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ABSTRACT Federated learning (FL) is the up-to-date approach for privacy constraints Internet of
Things (IoT) applications in next-generation mobile network (NGMN), 5 generation (5G), and 6™
generation (6G), respectively. Due to 5G/6G is based on new radio (NR) technology, the multiple-input
and multiple-output (MIMO) of radio services for heterogeneous IoT devices have been performed. The
autonomous resource allocation and the intelligent quality of service class identity (IQCI) in mobile networks
based on FL systems are obligated to meet the requirements of privacy constraints of IoT applications.
In massive FL communications, the heterogeneous local devices propagate their local models and parameters
over 5SG/6G networks to the aggregation servers in edge cloud areas. Therefore, the assurance of network
reliability is compulsory to facilitate end-to-end (E2E) reliability of FL communications and provide the
satisfaction of model decisions. This paper proposed an intelligent lightweight scheme based on the reference
software-defined networking (SDN) architecture to handle the massive FL communications between clients
and aggregators to meet the mentioned perspectives. The handling method adjusts the model parameters and
batches size of the individual client to reflect the apparent network conditions classified by the k-nearest
neighbor (KNN) algorithm. The proposed system showed notable experimented metrics, including the E2E

FL communication latency, throughput, system reliability, and model accuracy.

INDEX TERMS
software-defined network.

I. INTRODUCTION

A. BACKGROUND

Mobile services have become the over-the-top (OTT) appli-
cation in the current mobile network. The new radio (NR)
enhances the future radio stations and strengthens radio
power with the millimeter and micrometer wavelength tech-
nologies. Network generation mobile network (NGMN)
demonstrates many modernities of opportunity and challenge
issues in a variety of applications, including Internet of
Vehicle (IoT), intelligent wireless sensor networks (WSN),
wireless body area network (WBAN), autonomous Internet of
Things (AloT), etc. [1]-[3]. The aforementioned applications
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Big data, federated learning, massive Internet of Things, machine learning,

will generate big data in 5G/6G areas. The critical cloud
infrastructures, services, and platforms of mobile cloud com-
puting (MCC) are migrated to a local cloud, namely mobile
edge computing (MEC) [4], [5]. MEC is the crucial enabler
of technologies for network slicing (NS) and local computing
resource for mobile user services.

Moreover, network function virtualization (NFV),
software-defined networking (SDN), and machine learn-
ing (ML) algorithms share the complementary to enable
intent-based edge cloud service and intelligent edge
clouds [6]. ML algorithms play an essential function for
edge computing in terms of content-based caching, radio
resource classification, management, and orchestration, edge
network resources optimization, and performs autonomous
handling for big data network environments. It is also
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critical for next-generation self-organizing networking
(SON) and efficient resource configuration for heterogeneous
user services. However, due to the privacy constraint of
user data, the applied ML algorithms suffer from many
challenges since they require computation in a distributed
cloud [7]. User data privacy is the core challenge among
the other suffering, including model limitation, training time,
limitation of computation resource, and model reliability.
Federated learning (FL) systems are appropriate for massive
user data, can cope with the challenges of data privacy since
the user data will not be shared with the distributed or third
party [8]-[10]. The training of the local data set of FL. models
will perform on the local device, while each client has its
model to train its dataset. The clients distribute only their
local model and model parameters to the aggregation server to
define a global model. In the HetloT environments, big data
will be in local areas since the client has computing resource
limitations to train the model. Thus, partial training in the
local model is required to overcome the overloading of com-
puting resources. Moreover, the radio network reliability will
improve influent FL model reliability, while the lower failure
in communications network will dramatically lessening the
accuracy of the global model [11]. This paper proposed
an intelligent resource allocation based on a lightweight
ML algorithm, namely k-nearest neighbor (KNN).
KNN performs classification tasks to identify communica-
tion gateways statuses in congested situations, While the
SDN controller utilized the classified metrics to determine
forwarding paths.

