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ABSTRACT With more powerful yet efficient embedded devices and accelerators being available for Deep
Neural Networks (DNN), machine learning is becoming an integral part of edge computing. As the number
of such devices increases, finding the best platform for a specific application has become more challenging.
A common question for application developers is to find the most cost-effective combination of a DNN
and a device while still meeting latency and accuracy requirements. In this work, we propose Blackthorn,
a layer-wise latency estimation framework for embedded Nvidia GPUs based on analytical models. We pro-
vide accurate predictions for each layer, helping developers to find bottlenecks and optimize the architecture
of a DNN to fit target platforms. Our framework can quickly evaluate and compare large amounts of network
optimizations without needing to build time-consuming execution engines. Our experimental results on
Jetson TX2 and Jetson Nano devices show a per-layer estimation error of 6.104% Root-Mean-Square-
Percentage-Error (RMSPE) and 5.888% RMSPE, which significantly outperforms current state-of-the-art
methods. At network level, the average latency error is below 3% for the tested DNNs.

INDEX TERMS Artificial neural networks, estimation, neural network hardware.

I. INTRODUCTION
Deep Neural networks (DNNs) are widely adopted as key
components in many use-cases like vision and speech pro-
cessing solutions. Typical vision applications range from the
automotive industry [1], [2] to medical use cases [3], [4]
and consumer-focused applications like Google Lens. Until
a few years ago, the computationally demanding DNNs were
executed in the cloud requiring a stable network connection
all the time. The increasing capabilities of embedded devices
like theGraphic ProcessingUnits (GPUs) in theNvidia Jetson
family and hardware accelerators like Intel’s NCS2 or the
Gyrfalcon Lightspeeur allow designers to run larger DNNs
directly on mobile platforms. Such edge devices play a sig-
nificant role in areas where manufacturers are interested in
advanced driver assistance systems (ADAS) like the railway
or construction industry since a stable network connection
cannot be ensured [5].

Despite the fact of embedded devices are getting more
powerful, optimization of DNNs is still a must to achieve fea-
sible performance. In product development, computer vision
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and machine learning engineers are often interested in quick
estimations like: Can their neural network run on a specific
hardware platform with a given latency? What effect does a
change of parameters due to optimization or a larger input
image have on latency? In order to meet latency require-
ments on resource-limited embedded platforms, compres-
sion techniques like quantization [6], pruning [7], and shunt
connections [8] are utilized. Pruning is a technique where
the size of individual layers, i.e., the number of filters of
a layer, is reduced. Shunt connections, on the other hand,
replace larger sections of a neural network, e.g., multiple
residual blocks as used in MobileNetV2 [9], with smaller,
more efficient blocks. However, analyzing and comparing
different setups, e.g., different optimization and compres-
sion techniques applied to multiple scales of several DNN
architectures, is usually extremely time-consuming. It often
results in retraining the network, and most platforms require
a building or compiling step before execution to achieve
optimal performance, increasing the time to test a single
network. This compiling step typically requires up to a few
hundred seconds, clearly overtopping the inference time,
which is in the range of tens of ms for state-of-the-art
networks.
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To skip the time consuming compiling step, DNN latency
prediction techniques based on analytical or statistical
models have been put forward. They target either large
desktop-grade GPUs [10], [11] embedded Central Processing
Units (CPUs) [12] but not more powerful embedded devices.
Methods like [10] designed for desktop GPUs rely on the
Nvidia System Management Interface (Nvidia SMI), which
is not available on mobile GPUs. CPUs, on the other hand,
feature a much smaller number of parallel computation units
allowing linear models to accurately predict latency [12].
Estimation frameworks designed for Application Specific
Integrated Circuits (ASIC) or Field Programmable Gate
Arrays (FPGA) using white-box approaches rely on knowl-
edge of the underlying hardware [13], [14]. This information
is often not available for off-the-shelf embedded platforms.

Collecting the data for building estimation models is criti-
cal for achieving high accuracy. Since compiling a network
architecture takes up to a few hundred seconds, a dense
benchmark of the design space with more than 103 possible
points in each of the multiple dimensions (e.g., the number
of input channels and the width and the height of the input)
is not feasible. A naive (dense) approach on a single device
could then take hundreds of years. Improved implementations
using a reduced set of pre-selected points can reduce the
benchmarking time down to a couple of weeks. However,
one has to carefully select these points to avoid oversee-
ing patterns in the inference time. Some implementations
like [10] use a dataset of layers obtained from state-of-the-art
Convolutional Neural Networks (CNNs). While being fast,
the generalization to unseen and uncommon layers is a big
concern due to the small number of samples.

