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ABSTRACT The aim of this work is to explore and find new closed-form nematicon solutions for different
nonlinearities which occur in nematic liquid crystals (NLC) along with proposing optical system application
that utilizes NLC nonlinearities. In particular, Lie point symmetry method is employed to scrupulously
inspect and acquire solutions for some interesting cases of nonlinearities which have not been fully examined
in literature such as quadratic, generalized dual-power law, and eighth-order nonlinearities. A variety of
different nematicon dynamics are observed, including bright solitons, dark solitons and periodic behaviors.
The explicit solution form for each dynamical behavior is obtained and the solution dependence on model
parameters is investigated. The proposed optical system enables the flexible realization of different types
of NLC nonlinearities. To the best of our knowledge, this is the first time to attain explicit exact nontrivial
solutions for the particular cases of generalized dual-power law and eighth-order nonlinearities.

INDEX TERMS Jacobi elliptic function, lie point symmetry, liquid crystals, nematicons.

I. INTRODUCTION
Analytical techniques are employed as highly reliable tools to
scrutinize and thoroughly understand the possible qualitative
and quantitative dynamical behaviors of nonlinear systems.
These invaluable tools are successfully utilized in different
engineering, physical, biological and economical disciplines.
For example, theories of chaotic systems and applied bifur-
cation [1]–[8] are widely used in analyzing and interpreting
the dynamics of nonlinear models, opening the door for
many promising applications. Oscillatory behavior is also an
interesting dynamical behavior which has been thoroughly
investigated in literature (see [9]–[11] and references therein).
Furthermore, the Lie-symmetry analysis methods [12]–[20]
can be arguably considered the most powerful tool in solving
ordinary and partial differential equations.

Among the fascinating nonlinear phenomena which can
be observed in real world nonlinear systems, the soliton
is an interesting type of dynamical behaviors that attracted
much interest from scientists. It is defined as a nonlinear
localized wave, with self-reinforcing and permanent shape,
that propagates uniformly at a constant velocity. From a
physical point of view, solitons can be observed in nonlinear
optical fibers, biological models, metamaterials, plasma and
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nuclear physics, and many other fields (e.g., see [21]–[24]
and references therein).

From application perspectives, the liquid crystals (LCs)
have found its place in a plethora of technological applica-
tions such as electrooptic control, display and sensing devices
and biological applications [25], [26]. LCs are composed of
materials with an intermediate phase or mesophases between
the solid and fluid state. Their phases can be categorized
into two classes, namely, thermotropic, such as nematic LC,
and lyotropic LCs. The degree of material nonlinearities
determines the possibility of experimental observations of
optical solitons. NLCs exhibit a large optical nonlinearity
and support the existence of optical spatial solitons via
the nonlinearity of the director reorientation i.e. molecular
response to light intensity [25], [26].

Nematicons, the spatial solitary waves in NLC, have
witnessed a considerable interest in the last two decades.
Recently, NLC has been examined for several forms of
nonlinearities, e.g., quadratic power, parabolic, and dual-
power laws, see [27] and references therein. According to
the form of nonlinearity and the parameters of the model,
various types of solutions can be observed including bright,
dark and singular solitons. However, the nontrivial exact
solution corresponding to some types of nonlinearity, e.g.,
the dual-power nonlinearity, is yet to be determined [27].
On the other hand, only the quadratic nonlinearity naturally
exists in NLC according to the Kerr nonlinearity; that the
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FIGURE 1. Schematic of the proposed setup. The beam is split spectrally
using a wavelength (de)mux into a main (red arrows) and ancillary
(orange arrows) bands. The ancillary portion is divided into several arms
of heavily unbalanced lengths relative to each other and relative to the
arm of the main band, so that their recombination is an incoherent
process yielding intensity accumulation. Each arm includes a spatial mask
of a transmission pattern proportional to the slowly-varying transverse
profile of the field or higher orders of it. The intensity of the recombined
beams are represented by the functional F .

induced refractive-index change is proportional to the square
of the field. The nonlinearities other than the quadratic form,
although offers new promising operation-regions and control
of nematicons, seems hypothetical without a tackled practical
realization, which is to be carried out in this work.