B. CONTRIBUTIONS
In this paper, we propose a lightweight approach for effec-
tive resource allocation to enhance the reliability of the
FL model in big data IoT communication networks. The
proposed scheme guarantees E2E communication reliabil-
ity for model transferring between clients and aggregation
servers. In multiple aggregation servers and future edge cloud
systems, the resource limitation problem can occur during
massive services will be launched to cope with the gigantic
user requests. MEC server will slice the physical resource into
multiple virtual machines based on NFV architecture. Every
aggregation server has a dedicated computing resource that
requires monitoring and adjusting from the SDN controller
in terms of resource management and orchestration. While
the virtual computing will attach with the NR stations for
radio service operations, the failures of model transferring
can occur whenever radio gateway and attached MEC server
resources are overloaded operations. The main contributions
of the paper have presented as follows:
1) Global network status monitoring by the monitoring
module provides the global view of the SDN controller.
The MEC server was proposed for storing the gathered
radio gateway statuses for processing. Furthermore,
the collected network statuses turn to the classification
phase for distinguishing distinct conditions of the serv-
ing gateways, which is essential for handling processes
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of the network resources. An integrated lightweight ML
with SDN controller to implement network configu-
ration rules for reliable FL. models communication.
The model owner selects the local models partially and
according to the implemented policy of the controller.

2) Balancing the models transferring between the partici-
pant devices and model owner servers (MEC servers):
the server and client send model updates according to
the network configuration role, the adjustment will be
applied in any fluctuations situation network.

3) The forwarding rules of the SDN controller per-
form fault tolerance and Load-balancing techniques.
SDN controller determines the feasible servers and
updates the forwarding flow for the incoming requests.
In addition, intelligent resource allocation establishes
the cost-adoption loading-balancing that assigns the
appropriate tasks to the serving gateways according to
the existed resources.

4) We provide the system evaluations regarding FL. con-
vergence accuracy in various network conditions
and E2E communication QoS metrics, including
latency, communication rate, and reliability.

Table 1 provides the acronyms and abbreviations for con-
venient reading. The rest of the paper is organized as fol-
lows. Firstly, section II, presenting the federated architecture
and its enabler technologies in big data IoT networks. And,
section III addresses the proposed architecture and network
handling scheme. Next, the system evaluations, results, and

TABLE 1. Acronyms and abbreviations.

Al Artificial intelligence

D2D Device-to-Device

FL Federated learning

DT Decision tree

E2E End-to-End

EPC Evolved packet core

HetloT Heterogenous IoT

IoT Internet of Things

KNN K-nearest neighbor

MCC Mobile cloud computing

MEC Mobile edge computing

ML Machine learning

mmWave Millimeter wave

NFV Network function virtualization
NGMN Next generation mobile network
NS Network slicing

AloT Autonomous Internet of Things
IoT Internet of Things

PGW Packet data gateway

QoE Quality of experience

QoS Quality of service

RAN Radio access network

RRH Radio remote head

SDN Software-defined networking
SGW Service gateway

SON Self-organizing networking
UHCR Ultra-high communication reliability
ULL Ultra-low latency

VNI Virtual network infrastructure
WSN Wireless sensor network

VOLUME 9, 2021



S. Math et al.: Reliable FL Systems Based on Intelligent Resource Sharing Scheme

IEEE Access

C

9
C=—— ) dp,Wf
Zieadbii=1 P

L
RS

— ()

c+1

TV Y &
|

(Averaging aggregation) ‘

Server (Global
model)

F

c+1

Round_Number

Partial Model

KEE RER .o

=
Centralized Federated Learning
(Local + Global Models)

HEE

Wypdate < 8lobal wyparameters — aAMSE (w,,

db,)

pdate;

‘ IoT user data/gateways statuses ‘

Decentralized Federated
Learning (Local model)

\ db=1[1,2, ...., c|

FIGURE 1. The common FL system in mobile communication in future integrated MEC server.

discussion are depicted in section IV. Finally, section V
presents the conclusion.