To overcome the limitations mentioned above and fill the
gap of embedded GPU platforms, we propose Blackthorn,
a layer-wise latency estimation framework for CNNs on
embedded Nvidia GPUs. We eliminate the data collection
issues by selecting the benchmarking points that provide the
most information to minimize the required measurements.
We use analytical layer models based on function templates
to improve the generalization ability of our estimator while
keeping the underlying dataset sparse. To the best of our
knowledge, this is also the first work that maps a small
set of functions, namely step, and linear functions, to the
measured latency to generate layer-wise models. Blackthorn
can be used to estimate the effects of network optimizations,
to guide compression techniques to utilize a platform better,
e.g., platform-aware pruning, and for fast network evaluation
(Network Architecture Search or NAS).

In the context of this paper, the term ‘‘platform model’’
always refers to a combination of the hardware and a specific
version of the provided framework, e.g., an Nvidia Jetson
Nano with Jetpack 4.3.

Specifically, this paper makes the following main
contributions:
• Blackthorn, a model-based framework to estimate the
execution time of convolutional neural networks on
embedded Nvidia platforms;

• An estimation method based on an analytical approach
using a combination of linear and step functions;

• Fast platform benchmarking by finding optimized mea-
surement points and thus minimizing their number.

The rest of the paper is organized as follows. Section III
describes our overall architecture with more details presented
in Section IV. The estimation results and comparisons to the
state-of-the-art are shown in Section VI with a conclusion
drawn in Section VII.

II. RELATED WORK
Recently, several studies have been published evaluating the
performance of common DNNs on various hardware plat-
forms helping developers select the best target platform for
their needs. DawnBench [15], [16] is a benchmark suite
for measuring training and inference time targeting mainly
cloud and server-related hardware. In EMBench [17], mul-
tiple state-of-the-art DNNs are tested on a broader range of
platforms, including desktop GPUs (Nvidia RTX 2080Ti),
embedded GPUs (Nvidia Xavier), specialized DNN accel-
erators (Intel NCS2), as well as mobile and server CPUs.
They also provide insights into how different layers, e.g.,
convolution, fully-connected, and pooling layers, perform on
the selected platforms. It turns out that some platforms are
more efficient for specific layer types than others. While
convolution layers always take the most time, their share of
the total runtime varies from 65% to 89%. MLPerf [18] is
an industry-backed benchmark suite. It defines a set of rules
and best practices enabling fair and comparable benchmarks
across different hardware platforms and offers an extensive
database containing inference times for different networks
on multiple platforms. However, all these benchmark suites
share the disadvantage that they cannot predict the inference
time when one adjusts the size of the input image or some
layers, e.g., by pruning the network.

Layer-level modeling of DNNs is one approach to fill
this gap. A simple way to create layer models relies on the
number of computations of a layer. Rouhani et al. [19] take
the number of layers and the number of neurons per layer
as input and perform micro-benchmarks to estimate the costs
of certain operations (e.g., multiple-add and activation func-
tion). A more advanced framework is Paleo [11]. It models
the execution time of a single layer using an analytical model
based on the time to fetch the input, to perform the com-
putation, and to write the outputs to the local memory. The
computation model is based on the heuristics implemented
in CuDNN, and thus, it cannot be used for estimating other
platforms than Nvidia GPUs. NeuralPower [10] proposes an
estimation method relying on a polynomial regression model.
It decreases the estimation error on an Nvidia TitanX for a
set of CNNs (AlexNet [20], VGG16 [21], Nin [22], Over-
feat [23], and CIFAR10-conv6) from 23.12% to 7.96% and
the Root-Mean-Square-Percentage-Error (RMSPE) for con-
volution layers from 58.29% to 39.97% compared to Paleo.
NeuralPower also includes models for power and energy esti-
mation. However, it relies on the Nvidia SystemManagement
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FIGURE 1. Overview of the system architecture: The profiling tool (1)
builds estimation models based on measurement results obtained from a
platform using the vendor specific inference frameworks (2). The
resulting estimation models (3) are then utilized by the estimation tool
(4) to predict a network’s inference time.

Interface (SMI), which is not available on Jetson platforms.
PreVIous [12] presents a similar approach using linear regres-
sion models. It targets embedded CPU platforms like a Rasp-
berry Pi3 and an Odroid-XU4 and reports an average error
of 3.24% for the tested networks. MLPAT [14] is a white-box
approach for power, area, and timing estimation of machine
learning accelerators at chip architecture level. They report
an error of less than 10% for a TPU-v1. A similar approach is
DNN-Chip predictor [13], an analytical performance estima-
tor targeting FPGA and ASIC machine learning accelerators.
Themaximum prediction error is 17.66% across several DNN
models, hardware architectures, and dataflows.