In this paper, exact nematicon solutions along with the
practical realization for several forms of nonlinearity are
presented. We examine a nontrivial exact solution for the
dual-power nonlinearity case. Moreover, a solution for a new
form including eighth-order nonlinearity is introduced. More
importantly, a proposal for an optical system that allows
realizing all suggested nonlinearities is presented. Using Lie
point symmetry method [28]–[31], novel exact solutions in
the form of soliton and periodic solutions are obtained in
each case which are then joined to the mathematical model’s
parameters. The rest of the paper is organized as follows:
The mathematical model and its realization is introduced in
section 2. The application of Lie point symmetry method to
determine the explicit exact solutions for the mathematical
model at different cases of nonlinearities is presented in
section 3. Section 4 contains summary of results and the
conclusion.

II. PROPOSED SYSTEM AND MATHEMATICAL MODEL
Consider the optical setup in Fig. 1. A linearly polarized
beam of a transverse profile q(x, t) is split spectrally into two
portions; one of them has a spectral band above wavelength
λc while the band of the other is under λc. The two beam
portions are then of the same polarization and transverse
characteristics. As will be seen later, this spectral distinction
is essential to the filtration process by the end of the system.

One of the two bands (henceforth, termed ancillary band)
is split by a series of beam splitters into several portions; each
of them is spatially modulated by a transmission mask before
being incoherently recombined again with each other as well
as with the other band. To verify that the recombination

process is incoherent, the path differences between all
portions of the beam are made greater than the coherence
length of the used laser beam. In this sense, because the
relative phases of the recombined beams are statistically
random, no interference takes place and the recombination
process is described by intensity accumulation.

The transverse patterns of the transmission masks are
proportional to the transverse profile of the beam or higher
orders of it, which reads ψi(x, t) ∝ |q(x, t)|mi with an integer
mi ≥ 1. All of these incoherently superimposed components
are then delivered with extraordinary polarization to an
NLC to be able to collectively engineer the distribution of
the molecular orientations. After the NLC, similar spectral
splitting is used to pass only the main band after filtering
the ancillary band. Although, the splitting and recombination
processes can, in principle, be realized using any photonic
degree of freedom (DOF): polarization, spatial, or spectral,
only the splitting and recombination in the spectral DOF
can readily produce copropagating and copolarized beams to
excite the NLC.

The dynamics of nematicons for the main band, in the
dimensionless form, is then generally governed by the
following coupled system of equations [27]

iqt + aqxx + bθq = 0,

cθxx + λθ + αF(|q|2) = 0, (1)

where the second dependent variable θ (x, t) is the reorienta-
tion angle of the director of the NLCmolecules, a, b, c, α and
λ are all real-valued constants. The functional F is the type
of nonlinearity introduced by the incoherent superposition of
main and ancillary beams which will be studied for different
forms. While the nonlinear Schrodinger (NLS) equation
(appearing first in 1) describes the main-band wave, there
is a corresponding NLS equation for each ancillary portion
which we do not consider here. However, we notice that the
accumulative effect of the multiple incoherent beams appears
in the director reorientation equation (appearing second in 1).
In [32], Eq. (1) is solved using the tan (Φ/2)-expansion

method for the Kerr, parabolic and dual-power law nonlin-
earity forms. The obtained solutions are in the forms of tan
and exponential functions. Here, we will obtain the more
complete and general set of solutions in the forms of elliptic,
Weierstrass and hyperbolic functions.

