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ABSTRACT Videos are full of dynamic changes along both the spatial and temporal dimensions. Large, jerky
short-term motions make it difficult to extract significant changes from videos such as subtle color changes
and long-term motions occurring in time-lapse sequences. In this paper, we introduce two singular value
decomposition (SVD)-based video decomposition schemes to clearly reveal such changes. The first scheme
involves enhancing the visual characteristics of small subtle color changes in the presence of a wide variety
of motion patterns by magnifying their pixel intensities. The second scheme removes short-termmotions that
visually distract attention from the underlying content of video sequences such as time-lapse videos, snowing
scene, and maritime surveillance. Both schemes involve the decomposition of videos into spatiotemporal
slices in which each slice is further decomposed into several singular components. The low-rank components
that primarily represent background and color intensity information are then temporally processed tomagnify
the magnitude of the signal at the subtle color change target frequency. At the same time, an approach
similar to that used in denoising time-lapse sequences is applied to temporally filter the singular components
representing sparse information, thereby removing jittery short-term motions while preserving long-term
motions, which are represented by both low-rank and unfiltered sparse components. We demonstrate
promising color magnification and motion denoising results that can be obtained much faster than results
estimated using state-of-the-art techniques.

INDEX TERMS Singular value decomposition, Fourier transform, short-term motion, motion denoising,
subtle color changes.

I. INTRODUCTION
Computational photography is a quickly growing research
field in which dozens of computational imaging techniques
have been proposed for the generation of images and videos
that could not otherwise be generated using current imag-
ing devices [1]–[3]. The key difference between images
and videos is the presence of the time dimension in the
latter; videos are primarily sequences of frames that can
be played at different. frame-per-second rates. Furthermore,
a wide variety of motion patterns and events can coexist in
videos. Unfortunately, large-magnitude motions will usually
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dominate a scene [4], [5], making it difficult to clearly
observe many significant details and changes and requiring
further processing to reveal these unseen changes. One sig-
nificant approach to better understanding the dynamics of
an object’s motion is to manipulate it by magnifying color
changes and separating their short- and long-term dynam-
ics. We hypothesize that manipulating the frequencies of
motion events in a given video can change the way in
which we observe these motion events and reveal/hide cer-
tain types of motion information. Our manipulation approach
depends on the decomposition of video into several compo-
nents according to frequency and motion information. This
decomposition is performed using singular value decompo-
sition (SVD), through which video content can be divided
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into distinct motion and frequency components. Subse-
quently, different temporal manipulations such as filtering
and magnifying schemes can be used to produce the desired
results. Here we propose two manipulation schemes with
many potential applications in the field of video processing
and manipulation—color video magnification and motion
denoising.

In many visual periodicity-based applications such as heart
beat estimation [6]–[8], the color intensity of the extracted
signal is very small and the related changes cannot be seen by
the naked eye. It is therefore necessary to magnify the color
magnitude of the periodic signal embedded in the processed
video. The proposed color magnification scheme is designed
to magnify the SVD components related to the extracted peri-
odic signal tomagnify the color changes occurring in the orig-
inal video. This magnification procedure can significantly
reduce the processing burden required under conventional
techniques, in which all pixels must be spatiotemporally
processed to achieve the desired result. Videos also contain
numerous types of motion that can be categorized in terms
of their temporal characteristic into short- and long-term
and random motions. In certain types of videos, such as
time-lapse sequences and dynamic background sequences,
random and temporally inconsistent motion must be removed
through a procedure known as motion denoising, which was
defined and first used in [9]. Temporally filtering the SVD
component embedded in undesired motions can significantly
reduce their presence. The specific contributions of this paper
are as follows:

1) We introduce a technique to magnify subtle color
changes that is robust to a wide variety of distort-
ing motions, including rapid, slow, large, and random
motion.

2) We introduce an extremely fast and efficient motion
denoising technique capable of suppressing short-term
jittery motions in time-lapse sequences.

The remainder of the paper is organized as follows. Section II
discusses the related work on both color magnification
and time-lapse enhancement. Section III presents a brief
description of the tensor structure of video representa-
tion. Sections IV and V describe the proposed methods
for color magnification and motion denoising, respectively.
In SectionVI, we present and discuss our experimental results
and, finally, Section V concludes the study and discusses
future research topics.