Il. SYSTEM ARCHITECTURE

In this section, the FL-based IoT network architecture and
enabler technologies including MEC, SDN, NS, and ML are
addressed in the following:

A. ENABLER TECHNOLOGIES FOR FL IN BIG DATA IoT

Sensor devices consist of insufficient computing resources
for local ML models training, while most wireless sensor
devices are targeted to sense and share lightweight infor-
mation over the networks. Currently, sensor devices rely
on high computing devices with sufficient storage and high
processing units, including wearable devices, mobile phones,
etc. [12], [13]. Due to the perspectives of NGMN objective
to deliver remote cloud (MCC) to distribute in RAN areas
to enable one user one cloud (OUOC) based on the MEC
server. Each wireless sensor device sends its information to
the local cloud. The big data will be generated by heteroge-
neous wireless sensor devices from vast applications, includ-
ing intelligent healthcare, safety system, smart city, AloT,
IoV, etc. The high computation resource at the distributed
cloud and also processing time will be raised according to the
volume of the data [14]. To cope with a large volume of user
data at the centralized cloud, decentralized computing based
on FL models introduces partial computing and parallelism
methods for processing in large-scale data environments.
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Since MEC servers can be modeled both centralized and
decentralized based on the FL architecture, reliable network
services are significantly obligated to ensure E2E commu-
nications between the local model and aggregation server
located in the distributed cloud areas [15]. Therefore, FL sys-
tems are suitable for current communication systems, espe-
cially in time constraints and privacy constraints applications.
Although FL delivers essential opportunities for real-time IoT
service, the local device has a small and specific dataset with
more minor complicated features required to perform data
cleansing and filtering [16]. At the same time, the unfeatured
sensor information presents the core challenge for model
accuracy and processing time that suffers from the critical
application seeking ultra-low latency (ULL) for E2E com-
munications. Moreover, the slicing of model communica-
tion between the local devices and aggregate servers will be
meaningful for controlling the model transferring on the net-
work. To achieve the model management and adjust the com-
munication resources according to the actual radio network
conditions, the complementary SDN and ML algorithms for
implementing rules configuration on network resources are
compulsory [17].

B. IoT ARCHITECTURE BASED ON FL

As shown in Fig. 1, the FL-based architecture for big data IoT
comprises three essential layers, the IoT user layer, network
layer, and aggregation layer. These three layers communicate
with each other; the model reliability of FL systems and
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network QoS will rely upon each layer. The reliability and
delay minimization are significantly considered crucial QoS
aspects of each layer for E2E model QoS assurance. At the
local device (IoT layer), the local client has different data
features, different applications, and required various network
resources from the network layer depending on its applica-
tions. Since the lightweight control protocols are suitable for
real-time communications, the heterogeneous IoT applica-
tions obligate NS approaches to minimize the complicated
system and user data, minimizing the operation time [18].
The MEC servers will place in fronthaul areas for local
resources perspectives [19]. FL will take the opportunity for
multiple aggregation server deployments based on the offered
MEC servers.

Furthermore, the synchronizing servers will handle the
mobility resources, which is essential for mobile applications
and autonomous IoT applications required for resource han-
dover to the next MEC server in charge. The failure at the
handover processes always suffers the communication QoS in
the mobile networks. Especially in the multiple aggregation
servers, the clients attempt to select the optimal server for
transferring its model update [20]. The failures of updated
parameters occur during sending in the networks while insuf-
ficient radio resources and unavailable aggregation servers
fail to respond, as illustrated in Fig. 2. The radio inter-
faces between client and radio remote head (RRH) require
the optimal scheduling method based on specific service
requirements. The optimal radio selections based on intelli-
gent consideration enhance the model QoS. In the fronthaul
communications, frame alignment processes, radio alloca-
tion, channel maintenance, and service mapping will produce
communication delay and cause radio access failure in mas-
sive client attempts.