In [33], Eq. (1) is solved using modified simple equation
method for Anti quadratic nonlinearity F(s) = b8/|q|2 +
b9|q| + b10|q|2 and triple power law F = b8|q|2 + b9|q|4 +
b10|q|6. The obtained solutions in case of anti quadratic
nonlinearity are in the form of exponential function. The
author fails to obtain the solutions in case of triple power
law, but here, we will successfully obtain exact solution in the
more general case of F = C3|q|2+C4|q|4+C5|q|6+C6|q|8.
Also, the cases of Kerr and parabolic law nonlinearity

in Eq.(1) is solved using extended sinh Gordon equation
expansion method in [34] and using Exp(ϕ(ξ ))-expansion
method in [35]. The obtained solutions are in the form of
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hyperbolic and exponential functions, and have constraints
on the parameters in Eq. (1). In this work, the complete and
exact set of solutions for this cases will be obtained without
imposing any constraints on the parameters of Eq. (1).

Now, let

q(x, t) = P(z)ei(κsx−ωst+σ ),

θ (x, t) = Q(z), (2)

where z = k(x − νt), κs denotes the wave number of the
soliton, ωs is the soliton frequency, σ is a constant phase and
k, ν are constants.

Substituting (2) into (1) and then equating real and
imaginary parts to zero, we obtain two equations. The
imaginary part gives

ν = 2aκs, (3)

whereas the real part gives

ak2P′′(z)− P(z)
(
aκ2s − ωs

)
+ bP(z)Q(z) = 0,

ck2Q′′(z)+ αF
(
P(z)2

)
+ λQ(z) = 0. (4)

In the next section, we will use Lie point symmetry method
to obtain the solutions of the system (4) for different forms of
the function F(P(z)2).

III. LIE POINT SYMMETRY METHOD
Lie point symmetry analysis method is a general tool that
can be used to find exact solutions of ordinary differential
equations (ODEs) or to reduce the number of the independent
variables of partial differential equations. The theory and
applications of Lie point symmetrymethod is well known and
can be found in [12]–[20].

Following [12], [13], the invariance condition of the system
(4) is given by

X [2](ak2P′′(z)− P(z)
(
aκ2s − ωs

)
+ bP(z)Q(z)) = 0,

X [2](ck2Q′′(z)+ αF
(
P(z)2

)
+ λQ(z)) = 0. (5)

where X [2] is the second extension of the infinitesimal
generator

X = ξ (z,P,Q)∂z + η(z,P,Q)∂P + τ (z,P,Q)∂Q (6)

which is given by

X [2]
= ξ∂z + η∂P + τ∂Q + η

[1]∂P′ + τ
[1]∂Q′ + η

[2]∂P′′

+ τ [2]∂Q′′ (7)

The definitions of the extended coefficients (η[1], τ [1], η[2],
τ [2]) are standard and well-known (see for example
[12], [13]). When we substitute (7) into (5) and taking (4) into
account, we obtain some determining equations. Solving the
obtained determining equations, we obtain the infinitesimals
ξ, η and τ as follows

ξ = 1, η = 0, τ = 0, (8)

Hence, the Lie point symmetry algebra is spanned by

X = ∂z (9)

The canonical variables associated to the generator (9) are
determined as given in [12], [13], and [20]

r = P(z), u(r) = Q(z), V (r) = z (10)

and they can be prolonged to

V ′(r) =
1

P′(z)
, u′(r) =

Q′(z)
P′(z)

, V ′′(r) = −
P′′(z)
P′(z)3

,

u′′(r) =
P′(z)Q′′(z)− P′′(z)Q′(z)

P′(z)3
. (11)

Substituting (10) and (11) into (4), we obtain

ak2V ′′(r)+ r
(
aκ2s − bu(r)− ωs

)
V ′(r)3 = 0,

ck2
(
u′′(r)V ′(r)− u′(r)V ′′(r)

)
+

(
αF

(
r2
)
+ λu(r)

)
V ′(r)3 = 0. (12)

Let

V ′(r) =
1
√
J (r)

, (13)

hence the system (12) becomes

−ak2J ′(r)+ 2r
(
aκ2s − ωs

)
− 2bru(r) = 0,

ck2
(
J ′(r)u′(r)+ 2J (r)u′′(r)

)
+ 2αF

(
r2
)
+ 2λu(r) = 0.