II. RELATED WORK
Recently, there has been growing interest in extracting invis-
ible changes occurring in video sequences using several
computer vision applications [10]–[15]. These efforts have
been hindered by the fact that the intensities of the pixels
involved in the extracted signals have very small magni-
tudes, which make the related changes invisible to the naked
eye. To solve this problem, numerous change magnification
schemes for enhancing the motion and color change intensi-
ties of pixels involved in these signals have been proposed.

In this section, we review only the proposed techniques
related to the task of color magnification, leaving out motion
magnification as beyond the scope of this work. The most
commonly used approach is the Eulerian framework, which
can be used to detect subtle color changes and magnify
them accordingly [16]. This approach starts by decomposing
the frames of a given video into multiple Gaussian pyra-
mids. These are then temporally filtered to extract the signal
of interest, which is later magnified to the desired scale.
Finally, a magnified video is generated by reconstructing the
magnified pyramids. Recently, Zhang et al. [17] proposed
an acceleration-based Eulerian color/motion magnification
method that can magnify color changes in the presence of
large motion in cases in which conventional Eulerian-based
methods fail. Their method magnifies the acceleration of
color changes by relying on the fact that large motions show
linearity with respect to the time scale while small motions
do not. More recently, Takeda et al. [18], proposed a color
magnification technique that makes the acceleration-based
approach more robust to rapid, large motions. Using this
technique, they developed a jerk-based smoothness filter that
removes rapid and large-scale changes while passing the sub-
tle changes that need to be magnified. They further enhanced
their change magnification results by proposing a fractional
anisotropic filter that passes only meaningful subtle color
changes while eliminating the non-meaningful background
color fluctuations caused by photographic noise [19]. These
techniques, however, are robust against only a limited number
of motion types, which can lead to unreliable performance in
real-world scenarios. Our color magnification scheme differs
from these techniques, in which color changes are sepa-
rated from motions beforehand, regardless of their type, size,
or speed.

As mentioned earlier, certain types of video sequence are
accompanied by jerky small-scale and short-term changes
that must be removed to achieve a better watching experience.
Analysis of video components along the time dimension
is the typical approach to segregating temporally con-
sistent and non-consistent objects [20], [21]. Numerous
approaches to enhancing the quality of video sequences
have been proposed, including editing [22], synthesiz-
ing [23], [24], resampling [25], [26], and removing certain
events and popping artifacts. Sunkavalli et al. [27] intro-
duced an editing approach that separates video components
into their reflectance, illumination, and geometry factors.
Their technique extracts a spatiotemporal intensity-based
time series (profile) for each pixel and then applies matrix
factorization to the extracted profiles to decompose them into
sunlight, shadow, and skylight areas, enabling different appli-
cations such as shadow removal, relighting, and advanced
image editing. Under a different decomposition approach
proposed by Rubinstein et al. [9] time-lapse sequence are
separating into short- and long-term motion components by
implementing a Bayesian-based computational framework
that temporally smooths and reduces the randomness of video
content. Despite their promising results, these approaches
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are limited to very short sequences and are computationally
expensive. Martin-Brualla et al. [28] introduced an approach
for synthesizing time-lapse sequences of popular landmarks
from large photo collections. The appearances of their output
time-lapse sequences are stabilized by reducing the lighting
effect and minimizing the flicker by applying a temporally
median filter to the warped frames followed by temporal
regularization. Concurrently, Tan et al. [29] introduced a
decomposition framework that decomposes time-lapse paint-
ing videos into sequences of subsequent ‘‘stroke’’ images.
Based on this technique, they proposed a processing pipeline
that is robust to long-term occlusion, global color shifts,
and different painting-related challenges. Their technique
detects and removes pixels that are unstable with respect to
the time dimension in terms of moving standard deviation.
The removed pixels are replaced by corresponding pixels
extracted from keyframes that contain no occlusion. Recently,
Tian et al. [30] proposed a low rank/sparse decomposition
framework that removes the snowflakes from both static
background images and foreground objects. The background
desnowing is achieved by decomposing the input video into
low rank component that represents the snowflake free back-
ground, and a sparse component that represents both moving
objects and snowflakes. On the other hand, the foreground
objects are separated from snowflakes by performing a block
wise alignment approach where the blocks that belong to a
certain foreground object are arranged in a new tensor for
a second round of decomposition. However, such alignment
procedure cannot properly handle several scenarios with chal-
lenges such as large occlusion, scale variation, and non-rigid
motions.