Besides the latency and power estimation of neural net-
works, much effort has been put into predicting performance
and power on lower levels of abstraction. On a GPU, every
neural network is broken down into a sequence of multiple
kernels, where every layer consists of one or more individ-
ual kernels. In [24] the authors present a model to predict
execution time and power consumption of a set of GPU
kernels extracted from multiple benchmarking suites. The
developed models are based on a random forest approach
using only architecture independent features. The achieved
Mean-Absolute-Percentage-Error (MAPE) for prediction the
execution time is in the range of 8.86% to 13.86% for
server-grade GPUs. However, on consumer-grade GPUs,
the MAPE increases to 52% as they do not support setting
a fixed clock frequency. The effect of enabled dynamic volt-
age and frequency scaling (DVFS) on estimating the perfor-
mance of GPU kernels is analyzed and modeled in [25]. The
models are based on detailed investigations of the execution
pipeline and memory accesses of different kernels. Over a
set of 12 GPU kernels and 49 frequency settings, a MAPE
of 3.8% is reported.

III. SYSTEM ARCHITECTURE
The overall system architecture is shown in Figure 1.
The Profiling Tool builds a platform model based on
micro-benchmarks of individual layers and layer combina-
tions, e.g., stacked convolution and pooling layers. Determin-
ing the specific benchmarking points at run-time allows us to
find the points with a significant expected improvement for
function fitting, which efficiently decreases the number of

FIGURE 2. Two sample histograms showing the non-deterministic
behavior when running the same layer multiple times.

required measurements. Consequently, the overall run-time
of the profiling tool wanes as well. The benchmark generator
is responsible for managing the measurement points and
communicates with a selected backend.

The profiling tool requests latency measurements from a
device using a simple platform interface communicating with
a platform-specific backend. This backend always relies on
the currently available optimizer and inference engine pro-
vided by the manufacturer. Our experiments target the Nvidia
Jetson family of embeddedGPUs. Thus, we rely on TensorRT
in this work. However, backends for other platforms can
easily be plugged in in future work.

The output of the profiling tool is a collection of Estima-
tion Models for different layers, devices, and platforms. The
Estimation Tool reads in a given network description and
predicts the inference time based on the previously generated
estimation models.

In Section IV, we describe our approach to profile a plat-
form and explain how the model builder uses these results to
create the estimation models.

IV. PROFILING TOOL
The profiling tool (Figure 1) consists of three main com-
ponents, the function fitter, the benchmark generator, and
the model builder. In the following section we explain the
individual modules and our approach to profiling embedded
Nvidia GPU platforms in more depth.

A. BENCHMARK GENERATOR
The benchmark generator manages the communication with
the hardware platform to build and execute a layer and to
collect latency measurements. This data is then used as an
input for our function fitting module. We utilize the event
management tools included in the CUDA runtime API [26]
to measure the inference time of individual layers. Since the
Nvidia Jetson devices are general-purpose devices, the infer-
ence time for a single layer is not as deterministic as using
a specialized neural network accelerator built on top of an
Application Specific Integrated Circuit (ASIC). Figure 2
shows the histograms of two different layers each cover-
ing 500 individual runs. We use the median value of a set
of 500 measurements to compensate for uncertainty intro-
duced here. As a result, our models estimate an average
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FIGURE 3. Process of function selection and fitting. Blue colored boxes
show components which are common for all function templates.

runtime for a given neural network. As an upper bound can
be important in some applications, we record other statistical
metrics like the 75th as well as the 97.5th percentile, enabling
estimation models for the upper bound in future extensions.

B. FUNCTION FITTER
The function fitter is one core element of the profiling tool.
Figure 3 illustrates the process of findingmodels representing
a single dimension of a layer’s design space. The dimensions
of the design space are equal to the parameters describing a
layer. In case of a convolutional layer, the dimensions of the
design space are: the input width win and height hin, the num-
ber of input channels din, the number of filters k , the size of
the filter kernel_size, and the stride s. The single-dimension
models are built on top of parameterized function templates,
each responsible for a single function type. In this work,
we focus on linear and step functions, but other templates can
easily be added.

The process of function fitting (Figure 3) can be outlined
as follows: First, two measurement points initialize each
function template, where each template can holdmultiple sets
of parameters. Then the fitter selects an optimal next bench-
mark point and requests the measurement over the platform
interface by utilizing the benchmark generator. Next, the indi-
vidual templates optimize their parameter sets to adjust to the
new benchmark point. The parameter sets of all templates are
then sorted and filtered based on their fitting error keeping
only promising parameter sets. This process continues until
one function template with a single parameter set remains.
We sequentially run the function fitter across all dimensions
and combine the results into a model for each layer. This
process is described in detail in Section IV-C.

