE 6. Active learning results with the Caffeine Challenge dataset. Each line indicates averaged 5-fold results with standard deviation as shade.
The bottom X-axis indicates the active learning iteration step and the top x-axis indicates the number of manually labeled training data. Y-axis
indicates the performance score.

methods show better performance improvement than random
sampling. It is observed that all models achieve much lower
performances in macro-averaged scores than micro-averaged
scores. These results show that the models perform worse
towards minority aspect categories in the Caffeine Challenge
dataset. In micro-averaged ACD score, LETS outperforms
other active learning methods in general. In macro-averaged
ACD score, CEAL achieves slightly better performance
than LETS. However, the ACD metrics are incomplete
because they ignore sentiment classification results.

ACSC metric is proposed to address the limitation of the
ACD metric and correctly evaluate the ABSA system end-
to-end. Fig. 6c and Fig. 6d illustrate active learning results
with the respect to the ACSC metrics. From the figures,
it is observed that the performances of all models decrease
compared to the observations from the ACD metrics. Similar
to the results with the ACD metrics, LETS shows better

performance improvement compared to other active learning
methods. Specifically, from iteration step 0 to 1, the perfor-
mance of LETS increases from 35.1% to 48.2%, while other
method increase from 33.7% up to 47.1% in macro-averaged
ACSC metric. The most significant difference is observed
between LETS and random sampling. For example, random
sampling achieves a similar performance of 48.2% at itera-
tion step 2-4. Moreover, the difference between LETS and
random sampling increases over iteration steps. The random
sampling method at iteration step 6-7 and LETS at itera-
tion 2 show similar performances in terms of macro-average
ACSC metric. These results suggest that LETS can reduce
manual labelling efforts 2-3 times better compared to the
random sampling method. Also, LETS slightly outperforms
other active learning methods at the beginning of the iteration
step with the respect to the ACSC metrics. This result shows
that the task-specific and the proposed label augmentation
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FIGURE 7. Active learning results with the SemEval dataset. Each line indicates averaged 5-fold results with standard deviation as
shade. The bottom X-axis indicates the active learning iteration step and the top x-axis indicates the number of manually labeled
training data. Y-axis indicates the performance score.

can contribute to better generalisability with the Caffeine
Challenge data set.

Performance differences between LETS and random
sampling method are statistically significant (Wilcoxon
signed-rank test with p <.05) from iteration step 1 to 7 and
iteration step 2 to 5 in micro-and macro-averaged ACSCmet-
rics, respectively. However, performance differences between
LETS and active learningmethods are not statistically signifi-
cant (p>.05) throughout the entire iteration steps. In general,
all methods show high variances of performances.

One interesting observation is CEAL achieves lower per-
formances than LETS in terms of micro-averaged ACSC
metric, especially in the later iteration steps. This is different
from the observation from the micro-averaged ACD metric.
A possible explanation for this is as follows: CEAL uses
pseudo-labels. These pseudo-labelsmight not correct in terms
of sentiment classes and errors might propagate throughout
the iteration steps. Since the ACD metrics ignore sentiment
classification results, this error might not be detected. Results
with the macro-averaged ACSC metric show similar trends

to the results with the macro-averaged ACD metric. These
results suggest LETS slightly outperforms CEAL in terms of
end-to-end evaluation metric.

2) EXP 2: SemEval
Fig. 7 illustrates the active learning results with SemEval
benchmark dataset. Compared to the results with the Caf-
feine Challenge dataset, it is observed that the results with
the SemEval dataset show less fluctuated learning curves in
general. It is potentially because the SemEval dataset contains
fewer aspect categories with more training data.

As illustrated in Fig. 7a and Fig. 7b, LETS shows slightly
faster learning curves compared to other methods in terms of
the ACDmetrics. The random sampling method shows better
learning curves compared to other active learning methods
(i.e., BALD, CEAL, least confidence) in the ACD metrics.
However, this does not imply that the random sampling
method outperforms other active learning methods because
the ACD metrics ignore sentiment classification results.
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FIGURE 8. Compared active learning results for ablation study with the caffeine challenge dataset. Each line indicates averaged 5-fold results
with standard deviation as shade. The bottom X-axis indicates the active learning iteration step and the top x-axis indicates the number of
manually labeled training data. Y-axis indicates the performance score. PT and TSTP refer to the model with pre-training and task-specific
pre-training, respectively. Masked language modeling is used for task-specific pre-training objective. +LA indicates that label augmentation is
applied during the active learning process. All models use the proposed active learning method.

Fig. 7c and Fig. 7d show the active learning results in terms
of the ACSC metrics. It is observed that the performances of
all models decrease compared to the observations from the
ACD metrics because the ACSC metrics consider sentiment
classification results. From the figures, we can also see that
the random sampling method achieves slower learning curves
compared to the active learning methods. These results are
opposite from the results with the ACD metrics and imply
that the model trained with randomly sampled data tends to
more misclassify sentiment labels.