The target of our motion denoising approach is similar
to Rubinstein’s framework [9] in that it decomposes both
time-lapse sequences and normal videos into short- term and
long-term motion-based components. Our motion denoising
scheme differs fromRubinstein’s framework, however, in that
it is much faster and can be extended to the processing of
more challenged sequences such as long time-lapse painting,
snowflakes removal, and maritime surveillance videos.

III. TENSOR STRUCTURE OF VIDEOS
A video can be considered a sequence of frames (images),
that is represented spatiotemporally in a three-dimensional
coordinate system (i, j, t), also known as a tensor. In general,
a video can be represented as a three-dimensional real array,
AAA ∈ Rm×n×r , in which the indices m and n are the spatial
dimensions of the video frame and r is the frame number.
By using the symbols i, j, and t as variables over the three
dimensions of the video tensor, m, n, and r , respectively,
a video frame can be represented asAAA::t ∈ Rm×n while the YT
and XT spatiotemporal slices can be represented as matrices
AAAi:: ∈ Rr×n and AAA:j: ∈ Rr×m, respectively. The columns in
each slice represent the time series of the corresponding pix-
els contained in the slice. Thus, based on the events captured
in the video, the columns of various slices can be identified
as discrete functions. Symbols and other notation used in this

TABLE 1. Mathematical notations and symbols.

paper are defined upon their first use and are summarized
in Table 1 for reference.

Tensor-based processing is considered as a better alterna-
tive to extract features from a sequence of multidimensional
data in numerous applications such as background subtrac-
tion [31], and microseismic events detection [32]. To this end,
two obvious ways of processing the observation tensor are
reported in the literature: the vectorization procedure where
each matrix is converted into a vector and the unfolding
procedure, which is also known as matricization. Nonethe-
less, neither of these processing procedures is capable of
taking full advantage of the temporal dimension of the tensor
structure. Therefore, we propose to employ our processing
scheme which was recently introduced for spatiotemporally
decomposing videos via SVD [36].

A. SINGULAR VALUE DECOMPOSITION OF A MATRIX
If A is a real m-by-n matrix, then there exist orthogonal
matrices U = [u1| . . . |um] ∈ Rm×m and V = [v1| . . . |vn] ∈
Rn×n such that [33]

UTAV = S = diag
(
s1, . . . , sp

)
∈ Rm×n, p = min {m, n} ,

(1)

where s1 ≥ s2 ≥ · · · ≥ sn ≥ 0, matrices U and V have
orthonormal columns known as the left and right singular vec-
tors ofA, respectively, and S is diagonal with real nonnegative
diagonal entries. Based on this, the SVD of a spatiotemporal
sliceAAAi:: can be expressed as follows:

AAAi:: = USVT (2)
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IV. PROPOSED COLOR MAGNIFICATION
Use Our goal is to magnify the color subtle changes asso-
ciated with a specific frequency to make them visible to
the naked eye. The proposed color magnification technique
decomposes a video sequence into m spatiotemporal slices
AAAi::. Subsequently, SVD is applied to the extracted slices
using a set of matrices U, each of which should contain
the same temporal information as the corresponding original
slice AAAi::. Given this requirement, the structures of the left
singular vectors of a matrix U should be further investi-
gated. The main challenge facing the majority of proposed
color magnification techniques is the issue of color/motion
separation; in other words, the color intensities of the com-
ponents of interest should be magnified independently of
any motion that might be present in the scene. Solutions
proposed to address this challenge include different signal
filtering schemes that are temporally applied on each pixel
profile. Each proposed filter is also designed to eliminate
certain types of motion such as large, rapid, or slow motion.
By contrast, our proposed magnification scheme decomposes
video content into low-rank (color/background) and sparse
(foreground/changes) components. This separation allows the
color changes to be magnified separately from the motion
present in the processed video.

A. LEFT SINGULAR VECTOR REPRESENTATION
As mentioned above, the matrix U represents the temporal
changes embedded in a video sequence. Accordingly, this
matrix can be subjected to structural analysis to determine
what each left singular vector represent with respect to the
original pixel profiles. In [34]–[36], comprehensive investi-
gations of SVD component structures were carried out for
different motion pattern cases, including periodic, arbitrary,
and intermittent motion. From a signal processing perspec-
tive, the projection of a spatiotemporal slice onto the first left
singular vector u1 subspace represent the low-rank (intensity)
component of this slice, while the projections of the same
slice onto the remaining left singular vectors’ u2,u3 . . . um
subspaces represent the changes in the low-rank color com-
ponent along the time dimension. Based on this conclusion,
the magnification of the first left singular vector enables mag-
nification of the color intensity separately from the motion.