1) FUNCTION TEMPLATES
In our work, we use two function templates, one for linear
functions and one for step functions as defined in Equations 1.

flin(x) = mx + b

fstep(x) = d + b∗c
x

wstep
hstep (1)

While fitting a linear function is simple, step functions
require some attention. The step width wstep is connected
to a single dimension of a CNN layer’s design space, e.g.,
the number of filters or the number of input channels. Since
these parameters are always whole numbers, wstep is con-
strained to unsigned integer values. To efficiently find the

FIGURE 4. Step function selection process. (1): Initialized step fitter
template. (2)-(4): Adding additional measurements reduce the size of the
ensemble until only one function is left.

best-matching step function, we initialize the step-function
template with an ensemble of possible step functions through
two starting points (see Figure 4 (1)). Each function has a
fixed step width (wstep ∈ (8, 512) with wstep being a multiple
of 4) while the remaining parameters are optimized during
template fitting (see Section IV-B5).

2) NEXT POINT SELECTION
One crucial part of minimizing the required number of mea-
surements is finding an optimal next point. While executing
networks on desktop or server platforms using Tensor-
Flow or PyTorch is usually straightforward, platform-specific
toolchains often require some optimization steps before exe-
cution. TensorRT performs some self-benchmarking jobs
before optimizing the network and mapping the layers to
the computation cores. This process can take up to three
orders of magnitudes longer than the inference for a single
layer. Therefore, minimizing the number of measurements is
critical to complete the benchmark in a feasible time.

Our method of finding the optimal next point differs
between the function templates. For step functions we use a
combination of three different metrics:

• The number of distinct unique function values at each
point U ,

• the range R defined as between the maximum and the
minimum value for each point,

• and the distance to already benchmarked points D

Figure 5 (a) explains the first two criteria. Each set of scores
is then normalized to the range [0− 1] before summed up:

scoresstep = norm(αUsc + βRsc + γDsc) ∗ cstep (2)

where α, β, and γ weigh the individual metrics, Usc being
short for norm(U ), and cstep is a difficulty coefficient. The
final score is normalized again. A grid search optimizes the
values of the parameters α, β, and γ . Therefore we ran our
fitting algorithm on collected ground truth data and selected
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FIGURE 5. Next point selection. (a): Definition of the range and distinct
function values criteria. (b): Example of optimal points for a step and a
linear function.

the values of α, β, and γ in order to minimize the average
number of iterations required to terminate the fitting process.

For linear functions, we only use the normalized distance
to previous points as decision criteria.

scoreslin = Dlin ∗ clin (3)

The difficulty coefficient ensures that more complex func-
tions, i.e., functions with large ensembles of parameter sets,
will be prioritized when selecting the next point. Because
we have function templates of which only one contains a set
of possible choices (step-function template), we set clin =
1 and cstep = 2. This way, we respect the fact that the
step function template has to eliminate all but one param-
eter set. Finally, the next point is selected by finding the
highest overall score. The selected next point is the index of
max(max(scoresstep, scoreslin)).

3) TEMPLATE EVALUATION
Since a template can contain an ensemble of possible func-
tions, we have to evaluate, rate, and filter them to find the best
model describing the data. Therefore, we sort the ensemble
of possible functions of each template, e.g., a set of d , wstep,
and hstep for the step-function template based on the sum
of squared errors. The error eset i is associated with a single
parameter set i, and en is the error at a specific measurement
point (Equation (4)). The vector eset contains all error values
for each template so that eset i ∈ eset and eset ∈ Rk and i ≤ k
where k is the number of parameter set of a template. The
linear function template consists of only one parameter set so
that k = 1.

eset i =
∑
n

(xn − x̂n)2 =
∑
n

en (4)

To filter the parameter sets in an ensemble, we apply two
criteria, a threshold Te and a ratio Re. A parameter set is
removed from an ensemble if Equation (5) evaluates to true.

(eset i > Te) ∧
(

eset i
min(eset)

> Re

)
(5)

In our experiments, we use a fixed threshold Te and a ratio
Re following a linear decay with increasing iterations to force
the function selection to terminate. The value of Te as well
as the starting value and the decay per iteration of Re were

selected using a grid search hyper-parameter optimization to
minimize the number of iterations.