In the ACSC metrics, it is observed that LETS sub-
stantially outperforms other active learning methods and
random sampling method by showing fast performance
improvement. For example, from iteration step 0 to 1,
the performance of LETS substantially increases from 45.5%
to 61.6%, while the performances of other methods only
increase from 38.3% to around 50.8% in macro-averaged
ACSC metric. Other methods achieve a similar performance

of 61.6% at iteration step 2-3, which means that LETS
can reduce manual labelling effort 2-3 times better with
the SemEval dataset. Moreover, it is worth mentioning that
LETS achieves significantly (Wilcoxon signed-rank test with
p <.05) better performances than other methods at the begin-
ning and the end of iteration thanks to the task-specific
pre-training and label augmentation. Similar trends are also
observed in the micro-averaged ACSC metric. Similar to the
result with the Caffeine Challenge dataset, this result shows
that the task-specific and the proposed label augmentation
can also contribute to better generalisability with the SemEval
dataset.

Performance differences between LETS and random sam-
pling method are statistically significant (p <.05) through-
out entire iteration steps in both micro-and macro-averaged
ACSCmetrics. Also, performance differences between LETS
and other active learning methods are statistically significant
(p <.05) from iteration 0 to 4 for BALD and from iteration
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FIGURE 9. Compared active learning results for ablation study with the SemEval dataset. Each line indicates averaged 5-fold
results with standard deviation as shade. The bottom X-axis indicates the active learning iteration step and the top x-axis
indicates the number of manually labeled training data. Y-axis indicates the performance score. PT and TSTP refer to the model
with pre-training and task-specific pre-training, respectively. Masked language modeling is used for task-specific pre-training
objective. +LA indicates that label augmentation is applied during the active learning process. All models use the proposed active
learning method.

step 0 to 2 for CEAL and least confidence methods, respec-
tively, in both micro and macro-averaged ACSC metrics.

E. DISCUSSION
The proposed LETS integrates multiple components, includ-
ing task-specific pre-training, label augmentation, and active
learning. To investigate the effect of task-specific pre-training
with label augmentation separately, we further analyse the
performances of a pre-trained model (PT) and task-specific
pre-trained model (TSPT) by ablating the label augmen-
tation (LA) component. Fig. 8 and Fig. 9 summarise the
ablation study with the Caffeine Challenge dataset and the
SemEval dataset, respectively. Note that all models use the
proposed active learning method.

From the Fig. 8 and Fig. 9, it is observed that each
task-specific pre-training and label augmentation provides

performance improvement in the ACSC metrics. Nonethe-
less, more consistent improvement is observed when both
components are applied together. For example, the results
from the Caffeine Challenge dataset, as illustrated in Fig. 8,
show that task-specific pre-training can contribute to per-
formance improvement and label augmentation can further
provide performance boost, especially in early iteration steps.

Similar trends are also observed in the results from the
SemEval dataset as illustrated Fig. 9. The major differences
are the results from the SemEval dataset are more stable
throughout the iteration steps. The results from the Semeval
dataset, as illustrated in Fig. 9, show significant differences
(p < .05) between the task-specific pre-trained model
with label augmentation (TSPT+LA) and the pre-trained
model (PT) from iteration step 0 to step 4. This suggests that
the combination of task-specific pre-training and label aug-
mentation can contribute statistically significant performance
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improvement for the SemEval dataset, in early iteration steps.
Interestingly, each task-specific pre-training and label aug-
mentation can also contribute to the similar performance
improvement of combining both of them. This suggests that
applying either ask-specific pre-training or label augmenta-
tion can be also beneficial for the SemEval dataset.

VI. LIMITATIONS AND FUTURE STUDIES
Even though we show the effectiveness of the proposed
method by validating with two different datasets, some
points can be further studied. Firstly, the Caffeine Challenge
dataset is semi-realistic and not collected from actual users
of a mobile application. This is mainly because the goal of
this paper was to conduct a pilot study of developing an
aspect-based sentiment analysis system for the healthcare
domain prior to having a mobile application available. There-
fore, further study is needed to collect real-world data and
conduct experiments to validate the developed system. Since
the real-world data are not labelled and the main contribution
of this paper is proposing a label-efficient training scheme,
we argue that the proposed method can be used to efficiently
label the real-world data to further train the system.

The second limitation is the handcrafted rules of the pro-
posed methods. The majority and minority classes were
defined based on the frequency in the training sets. Further
study could explore an algorithmic approach to distinguish
between majority and minority classes. For example, in the
active learning setting, minority classes can be dynamically
defined based on the labelled data set of the previous iteration
step. Also, the proposed label augmentation uses handcrafted
dictionaries. A synonym search algorithm by using a lexical
database, such as WordNet [38], or a knowledge graph, such
as ConceptNet [39], could be used for automatically creating
dictionaries for the proposed label augmentation.