B. TEMPORAL ANALYSIS OF LEFT VECTOR
To magnify the target frequency of a subtle color change
event, the first left singular vector u1 must be temporally
processed. A discrete Fourier transform (DFT) is used to
decompose u1 into different frequency components through
a process in which the target frequency is separated from the
other frequencies and its amplitude is magnified by a factor
of α. The vector u1 can be represented as a discrete time
signal function within the interval [−1, 1] as follows

u1 = {u1 [t]} 0 < t < k (3)

The t th number in this sequence is denoted by u1 [t],
where t refers to the frame index. For simplicity, u1 [t] is used

to refer to the overall vector u1. Subsequently, The DFT of the
signal u1 [t] is given as

U1(k) =
∑N−1

t=0
u1 [t] ej2π tk/N (4)

where k = 0, 1, . . . ,N − 1. Symbolically, this can be writ-
ten as

u1 [t]
DF
⇔ U1(k) (5)

where F and DF−1 denote, respectively, the operation of
computing the DFT of u1 [t] and the inverse DFT. Further-
more, the N entries in u1 [t] and w = (2π/N )k , where
k = 0, 1, . . . ,N − 1, represent the set of distinguishable
frequencies needed to synthesize u1 [t].
The target frequency for magnification/denoising is sepa-

rated from the remaining component in the frequency domain
and an inverse Fourier transform is employed to reproduce the
following two discrete signals

ũ1 [t] = DF−1{U1

(
k̃
)
} (6)

ŭ1 [t] = DF−1{U1

(
k̆
)
} (7)

where the Fourier series engaged with the target frequency
are represented as U1

(
k̃
)
and the remaining series are rep-

resented as U1

(
k̆
)
. As a result of this process, the target

frequency components are magnified relative to the other
frequency components as follows

ú1 [t] = α.ũ1 [t]+ ŭ1 [t] (8)

To preserve the orthogonality of ú1 [t], the vector is nor-
malized as follows

unorm1 [t] =
ú1 [t]∥∥ú1 [t]∥∥ (9)

To magnify the intensity of the target frequency compo-
nents, vector unorm1 [t] is rescaled by factor α1 to produce a
new vector ufinal1 [t] with lower minimum and higher maxi-
mum values. Subsequently, the resulting video with magni-
fied color changes can be reconstructed based on the SVD
construction theorem by rewriting the original slices AAAi:: as
the sum of rank-1 matrices as follows

AAA
magnified
i:: = ufinal1 s1vT1 + · · · + ud sv

T
d (10)

where d < p is the number of nonzero singular values.
Figure 1 demonstrates an example of themagnification of a

bulb light in which the structures of different frequency-based
components of the left singular vector u1 are clearly shown.

V. PROPOSED MOTION DENOISING TECHNIQUE
The goal of motion denoising is to eliminate short-term jittery
motions from a given video while preserving long-term scene
changes. Conventional temporal filtering techniques such as
median- and mean-based approaches process each pixel inde-
pendently, with pixels from different moving objects pro-
cessed equally. This procedure leads to poor performance in
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FIGURE 1. (a) from top to bottom: original first singular vector obtained by decomposing the spatiotemporal slice extracted from ‘‘bulb’’ video, filtered
target frequency component, remaining frequency components, the final magnified first singular vector compared to both the normalized and the
original vectors, respectively. (b). two spatiotemporal slices that represent the temporal changes of the bulb color changes extracted from the original
video (left) and the magnified video (right).

cases of extreme dynamic scenarios in which objects move
rapidly, producing videos that suffer from blur and discon-
tinuity artifacts. To address this issue, the proposed method
processes video content at the spatiotemporal slice level,
at which the spatial information of pixel profiles can be taken
into account. Furthermore, the proposed technique considers
only the moving pixels in the denoising procedure, which in
turn ensures that none of the background pixels are negatively
affected.