4) OUTLIER DETECTION
Outliers occur when the platform behaves unexpectedly (see
the two bumps shown in Figure 7 (a) for example). As such
points can easily corrupt the function fitting process, espe-
cially when using only a few points, we detect and exclude
them. We define an outlier as a point where the error dra-
matically differs from the error at all other points. The error
for each point of a single function is en (see Section IV-B3)
and the vector e collects the error values of all points so that
en ∈ e. The vector of median-normalized distances between
the error at each point n and the median error then is

ed =
|e− median(e)|

median(|e− median(e|)
(6)

In case of an ensemble we can collect all error values
in an error matrix E so that en,i is the error at point n of
set i. Consequently Ed contains the median-normalized error
distances ed n,i. We count a measured point n as an outlier
when the error distance ed n,i is greater than a threshold thres
for more than half of all possible functions i in the current set:

outlier =

{
True if #(ed≥thres)

#ed
> 0.5

False otherwise
(7)

The outlier detection is repeated after each iteration as out-
liers can turn back into valid points when the set of possible
functions gets smaller. This can be the case if, during an early
iteration, 75% of the possible functions vote for one point
being an outlier. Later on, most of these 75% are removed
due to not fitting the additional data well. Then the majority
can shift, turning an outlier back into a valid point.

5) TEMPLATE FITTING
We use the Trust Region Reflective curve fitting algorithm
(TRF) [27] to fit our templates to the measured data. The TRF
algorithm is based on [28] and designed for sparse problems.
In our case, the input to the fitting algorithm consists of
three to twelve data points taken from a total of 1024 points.
By default, the TRF algorithm optimizes all parameters to
floating point values. Since the step with in the step function
template is constrained to integer values (see Section IV-B1)
we have to adjust this template function for curve fitting.
Equation 8 forces the step width towards integer values.

f (x) = d + b∗c
x

wstep
hstep + (nint(wstep)− wstep)2 (8)

We use nint() to denote the rounding function to the nearest
integer.

6) TEMPLATE SELECTION
After fitting our template functions to the measured data,
we end up with multiple possible templates to choose from.
Similarly to our approach of sorting the ensemble of functions
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FIGURE 6. Example graph for a model of the number of filters k and the
input dimensions din of a convolution layer. We start by running a fitter in
a single dimension (a) to build up a graph modelling convolution layers.

inside a template (Section IV-B3), we sort the templates them-
selves using the sum of squared errors. To select a template,
i.e. decide whether to use a linear or a step function, we only
use a ratio Rt and compare the best parameter sets of each
template ensemble, i.e. where eset i = min(eset). The value of
Rt is determined using a grind-search such that the number
of iterations is minimized. For convenience, we define the
error of a template j as etpl j = min(ejset) and etpl j ∈ etpl
so that etpl contains the minimal errors of each template.
ejset is the error vector corresponding to template j. Analo-
gous to Section IV-B3, we remove a template if Equation 9
evaluates to true. The function fitter terminates and saves the
resulting model when only one template containing a single
parameter set is left.( etpl j

min(etpl )
> Rt

)
(9)

C. MODEL BUILDER
The design space for neural networks is huge. For a single
convolution layer one can vary the input size (width, height,
and channels), the number of filters, the size of the fil-
ters, and stride and padding settings. Fully-connected layers
(input and output neurons) and pooling layers (polling size
and stride) have fewer dimensions compared to convolution
layers. To solve this multi-dimensional estimation problem,
we apply the one-dimensional estimation model sequentially
on each dimension. After finding a model for the first dimen-
sion, we estimate each model parameter to track how they
change in the next dimension. Figure 6 illustrates the process
of building the graph for a two-dimensional model. The graph

Algorithm 1: High Level Description of the Function
Fitting Algorithm
FITTER1D(c)
Input: Profiling coordinates c
Output: Fitted template described by params

initial_points← (64, 960)
m← runBenchmark(c, initial_points)
nr_templates, params← updateTemplates(m)
while nr_templates > 1 do

next_point← findNextPoint(m)
m← m ∪ runBenchmark(c, next_point)
runOutlierDetection(m)
nr_templates, params← updateTemplates(m)

end
return params

PROFILER(d, c)
Input: Dimensions of the layer parameter space d
Input: Initial profiling coordinates c
Output: A set of fitted templates func_params

while ∃ t in nr_templates: t > 1 do
if d = 1 then

func_params← FITTER1D(c)
break

else
params← PROFILER(d − 1, c)
foreach p in params do

runOutlierDetection(p)
nr_templates[p], func_params[p]←
updateTemplates(p)

end
c← findNextPoint(params)

end
end
return func_params

in Figure 6 (b) shows a model for the number of filters k and
the input dimensions din of a convolution layer.
We start by running our function fitter across a single