(14)

Now, different forms of nonlinearities of F
(
r2
)
will be

considered in the following subsections.

A. SOLUTION OF QUADRATIC NONLINEARITY FORM OF F
The quadratic nonlinearity function is given by [27]

F
(
r2
)
= γ r2,

where γ is a constant. In this case, there is no ancillary beams
in the optical setup in Fig. 1 and the beam is directly delivered
to the NLC. Now, system (14) becomes

−ak2J ′(r)+ 2r
(
aκ2s − ωs

)
− 2bru(r) = 0,

ck2
(
J ′(r)u′(r)+ 2J (r)u′′(r)

)
+ 2αγ r2 + 2λu(r) = 0. (15)

System (15) has the following solutions

J (r) = γ1 −
λ

ck2
r2 +

2
√
αbγ

3
√
ack2

r3, (16)

u (r) = −
√
αγ a
√
bc

r, (17)

where γ1 is a constant andωs = aλ
c +aκ

2
s . From (10-11), (13)

and (16-17), we can obtain

P′(z)2 =
2
√
γαb

3
√
ack2

P(z)3 −
λ

ck2
P(z)2 + γ1, (18)

Q (z) = −
√
αγ a
√
bc

P(z). (19)
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Then Eq. (18) has the solution [16], [28]

P (z) =
6
√
ack2
√
αbγ

(
λ

12ck2
+ ℘(C + z; g2, g3)

)
, (20)

where ℘(C + z; g2, g3) is Weierstrass elliptic function, C is a
constant,

g2 =
λ2

12 c2 k4
, g3 =

λ3

216 c3 k6
−
αbγ γ1
36 ack4

.

Substituting from (20) into (19), we obtain

Q (z) = −
aλ
2bc
−

6ak2

b
℘(C + z; g2, g3). (21)

From (20) and (2) it implies that

q(x, t) =
6
√
ack2
√
αbγ

(
λ

12ck2
+ ℘(C + z; g2, g3)

)
× ei(κsx−ωst+σ ). (22)

and

|q| =
6
√
ack2
√
αbγ

∣∣∣∣ λ

12ck2
+ ℘(C + z; g2, g3)

∣∣∣∣ . (23)

For γ1 = 2 adλ2
αbcγ and k =

√
λ

√
6 cd

, Eq. (23) can be rewritten
in the form [28]

|q| =
√
a

2
√
αbc

∣∣∣∣ λγ
∣∣∣∣
∣∣∣∣∣3 coth2

(
C0+

1
2

√
λ

c
(x − 2aκst)

)
−1

∣∣∣∣∣ ,
(24)

where C0 and d are constants.
The solution (24) can be classified as follows:

1) CASE 1
For λc > 0 and C0 = 0, we obtain singular soliton solution.

For example, for λ = a = b = c = γ = α = κs = 1,
we get Fig.2 (a).

2) CASE 2
For λc < 0 and C0 = 0, we obtain singular periodic solution.

|q| =
√
a

2
√
αbc

∣∣∣∣ λγ
∣∣∣∣
∣∣∣∣∣3 cot2

(
1
2

√
−λ

c
(x − 2aκst)

)
+ 1

∣∣∣∣∣ .
For example, for a = b = c = γ = α = κs = 1 and

λ = −1, we obtain Fig.2 (b).

3) CASE 3
For λc > 0 and C0 = ıπ/2, we obtain the soliton solution

|q| =
√
a

2
√
αbc

∣∣∣∣ λγ
∣∣∣∣
∣∣∣∣∣3 tanh2

(
1
2

√
λ

c
(x − 2aκst)

)
− 1

∣∣∣∣∣ .
For example, for λ = a = b = c = γ = α = κs = 1,

we get Fig.2 (c).