From the discussion in subsection IV.A, the first rank-1
matrix BBBi:: = u1s1vT1 represents the stationary-pixel content
over the course of a video (i.e., the background) while the
sum FFFi:: =

∑q
l=2 ulslv

T
l represents the sparse information

denoting the foreground objects. The residual, i.e., the sum
NNNi:: =

∑d
l=q+1 ulslv

T
l , represents additive white Gaussian

noise such as illumination changes and thermal and quantiza-
tion noise. Thus, proper selection of low-rank and sparse parts
of the spatiotemporal slices AAAi::, enable its decomposition
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FIGURE 2. Block diagram of proposed motion denoising scheme that shows in detail the sequential steps of incrementally decomposing a
spatiotemporal slice and reconstruction of a new slice denoised from jittery short-term motion.

into noise-free background BBB and foreground FFF tensors as
follows

AAAi:: ≈ BBBi:: +FFFi:: (11)

SVD is performed using an incremental window approach
in which the temporal size of the window is incrementally
increased by ε at each iteration. To reduce the computational
complexity and control the contribution of the history infor-
mation to the resynthesized video, the first 1 columns of the
window are removed at each iteration and the extracted SVD
components are used to reconstruct both the foreground and
background components

AAAi,:,τ1→(τ+1)ε = BBB:,:,τ1→(τ+1)ε +FFF:,:,τ1→(τ+1)ε (12)

for τ = 0, 1, . . . , k
ε
− 1.

A straightforward temporal filtering is then applied to the
foreground slice to remove the short-term motions. This is
achieved by temporally filtering the left singular vectors that
represent the motion information as follows

ùl = f (ul) for l = 2, 3, . . . , q (13)

where f is the filtering operator, which here is taken as an
ideal temporal bandpass filter with sharp low- and high-cutoff
frequencies denoted by fl and fh, respectively. Consequently,
the foreground components can be reconstructed using the
filtered left singular vectors as follows

FFFdenoized
:,:,τ .1→(τ+1).ε =

∑q

l=2
ùlslvTl , (14)

and the motion-denoised matrix-slice can be expressed as

AAAdenoized
:,:,τ1→(τ+1)ε = BBB:,:,τ1→(τ+1)ε +FFFdenoized

:,:,τ1→(τ+1)ε (15)

For each iteration, the denoised slices AAAdenoised
:,:,τ 11→τ 2ε

are
used to resynthesize video frames corresponding to their
respective temporal window sizes excluding the frames
that have been processed in previous iterations. To pro-
duce a smoother resynthesized video, the final δ frames of
AAAdenoised
:,:,τ 11→τ 2ε

are also excluded from the synthesization pro-
cess and replaced by their corresponding frames in the next
window. Thus, we obtain the resynthesized tensor

AAAresynthesized
=

∑ k
ε
−1

τ=0
AAAdenoised
:,:,ρ→ρ+γ (16)

where γ = ε − δ and ρ = (τ + 1) γ − τ1. Figure 2 shows
the processing steps used by the proposed motion denoising
scheme.

VI. EXPERIMENT
This section consists of two main subsections that concern
the color magnification experiment and the motion denoising
experiment, respectively. In the case of color video magnifi-
cation, it is worth mentioning that the frequency of interest
of each video is predefined based on the selected appli-
cation (as implemented in all related color magnification
frameworks). In the case of motion denoising framework,
the implementation parameters are divided into two groups:
1) SVD based parameters and 2) motion denoising based
parameters. In order to determine the number of the signif-
icant SVD components, q, the concept of the retained energy

VOLUME 9, 2021 108837



I. Kajo et al.: Frequency-Aware SVD Decomposition and Its Application

FIGURE 3. (a) examples of original videos. (b) spatiotemporal slices extracted from original videos. (c) spatiotemporal slices extracted from
magnified videos. (d) the magnified first singular vector (blue) extracted from the magnified video compared to the first singular vector extracted
from the original video (red).

in the principal subspace of the spatiotemporal slice AAAi:: is
employed [37]. The total energy E =

∑d
l=1 s

2
l of the AAAi:: is

defined as the sum of the squares of its singular values. The
retained energy in the q-rank approximation ofAAAi:: is given as
the sum of the q largest singular values squared. Accordingly,
the energy ratio between the q-rank approximation and the
total energy is given as

Er =
1
E

∑q

l=1
s2l × 100 (17)

This ratio is utilised in determining the value of q as a trade-
off between the minimum number of the SVD components
that are used in q-rank approximation and the maximum
retained energy. The parameters of the second group, namely
the parameters that are related to the size of the temporal win-
dow (such as1, ε, and δ) are proposed to reduce the computa-
tional complexity and downgrade the contribution of history
information to the final resynthesized video while the rest of
the parameters are related to the cutoff high frequency which
differs from one application to another (dynamic sea surface,
snow falling). Such parameters are empirically estimated.