dimension, keeping everything else fixed. This waywe obtain
a step model for the number of filters k with the parameters
d , w and h at one specific location (hin, win, din, kernel_size,
stride) (Figure 6 (a)). Next we run the fitter at different
values of din which results in multiple, slightly different step
function models. Running the fitter on the parameters d ,
w and h allows us to build a model describing how these
parameters change depending on din. The outcome of this step
is shown in Figure 6 (b). The model represented by this graph
has two inputs, din and k , and seven parameters. By repeating
this procedure for the other dimensions of the design space,
we finally get a graph model for a convolution layer. The
same process is used to model other types of layers like
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fully-connected and pooling layers, although the resulting
models are simpler due to the smaller design space.

For convolution and pooling layers we do not end with a
single graph for the entire design space. Some dimensions,
like the kernel size, are usually small (typical kernel sizes
are 1, 3, 5, 7, or 11 as compared to din, which can be anywhere
in the range (3, 1024) or even larger). Thus we cannot utilize
the function fitter on such dimensions as there are too few
points for fitting a function. As a result, the convolution and
pooling layer models consist of multiple sub-graphs, while a
fully-connected layer can be expressed in a single graph.

Algorithm 1 provides a high level view of the function
fitting routine, where the function fitter1D corresponds to
the process shown in Figure 3. The result is a set of fitted
templates which are further processed in order to build our
model graphs as shown in Figure 6.

V. ESTIMATION TOOL
The estimation tool reads a neural network description from
an ONNX [29] file and extracts the individual layers. If pos-
sible, layer fusion, e.g. combine a convolution and a ReLU
(Rectified Linear Unit) layer into a single layer. Layer fusion
is done based on the list of supported layer fusions provided
by Nvidia [30]. Using the previously generated layer level
estimation models, the estimation tool predicts the inference
time of each layer. The total run time of the provided neural
network is then calculated by the sum of the individual layer
execution times.

VI. RESULTS
For our experiments, we used two embedded Nvidia GPUs,
the Jetson Nano (based on the Maxwell architecture) and the
Jetson TX2 (based on the Pascal architecture). Both are run-
ning Jetpack 4.3, which includes TensorRT 6.0.1 and cuDNN
7.6.3. In case of an update of one of these libraries, we have to
re-run our benchmarking tool to create a newmodel to capture
possible performance improvements. We use TensorRT to
build and execute the engines to get the best performance out
of the devices. Additionally, we set the power mode of each
device to the maximum and disabled frequency scaling. It has
turned out that keeping frequency scaling active has a neg-
ative impact on performance and repeatability as TensorRT
includes a kernel timing and selection step before building
an engine. Depending on the architecture of the platform
and the available kernels, the low-level representation of a
CNN might change for different platforms. Modifying the
frequency during the timing and selection phase can mess up
the benchmarking results leading to a sub-optimal inference
performance.

Typical use-cases of embedded platforms involve
camera-based applications where objects have to be detected
on the incoming video stream in real-time, e.g., pedestrian
detection or infrastructure monitoring. To fit these use-cases
and to achieve the lowest latency possible, we set the batch
size in all experiments to 1. Classification and object detec-
tion on large datasets where bigger batches are beneficial

FIGURE 7. Step function fitting results for a single dimension of a
convolution layer with a stride of 1 and using a 3×3 filter. (a) Convolution
layer evaluated on k with win = hin = 64 and din = 128. (b) Convolution
layer evaluated on din with win = hin = 64 and k = 1024. (c) Linear
behavior of the Jetson Nano for a small number of input channels.

are typically performed on desktop and server-grade GPUs
which is outside the scope of this work. However, including
the batch size as an additional dimension would allow an
extension to larger batch sizes.

The following sections hierarchically present our estima-
tion results. First, we evaluate our method of function fitting
and template selection. Then we continue with the results at
layer-level and finally test our framework on complete CNNs.
In the last section, we discuss the benefits of estimating the
latency using blackthorn compared to executing the neural
networks on the hardware platforms.

A. FUNCTION FITTING
Our approach to creating layer and network models relies
on detecting function types and fitting the function to
the measurements for single dimensions. Thus, we need
high reliability and a small error in order to achieve
accurate models. We captured 64 full single-dimension
sweeps on the Jetson Nano as ground-truth data to eval-
uate our function fitting module. Each sweep consists
of 1024 measurements. The error across this dataset
is 2.17% Mean-Absolute-Percentage-Error (MAPE) and
0.341ms Mean-Absolute-Error (MAE). Figure 7 shows two
examples for fitted step functions on a single dimension of
a convolution layer together with the absolute and relative
error for each point. We typically need 8 to 14 measurements
for such a dimension where a larger step width (stepw = 32
in Figure 7 (a)) tends to require less measured points than a
smaller step width (stepw = 8 in Figure 7 (b)).