FIGURE 2. Examples of solutions obtained from first form of
F (|q|2) = γ |q|2 at (a) λ = a = b = c = γ = α = κs = 1,
(b) a = b = c = γ = α = κs = 1 and λ = −1,
(c) λ = a = b = c = γ = α = κs = 1 and (d) a = b = c = κs = γ = α = 1 and
λ = −1.

4) CASE 4
For λ

c < 0 and C0 = ıπ/2, we obtain singular periodic
solution

|q| =
√
a

2
√
αbc

∣∣∣∣ λγ
∣∣∣∣
∣∣∣∣∣3 tan2

(
1
2

√
−λ

c
(x − 2aκst)

)
+ 1

∣∣∣∣∣ .
For example, for a = b = c = κs = γ = α = 1 and

λ = −1, we attain Fig.2 (d).
Figure 2 shows soliton solution and singular periodic and

soliton solutions of (1) which are obtained in case of the
quadratic form of F(|q|2).
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B. SOLUTION OF DUAL-POWER NONLINEARITY
FORM OF F
The nonlinear function (dual-power nonlinearity) is given
by [27]

F
(
r2
)
= C1 r2 n + C2 r4 n,

where C1, C2 and n are constants. Although, this form can be
realized by the optical setup in Fig. 1 only for n = 1, we are
interested here to solve system (14) for the hypothetical case
with arbitrary value n. The system (14) becomes

−ak2J ′(r)+ 2r
(
aκ2s − ωs

)
− 2bru(r) = 0,

ck2
(
J ′(r)u′(r)+ 2J (r)u′′(r)

)
+ 2α

(
C1r2n + C2r4n

)
+ 2λu(r) = 0. (25)

The solution of system (25) can be expressed as

J (r) = −Ar2n+2 + Br2, (26)

u(r) =
a
b
Ak2(n+ 1)r2n, (27)

where

A =
1
k2 n

√
αbC2

6 ac(n+ 1)
,

B =
−3 AC1

2 C2
−

λ

4 ck2 n2
,

ωs = aκ2s − aBk
2.

Using (10-11) and (13), Eq. (26) and Eq. (27) become

P′(z)2 = −AP(z)2n+2 + BP(z)2, (28)

Q(z) =
a
b
Ak2(n+ 1)P(z)2n. (29)

It can be verified that Eq.(28) has the following solution

P(z) =
(√
βsech

(√
Bnz+ c3

))
1/n, (30)

where c3 is an arbitrary constant and β = −λ

4 Ack2 n2
−

3 C1
2 C2

.
Substituting (30) into (29), we obtain

Q(z) =
a
b
Aβk2(n+ 1)sech2

(√
Bnz+ c3

)
. (31)

Also, substituting (30) into (2) to get

q(x, t) =
(√
βsech

(√
Bnz+ c3

))
1/nei(κx−ωt+σ ). (32)

Taking the absolute value, we obtain

|q| =
∣∣∣√βsech (√Bnk (x − 2aκst)+ c3

)∣∣∣ 1/n. (33)

Now, the solution (33) can be classified as follows:

1) CASE 1
For n > 0 and B > 0, we obtain bright solitons solutions.
For example, for n = β = 1, B = k = a = κs = 1 and

c3 = 0, we can procure Fig.3 (a).

FIGURE 3. Examples of solutions obtained from second form of
F (|q|2) = C1|q|2n + C2|q|4n at (a) n = β = 1, B = k = a = κs = 1 and
c3 = 0, (b) n = 1, β = 1 and B = k = a = κs = 1,
(c) n = β = k = a = κs = 1, B = −1 and c4 = 0, and
(d) n = −0.5,B = −1, β = k = a = κs = 1 and c4 = 0.

2) CASE 2
For n > 0 and B > 0 and c3 = iπ

2 , we obtain singular solitons
solutions

|q| =
∣∣∣√βcsch (√Bnk (x − 2aκst)

)∣∣∣1/n .
For example, taking n = 1, β = 1 and

B = k = a = κs = 1, Fig.3 (b) is acquired.