A. COLOR MAGNIFICATION EXPERIMENT
To evaluate the performance of the proposed color magnifi-
cation technique, it was applied to a number of real videos
reflecting different motion scenarios. In the first assessment,

involving videos containing no motion, the goal was to mag-
nify facial color changes arising from the blood flow cor-
responding to the heart beat pattern. The first and second
videos presented the faces of a stationary man and a new-born
baby, respectively. The results shown in Fig. 3 (1st and 2nd

row) indicate that the proposed technique could appropriately
magnify the color changes in both videos without producing
negative artifacts. The second experiment involved the pro-
cessing of a video in which color changes were accompanied
by slow large-scale motion. The video presented a moving
hand holding a bulb and featured barely visible changes in
color intensity. As shown in Fig. 3 (4th row), the proposed
technique was able to successfully magnify the frequency
component related to the target frequency in vector u1, which
represents the intensity changes independent of the motion
changes represented by the remaining singular vectors.

The third experiment involved a video in which the color
change-accompanying motion was faster than the motion in
the preceding video. Most of the color magnification tech-
niques failed to handle this scenario because of the presence
of large-scale motion, which is generally excluded from the
magnification process under dedicated jerk-aware filtering.
The video showed the shattering of three bulbs by bullets
as shown in Fig. 1 and Fig. 3 (3rd row). Although both
the proposed and jerk-aware techniques had no difficul-
ties in magnifying the light changes produced by the bulbs
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FIGURE 4. (a) the extracted spatiotemporal slices (green line) extracted from both the original and magnified videos. (b) a frame example of the
processed video. (c) the extracted spatiotemporal slices (red line) extracted from both the original and magnified videos showing the untouched
motion events.

without introducing clipping or messy artifacts, jerk-based
techniques are designed to eliminate the impacts of certain
types of motion (rapid and large-scale). Furthermore, they
are fundamentally based on the assumption that the subtle
color changes and motion that need to be eliminated are
spatiotemporally independent. Such constraints limit their
magnification ability, making the processing of uncontrolled
scenarios such as outdoor scenes challenging. Therefore,
a fourth assessment involving the magnification of color
changes in the presence of several types of random motion
was carried out. Fig. 4 shows an example of a video con-
taining a blinking traffic light along with traffic flow, trees,
and a pedestrian. As seen in Fig 4. (a), the proposed color
magnification technique succeeded in magnifying the color
changes in the traffic light while leaving the remaining related
to car and pedestrian motion untouched as in the original.

B. MOTION DENOISING EXPERIMENT
Figures The proposed motion denoising approach is explored
in three different applications: time-lapse enhancement,
snowflakes removal, and foreground boat detection.

The performance of the proposed approach in addition to
the state-of-the-art techniques are evaluated via visual com-
parisons and quantitative comparisons when possible. For
better visualization, video examples are provided in supple-
mentary files.

1) VISUAL RESULTS OF TIME-LAPSE VIDEOS
To evaluate the proposed motion denoising technique,
the videos used in Rubinstein et al. [9], along with
some additional videos, were analyzed. The three new
videos—construction1, construction2, and construction3—
demonstrate different construction processes in which several
construction tools and vehicles are shown under varying light-
ing conditions. In the airport video, the short-term motion
patterns are represented by the daily traffic motion of air-
planes and vehicles while clouds produce long-term motion
patterns. The painting video presents a time-lapse sequence
in which painting is carried out over time and the scene is
corrupted by the jerky motions of the painter’s hand and
head. It is worth noting that the new input sequences were

TABLE 2. Significant parameter values for each sequence.

downloaded from YouTube using the key word ‘‘time-lapse.’’
Owing to the unique nature of each time-lapse sequence,
the parameters of the proposed technique were set to slightly
different values to produce optimal visual results for each
sequence. Table 2 lists the selected values of significant
parameters for each time-lapse sequence. The number of
excluded frames was fixed at δ = 5 and the low-cutoff fre-
quency was fixed at fl = 0.
In some sequences such as plant1, pool, and airport in

which the number of frames was low, the value of the incre-
ment in the moving window was set equal to the total number
of frames to prevent the creation of moving windows. The
estimated number q of remaining left singular vectors used
was set equal to the length of the temporal moving window
and the performance of the proposed technique in eliminating
short-term and jerky motion was evaluated by estimating the
optical flow of frame pair sequences ( t, t + 1) in each video.
The optical flow results included both horizontal and vertical
motion fields that indicated the magnitude and direction of
the estimated motion.