Thirdly, a remaining difficulty in applying this work is to
knowwhen to start andwhen to stop active learning iterations.
For example, in our experiments (Sec. V), the size of seed data
is set to 20% of the training set for the Caffeine Challenge
dataset while it is set to 10% of the training set for the
SemEval dataset. It is decided based on heuristics and future
studies could investigate the optimal size of the seed data.
Also, even though the proposed method achieves fast perfor-
mance improvements at the beginning, it reaches a plateau
in the middle of the active learning process. This is because
we consider a pool-based active learning scenario, which
assumes a large amount of unlabelled data at the beginning
of the process and the active learning iteration ends when
there is no more data to be labelled. To avoid unnecessary
iteration steps, a stopping strategy is needed. Potentially,
stopping strategy can be defined based on the stabilisation
of predictions [40] or the certainty scores of predictions [41].

VII. CONCLUSION
In this paper, we introduce a new potential application of
ABSA applied to health-related program reviews. To achieve
this, we collected a new dataset and developed an ABSA

system. Also, we propose a novel label-efficient training
scheme to reduce manual labelling efforts. The proposed
label-efficient training scheme consists of the following
elements: (i) task-specific pre-training to utilise unlabelled
task-specific corpus data, (ii) label augmentation to exploits
the labelled data, and (iii) active learning to strategically
reduce manual labelling.

The effectiveness of the proposed method is examined via
experiments with two datasets. We experimentally demon-
strated the proposed method shows faster performance
improvement and achieves better performances over exist-
ing active learning methods, especially in terms of the end-
to-end evaluation metrics. More specifically, experimental
results show that the proposed method can reduce manual
labelling effort 2-3 times compared to labelling with random
sampling on both datasets. The proposed method also shows
better performance improvements than the existing state-of-
the-art active learning methods. Furthermore, the proposed
method shows better generalisability than other methods
thanks to the task-specific pre-training and the proposed label
augmentation.

As future work, we expect to collect actual user data from
a mobile application and implement the developed ABSA
system with the proposed label-efficient training scheme.
Moreover, we will investigate a stopping strategy to terminate
the active learning process to avoid unnecessary iteration
steps.

APPENDIX A
EXAMPLES OF THE COLLECTED DATA
Table 5 shows examples of the collected data used for exper-
iments.

APPENDIX B
EXPLANATION OF ASPECT CATEGORIES
Table 6 summarises the explanation and examples of aspect
categories used in the paper.

APPENDIX C
ASPECT CATEGORY DISTRIBUTION OF THE SemEval
DATASET
Fig. 10 illustrates the aspect category distribution of the train-
ing set from the SemEval dataset used for the experiments.
As it is shown in the figure, the SemEval dataset is imbal-
anced and we define {Food, Anecdotes/Miscellaneous} and
{Service, Ambience, Price} as majority and minority aspect
categories, respectively.

APPENDIX D
IMPLEMENTATION AND TRAINING SETTINGS
All experiments were performed on the Windows 10 oper-
ating system and the detailed specification of hardware
and software is summarised in Table 7. For model imple-
mentation, PyTorch version of BERT with the pre-trained
weights (bert-base-uncased) [42] was used as the
pre-trained model (PT). During task-specific pre-training,
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TABLE 5. Example of question and answers. This example shows
12 different responses from a single participant.

FIGURE 10. Aspect category distribution of the training set from the
SemEval dataset. Anecd/Misc refers Anecdotes/Miscellaneous aspect
category.

the pre-trained model is further trained on the end task cor-
pus. For task-specific pre-training, we adopt masked lan-
guage modelling [1] with masking probability p = 0.15.

TABLE 6. Explanation and examples of aspect categories.

TABLE 7. Detailed implementation specification.

TABLE 8. Hyperparameters for task-specific pre-training (top) and
fine-tuning (bottom).

During task-specific pre-training, randomly sampled 10% of
training data is used as a validation set for early-stopping.

For fine-tuning, 5-fold cross validation splits are created
by using K-Folds cross-validator function from scikit-learn
library.6 Also, a final dense layer with softmax function is
added and cross entropy loss is used. Since the focus of
this paper is active learning experiments, we did not conduct
hyperparameter tuning experiments but used hyperparameter
values based on the recent study [18] as summaries in Table 8.

6https://scikit-learn.org/stable/modules/generated/sklearn.model_
selection.KFold.html
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APPENDIX E
PRE-DEFINED DICTIONARIES FOR LABEL
AUGMENTATION
Pre-defined dictionaries were used for label augmentation.
For the Caffeine Challenge dataset, the list of minority aspect
categories and the list of similar words for each aspect cate-
gories are defined as:
• Missing caffeine: [Missing caffeine, Dislike decaffeine,
Need caffeine, Caffeine addiction]

• Difficulty level: [Difficulty level, Hard to finish, cannot
complete, Too difficult]

• Physical withdrawal symptoms: [Physical withdrawal
symptoms, Headache, Pain, Jitter]

• App experience: [App experience, UI, UX, Design]
For SemEval dataset, the list of minority aspect categories

and the list of similar words for each aspect categories are
defined as:
• Service: [Service, Staff]7

• Ambience: [Ambience, Atmosphere, Decor]
• Price: [Price, Bill, Quality8]
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