3) CASE 3
For n > 0 and B < 0, we obtain singular periodic solutions

|q| =
∣∣∣√β sec (√−Bnk (x − 2aκst)+ c4

)∣∣∣1/n , (34)
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where, c4 is a constant. For example, taking n = β = k =
a = κs = 1, B = −1 and c4 = 0, Fig.3 (c) is obtained.

4) CASE 4
For n < 0 and B < 0, we obtain periodic solutions

|q| =
∣∣∣√β cos (√−Bnk (x − 2aκst)+ c4

)∣∣∣−1/n .
For example, taking n = −0.5,B = −1, β = k = a =

κs = 1 and c4 = 0, we get Fig.3 (d)
Figure 3 depicts bright, singular soliton, periodic and

singular periodic solutions of (1) which are obtained in case
of the second form of F(|q|2).

C. SOLUTION OF THIRD NONLINEARITY FORM OF F
(

r2
)

Assume that the nonlinear function takes the form

F
(
r2
)
= C6r8 + C5r6 + C4r4 + C3r2, (35)

whereC3,C4,C5 andC6 are constants. The realization of this
case requires the ancillary wave to be split into three portions
that pass masks of transmissions proportional to |q(x, t)|,
|q(x, t)|2, and |q(x, t)|3 with respective amplitudes

√
C4,
√
C5

and
√
C6. Hence, the system (14) becomes

−ak2J ′(r)+ 2r
(
aκ2s − ωs

)
− 2bru(r) = 0,

ck2
(
J ′(r)u′(r)+ 2J (r)u′′(r)

)
+ 2α

(
C6r8 + C5r6 + C4r4 + C3r2

)
+ 2λu(r) = 0. (36)

It can be demonstrated that system (36) has the solution

J (r) = A4r6 + A3r4 + A2r2 + A1 (37)

u(r) =
−aA2k2 + aκ2s − ωs

b
−

2a
b
A3k2r2 −

3a
b
A4k2r4,

(38)

where

A1 =

(
−162C3

5 + 1083C4C6C5 − 6859C3C2
6

)
20577C5/2

6 k2

√
αb
2ac

−
3C5λ

76cC6k2
,

A2 =

(
54C2

5 − 361C4C6
)

1444C3/2
6 k2

√
αb
2ac
−

λ

16ck2
,

A3 =
−3C5

19
√
C6k2

√
αb
2ac

,

A4 = −

√
C6

6k2

√
αb
2ac

,

ωs =
a
(
361C4C6 − 90C2

5

)
1444C3/2

6

√
αb
2ac
+
a
(
16cκ2s + λ

)
16c

= −

(
162C3

5 − 1083C4C6C5 + 6859C3C2
6

)
2αbC5

130321C3
6λ

.

(39)

Using (10), (11) and (13), Eq.(37) and Eq. (38) become

P′(z)2 = A4P(z)6 + A3P(z)4 + A2P(z)2 + A1, (40)

FIGURE 4. Examples of first and second groups of solutions result from
the third form of F

(
|q|2

)
= C6|q|8 + C5|q|6 + C4|q|4 + C3|q|2 exist for

(a) κs = k = a = 1, (b) m = 0.5 and κs = k = a = 1, (c) κs = k = a = 1 and
(d) κs = k = a = 1.

Q(z) =
−aA2k2 + aκ2s − ωs

b
−

2a
b
A3k2P(z)2

−
3a
b
A4k2P(z)4. (41)

The first equation, i.e., Eq. (40), has many solutions,
see [29]–[31], which are investigated in the following
subsections

1) THE FIRST GROUP OF SOLUTIONS
The first group of solutions is

P(z) =
√
1+ cn(z,m), (42)
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where cn is Jacobi elliptic cosine function and m is its
modulus. Solution (42) is satisfied when

C3 =
ak2m2

2αb

(
4λ− ck2

(
16m2

+ 13
))
,

C4 =
3ak2m2

4αb

(
4ck2

(
8m2
+ 1

)
− λ

)
,

C5 =
−19ack4m4

αb
,

C6 =
9ack4m4

2αb
,

ωs = aκ2s + ak
2m2
+
ak2

4
−

2ack4m2

λ
.