A good motion denoising technique produces very
small magnitudes of motion in both the horizontal and
vertical directions. An optical flow technique called
‘‘classic+NL,’’ [34] which is efficient and robust against
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FIGURE 5. (a) frame examples of original videos. (b) frame examples of denoised videos. (c) the difference between the original frame and the denoised
frame. (d) the average optical flow results along the horizontal direction (d) and the vertical direction (e) of both the original (right) and denoised videos
(left).

several challenges, including motion discontinuities, large
motions, and motion rigidity, was used to produce the motion
fields. The average estimated values of horizontal and ver-
tical optical flow results for both the original and denoised
videos are shown in Fig. 5, in which, for the sake of visual
comparison, the average results extracted from the denoised
videos are magnified by a factor of five.

The average results extracted from the original video fea-
ture large-magnitude motion vectors caused by the short-term
motion of cars. By contrast, the results extracted from the
denoised video feature small-magnitude motion vectors in
both the vertical and horizontal motion components. This
indicates that the proposed technique was effective at can-
celing the short-term motions of several objects, including
the crane, plant leaves, and vehicles. Time-lapse sequences
such as construction and painting videos that display pro-
gressive change are good examples of the efficacy of using a
moving window scheme. For instance, the painting sequence
experiment revealed how the proposed technique appro-
priately extracted subsequent stroke images of the painted
sketch, while the results obtained for the three construction
sequences clearly reveal the long-term changes occurring
during the construction progress while significantly reduc-
ing jittery changes caused by construction tools as well as
heavy lighting changes. Furthermore, the airport video results
show only cloud movement with all airplane traffic removed.
Figure 6 shows motion denoising results extracted from the
newly added time-lapse sequences.

2) VISUAL RESULT OF SNOWFLAKES VIDEOS
Snowflake removal is a significant preprocessing proce-
dure that enhances outdoor video processing tasks such
as segmentation, tracking and abnormal event detection.

Snowflakes show a repetitive behavior along the time dimen-
sion where their frequencies are higher than other foreground
objects and lower than the background components. There-
fore, snowflakes can be easily removed from a given video
by employing our motion denoising approach video where
low temporal frequencies that carry the snowflakes patterns
are filtered out resulting in a snowflake free background
image. In this experiment, we implemented our proposed
snowflake removal on several video sequences introduced by
Tian et al. [30]. The videos show different snow scenarios that
range frommid snow falling to heavy snow falling in addition
to different sizes of snowflakes. Figure 7 shows a visual com-
parison between the proposed approach and different existing
techniques [39], [40], [30]. Both methods of [39] and [40]
show poor performance in the majority of the tested videos
where snowflakes residue, object distortion, and blur can be
easily seen in their results. On the other hand, the proposed
approach and the method of [30] show similar satisfactory
visual results where the snowflakes are removed and the
visibility in the scene is significantly enhanced. However, one
advantage of our proposed approach over the method of [30]
is that it does not require the additional processing phase
proposed in [30] to remove the snowflakes from foreground
objects as can be seen in the 5th row in Fig.7.

3) QUANTITATIVE RESULTS
Two assessments were carried out to numerically measure
the efficiency of the proposed motion denoising technique.
In the first, the abilities of the proposed technique and the
technique in Rubinstein et al. to remove short-term motion
were compared based on estimates of the average optical
flow magnitude of all pairs of subsequent frames in each test
sequence. The temporal step size was limited to a one-frame
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FIGURE 6. (a) examples of original videos. (b) examples of denoised videos. (c) spatiotemporal slices extracted from the original videos.
(d) spatiotemporal slices extracted from the denoised videos.

difference to ensure that the estimated optical flows repre-
sented short-term motion. In this case, smaller average flow
magnitudes corresponded to better motion denoising results.
The estimated optical flow magnitude results obtained
for five videos provided by Rubinstein et al. are listed
in Table 3.