The ground truth in Figure 7 (b) (blue) shows two bumps.
The step width does not change in both cases, but the mea-
surements do not follow a clean step function. Our model
does not capture these irregularities. However, the maximum
error in such sections is still around 5%, keeping the impact
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FIGURE 8. 2-dimensional estimation results for a convolution layer with
an input size of 32× 32. (a): 2D slice through a convolution-layer model.
(b): Relative error for 768 measurement points.

on the overall accuracy small. Figure 7 (c) shows a corner
case where 1024 filters are applied to a varying number of
input channels. Besides the two bumps, the ground truth
also shows a linear behavior for a small number of input
channels (number of input channels< 20). Again, our model
does not capture such a characteristic. There are two main
reasons for omitting the small-scale features. First, there is
always a tradeoff between the estimation accuracy and the
model complexity. Including such small-scale features would
have little effect on the estimation accuracy at the cost of a
dramatically increased model complexity. As the complexity
of a model increases, so usually does the number of parame-
ters describing it. Consequently, more adjustable parameters
would require more measurement, which is in opposition to
our goal of minimizing the number of required benchmarking
points.

Figure 8 shows the fitting result for two dimensions corre-
sponding to Figure 6 (b). The entire plane consists of 10242

individual points, of which 112 were used to build the shown
model. Figure 8 (b) shows the relative error at 768 randomly
sampled locations. Despite a maximum error of around 5%,
most errors are in the range of ±1%.

B. LAYER-LEVEL RESULTS
We evaluate our estimation model for single layers using
the Mean-Absolute-Error (MAE), Root-Mean-Square-Error

TABLE 1. Estimation results for 1000 randomly picked convolution layers.

FIGURE 9. Pareto-optimal pruning target.

(RMSE) and the RMSPE. Table 1 shows the results for a
random sample of 1,000 convolution layers and Table 2 con-
tains the results for the same set of layers as used in [10].
These are all pooling, convolution, and fully-connected lay-
ers which can be found in AlexNet [20], VGG16 and
VGG19 [21], Faster R-CNN [31], NiN [22], CaffeNet [32],
GoogleNet [33], and Overfeat [23]. As our work focuses on
embedded platforms, we used different target devices than
the state-of-the-art methods mentioned in Table 2. However,
the Titan X and the Jetson TX2 are both based on the Nvidia
Pascal architecture. The main differences between them are
the number of available computation cores and the available
memory. Thus, the results should be comparable in terms
of Root-Mean-Square-Percentage-Error (RMSPE) due to its
relative nature.

The errors shown in Table 1 are slightly larger compared to
Table 2. This difference can be explained as the random test
set can also contain extensive layers, e.g., convolution with an
input of 512× 512× 1024 and 1024 3× 3 kernels, as well as
rectangular inputs, e.g., 64×512. Such layers are usually not
used in practice, but including them shows the generalization
ability of our model and allows us to predict the run-time
of arbitrarily sized layers, e.g., convolution layers with an
arbitrary number of input channels and filters. Consequently,
we can predict the impact of layer level optimizations such
as pruning where the size of a resulting layer might be
very different from common choices, e.g., a layer with an
uneven number of filters. Furthermore, we can determine
Pareto-optimal pruning goals for a given Nvidia platform.
Such points lie on the right end of a plateau of the step
function described by the number of filters where slightly
more pruning does not decrease the latency, but an additional
filter increases the latency (Figure 9).

The largeMaximumPercentage Error (MAXPE) in Table 1
occurs in case of a convolution layer with a small number
of input channels. The inference time in these areas fol-
lows a linear function before switching to a step function
(Figure 7 (c)). However, the introduced absolute error is
typically below 0.25ms, and such a layer exists only once in
a neural network (input layer processing the image data).
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TABLE 2. Estimation results for the test set used in NeuralPower [10].

TABLE 3. Estimation results for complete neural networks compared to
the state-of-the-art.

C. NETWORK-LEVEL RESULTS
Using the layer-wise estimation results above, we can esti-
mate the latency of entire neural networks. In Table 3 we
compare our results with the current state-of-the-art. Our
approach outperforms the current state-of-the-art at least by a
factor of 6. However, Table 2 shows that the estimation error
on layer-level is larger than on network-level. This difference
is a consequence of the errors compensating each other when
summing up all estimation results.