Substituting from (42) into (2), we have

q(x, t) =
√
1+ cn(k (x − 2aκst) ,m)ei(κsx−ωst+σ ). (43)

Taking the absolute value to get

|q| =
√
1+ cn(k (x − 2aκst) ,m). (44)

Now we investigate the following cases of solution (44):

a: CASE 1
When m = 1, solution (44) degenerates to

|q| =
√
sech(k (x − 2aκst))+ 1. (45)

which is bright soliton solution of (1). For example, for
κs = k = a = 1, we obtain Fig. 4 (a).

b: CASE 2
when m 6= 1, solution (44) becomes periodic solution. For
example when m = 0.5 and κs = k = a = 1, we get the
periodic solution illustrated in Fig.4 (b).

2) THE SECOND GROUP OF SOLUTIONS
The second group of solutions can be expressed as

P(z) =
1√

cn(z,m)2 + 1
, (46)

Solution (46) is satisfied when

C3 =
−2ak2

αb

(
4 ck2

(
58 m4

− 32 m2
+ 3
)
+ λ

(
8 m2
− 3

))
,

C4 =
6ak2

αb

(
2 ck2

(
144 m4

− 104 m2
+ 17

)
+λ

(
2 m2
− 1
))
,

C5 =
−152 ack4

αb

(
16 m4

− 14 m2
+ 3

)
,

C6 =
288 ack4

αb

(
1− 2 m2

)2
,

ωs =
a
λ

(
4 ck4 m2

(
3− 8 m2

)
+ λ

(
κ2s + k

2
(
1− 5 m2

)))
.

Substituting from (46) into (2), we can secure

q(x, t) =
1√

cn(z,m)2 + 1
ei(κsx−ωst+σ ). (47)

After taking the absolute value it yields

|q| =
1√

cn(k (x − 2aκst) ,m)2 + 1
. (48)

Now, we will consider some cases for solution (46).

a: CASE 1
When m = 1, solution (48) degenerates to

|q| =
1√

sech2(k (x − 2aκst))+ 1
. (49)

which is a dark soliton solution of (1). For example, for
κs = k = a = 1, we obtain Fig. 4 (c).

b: CASE 2
When m = 0, solution (48) degenerates to

|q| =
1√

cos2(k (x − 2aκst))+ 1
. (50)

which represents a periodic solution of (1). For example, for
κs = k = a = 1, we obtain Fig. 4 (d).
Fig. 4 shows the dark and bright solitons solutions and

periodic solutions which are obtained in the cases of third
form of F .

IV. CONCLUSION
The dynamics of nematic liquid crystals have been scru-
tinized for new distinct intrinsic nonlinearities. Using the
travelling wave transformation (2), the nonlinear second
order system (1) is transformed into the second order system
(4). Therefore, we use Lie symmetry method to obtain
some new exact traveling wave solutions of Eq. (1). Several
kinds of new solutions have been identified for the cases
nonlinearities, which involve quadratic, generalized dual-
power law and eighth order power. These kinds involve
periodic solutions, bright solitons, dark solitons and singular
solitons. Also, some new doubly periodic solutions in the
form of Jacobi elliptic functions and Weierstrass elliptic
function are obtained in the two cases of quadratic and eighth
order nonlinearities. The Lie point symmetry method was
used efficiently to derive doubly periodic solutions of the
problem. The work justified the reliability of the Lie point
symmetry method in handling identical problems. The future
work can include applications the solution technique in this
work to the more realistic 2D and 3D structures of liquid
crystals. Moreover, the occurrence and stability of oscillatory
behaviors in this model can be examined.
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