Considering the small differences between the results
obtained using the respective techniques, it is difficult to
conclude which performed better. Both techniques produced
visually comparable results and were successful in remov-
ing jerky short-term events from the time-lapse sequences.
However, because the proposed moving window-based
SVD requires only O(nε2) operations to compute the

TABLE 3. Estimated motion errors of proposed technique and rubinstein
technique.

decomposition results for a spatiotemporal slice, its com-
putational load was much lower than that required by the
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FIGURE 7. Visual examples of snowflake removal results: (a) input video, (b) Kim et al. method [39], (c) Sakaaino method [40], (d) Tian et al
method [30], and (e) proposed method.

Rubinstein et al. technique, which uses a motion compensa-
tion algorithm based on a space-time loopy belief propagation
algorithm with a computational complexity ofO(k3) for each
dimension, where k indicates the size of the search volume.
Additional computational burden such as sequential scanning
along the row, column, and time spaces, bilinear interpolation
and scaling, and iterative processing further increase the pro-
cessing time required by Rubinstein’s method. Finally, their
massive 3D grid-based technique introduces spatially related
computational difficulties in which the maximum number of

frames per sequence cannot exceed. On average, Rubinstein’s
method requires up to 50 h to denoise three-hundred 300 ×
300 frames, whereas the proposed technique requires only
67.26 s to denoise a video with these dimensions The sec-
ond assessment followed the approach presented in [41],
in which the performance of a given technique can be eval-
uated by measuring its impact when added to a conven-
tional foreground segmentation. To carry out this evaluation,
a group of challenged maritime video sequences in which
a significant component of the background (sea surface)
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FIGURE 8. Examples of foreground segmentation results of proposed (SVD+MD) method (1st column) and traditional SVD (2nd column) extracted
from the original frames (3rd column) in MVI-1470-VIS (a) and MVI-1471-VIS (b) videos. The groundtruth images are shown in 4th column.

TABLE 4. Estimated foreground segmentation results with and without
the proposed motion denoizing scheme.

was dynamically moving on a short-term basis while fore-
ground objects (boats) were present on a long-term basis was
selected. Theoretically, an efficient motion denoising tech-
nique should improve the results of foreground segmentation

because the majority of pixels that represent the sea surface
are usually detected as foreground objects. To carry out the
assessment, the SingaporeMaritime (SM) dataset [42], which
contains several challenged maritime videos, was used. The
provided ground truths of the moving objects were limited to
bounding boxes to enable the use of pixel-based ground truth
images, as in [43]. The motion denoising mechanism was
added to the framework of the best technique reported in [43]
to decompose the estimated foreground tensor into long- and
short-term moving objects. The extracted short-term mov-
ing objects were then integrated with the background ten-
sor to provide better representation of the dynamic nature
of the background. Table 4 lists the results obtained by
combining, respectively, the original SVD-based foreground
segmentation alone and a combination of the foreground
segmentation method and the proposed motion denoising
mechanism (SVD+MD). Both the numerical and the visual
results (see Fig.8) clearly show that the foreground segmen-
tation is significantly enhanced under the addition of the
proposed segmentation method, which increases the values
of both the precision and recall metrics relative to the original
SVD-based segmentation.

VII. CONCLUSION
In this paper, two SVD-based schemes for color magnifica-
tion and motion denoising were presented. These schemes
apply different processing operations to temporally process
the decomposed singular components of a given video to
achieve a desired processing result. To magnify the intensity
of color changes in a specific event, a particular set of left
singular vectors that carries sufficient color change informa-
tion can be selected, filtered, and rescaled accordingly. The
results of our color magnification scheme are robust to the
presence of several types of accompanying motion. Further
temporal filtering of the sparse components by removing
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their high-frequency components enables the elimination of
short-term events and the preservation of long-term events.
The global nature of the proposed scheme in terms of the
spatiotemporal slicing process applied to video segments
results in a significantly reduced computational complexity
relative to conventional techniques, which are mostly pixel-
based. This reduction in complexity arises from the fact that
processing the singular components (instead of pixel profiles)
representing a target event produces a desired result with
much less computational burden. For instance, the magnifica-
tion of the first singular left vector magnifies the intensities of
only those pixel profiles containing color changes. While the
problem of magnification remains one of the most important
issues in the field of video processing, motion magnifica-
tion is no less important. In future work, we will address
the motion magnification problem through the use of right
singular vectors to theoretically represent the displacements
of pixel intensities caused by moving objects.
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