Figure 10 visualizes a comparison between the measured
and the estimated runtime for VGG16 broken down into
all layers we have modeled. The remaining layers (single
ReLu and Shuffle) have a total runtime of 0.06ms, which is
negligible. Compared to [10], our estimated runtimes match
the measured values better. The larger error for the first
convolution layer (conv1-1) can be explained by the linear
behavior of the Jetson Nano for a small number of input
channels (see Figure 7 (c)).

Note that the total latency of VGG16 on a Jetson Nano
is more than two times lower than the values reported in
NeuralPower, with individual layers being up to three times
faster. This can be explained by the fact that the authors
in [10] used Tensorflow to take the measurements, which
is, depending on the platform and the network - or layer
- size, three to eight times slower than the pure TensorRT
implementation we use.

FIGURE 10. Layer-wise runtime prediction for VGG16 on a Nvidia Jetson
Nano.

D. PERFORMANCE ANALYSIS
In this section, we discuss the performance of our framework
regarding the profiling time (time required to benchmark a
platform and build layer models) and the estimation time
(time to predict the runtime of a DNN).

1) PLATFORM PROFILING
Profiling a platform to capture the required data for build-
ing a model is usually an extremely time-consuming task,
especially when the design space is huge. By minimizing
the required measurements, we can effectively reduce the
overall runtime. On a Jetson Nano, the Blackthorn profiling
tool takes 6.5 days to complete benchmarking the platform
and building the layer models. This time a dominated by the
convolution layers due to their dimensionality. Blackthorn
typically requires 8-12 measurements per dimension, leading
to a total of about 15,000 measurements for convolution
layers and another 5,000 for all other types. As discussed
in Section VI-A, our models are valid for the entire design
space including uncommon layer dimensions. By limiting
ourselves to only common layer dimensions, we could speed
up this process by a factor of three. However, this would
result in a loss of generalization, eliminating the possibility
of predicting the effect of optimization techniques (pruning
can often lead to layer dimensions not used in state-of-the-art
DNNs).

2) ESTIMATION
As outlined in the introduction, executing a neural network
on an embedded platform often requires a compiling or
building step. In case of the Nvidia Jetson devices and the
TensorRT toolkit, an executable engine must be built once
before starting an inference session. This step is required for
every experiment, which involves changes in the network
architecture, including the size of individual layers due to
pruning or evaluating different sizes of the input image. Four
our measurements, we set the TensorRT workspace size to
1GB and disabled the layer timing cache. Table 4 shows a
comparison of the execution time of different neural net-
works on Jetson devices and using the Blackthorn estimator.
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TABLE 4. Comparison of building and execution times of state-of-the-art neural networks on Jetson devices and the estimation times when using our
Blackthorn estimator.

The total time includes building an engine, running the same
500 inference cycles as our benchmarking tool to get the
median latency, and an additional overhead introduced by the
TensorRT toolkit. The results show that building an engine
dominates the time required for running a single experiment.

To run the Blackthorn estimation tool, we use an off-
the-shelf notebook with 8GB RAM and an i7-8650U proces-
sor. Estimating the latency of a given CNN depends on the
number of executed layers with a single layer requiring about
20µs. Comparing the estimation time to the total execution
time of a neural network given in Table 4, our estimation
tool is faster by a factor of at least 5 ∗ 104. This allows us
to quickly evaluate many different network configurations
without having to access the hardware platform.

VII. CONCLUSION AND FUTURE WORK
We presented Blackthorn, a latency estimation framework
for neural networks on embedded Nvidia GPUs. We built
analytical models based on linear and step functions to predict
the inference time of a CNN layer by layer. On a set of eight
CNNs, we achieved an average estimation error of 2.547%
on a Jetson Nano and 2.843% on a Jetson TX2. On the layer-
level, we reduced the RMSPE down to 5.888% and 6.104%,
respectively, which is significantly lower than other state-of-
the-art works. Our layer-level results show that our frame-
work can accurately predict the impact of changes on the
CNN on the latency due to optimization (like pruning or shunt
connections) and different sized inputs. This also allows us to
select optimal goals for pruning since the point right before
a step uses the available cores most efficiently. Blackthorn
allows a developer to estimate a CNN’s latency in around 1ms
without requiring access to the hardware platform. This is at
least 5∗104 times faster than building and executing the CNN
on embedded Nvidia GPUs directly.

As a next step, we plan to extend our framework to include
more types of layers as well as other embedded platforms
and integrate estimations for power and energy consumma-
tion using the same analytical approach. We are confident
that Blackthorn can help developers quickly select the best
platform and optimizations for their use-case, spending less
time and money on subsequent training or retraining.
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