On the other hand, the network and aggregation layers
require the awareness of the traffic behaviors for efficient
traffic engineering methods and the apparent aggregation
resources necessary to be classified based on the ML learn-
ing algorithms. The identified traffic types and existing
aggregation resources will be the key parameters contribut-
ing to the centralized handling of the E2E communication
of the FL systems. The entire computing times affect the
FL system and its user QoS aspect; however, the FL model
reliability mainly relies on communication delays. The joined
network failures occur when the increased time delay and the
local requests are over control.

The local cloud has been attached to the IoT gateways in
the federated system to store the sensed data from various
sensor devices. Local training is conducted by splitting the
local dataset among each client into mini-batches of size db
which are included into the set ¢ = {dby, dby, ..., db.}. The
local trained and updated models are sent to the edge servers
for aggregation and modeled as follows.

= globalwgparameters-aAMSE(W ;dbe) (1)

¢
Wupa’ate update>

While wupdme is the model parameter update from local

clients {w! }, local data mini-batches

we
update’ update’ ©** Yupdate
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FIGURE 2. The failure of FL model communication (training failure,
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of total client c¢{dby, db>, ..., db.}, and MSE is the Mean
Squared Error as the loss function for deep neural network
(DNN). The local client transmits the updated model wup date
over the wireless networks to aggregation server, which is
supposed to locate in edge areas. The global server collects
the up-to-date model wup Jate 1TOM Variety aggregation servers
for model summation. The global server will send the average
global models to the local client. The global model can be
modeled as follows.

1 N
A db-W! 2
e ZieN dbc Zi:l o ( )

where the W/ is the updated model in each time 7. Wct;‘H is the
global update summation at time ¢ + 1, the increasing number
of round trip time (RTT) communications between local to
the server will boost the global training accuracy.

lIl. PROPOSED SYSTEM

This section presents the proposed optimal gateways selec-
tion and resource adjustment between client and service com-
munication on the network interfaces.

A. RESOURCE ADJUSTMENT

Fig. 3 demonstrates the proposed network architecture, which
is composed of CP and DP. Besides the monitoring and
classification network statuses, the CP will manipulate the
flow configuration. So, the forwarding flow will be made
based on the outputs of the inspected network interfaces. The
forwarding flow has to be updated whenever the networks
and aggregation server statuses have changed. The CP and
DP separate works that benefit from the CP resource offload-
ing times, learning, and forwarding flows configuration. The
updated periods are not influent real-time communication at
the DP. At the same time, the MEC servers are integrated at
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the centralized controller for global storage of the DP network
data.

Moreover, MEC can be applied to store the massive for-
warding flows which the SDN controller has configured. The
flow updates are based on the inspected network resources.
Therefore, if the incoming traffic is stable, the forwarding
rules will also keep the stability without updating commu-
nication paths. The DP of the edge network consists of local
client, network, and aggregation server, while the CP com-
poses of four main modules, including monitoring, classi-
fication, resource adjustment, and configuration modules as
explained in the following:

1) The controller server has a global monitoring mod-
ule conscious of the oscillated network loading (local
device/model, network resources, and aggregation
servers interfaces). The information updates of local
client w;p date>dbc (€.g., update parameters, device sta-
tuses, etc.) and network resources with k gateways
(the network interface between client to RRH and
between RRH to aggregation server, and vice versa)
are essential to be monitored. In addition, the changes
are caching for performing centralized computing. The
monitoring of the interface between RRH and the
aggregation server will perceive real-time interface
conditions. The client sends the updated models and the
updated parameters db, to the aggregator and aggregate
server will return the updated global model w to the
local, and uplink and downlink statuses are monitored.
Additionally, the model sharing between client and
server was adjusted, as shown in Algorithm 1.

2) The cached information will be utilized for the classi-
fication processes to differentiate the statuses of each
entity of the DP. In this paper, the classification mod-
ule was applied to classify the network resources in
both interfaces, client to RRH and RRH to aggregation
servers. Furthermore, the KNN was utilized to perform
the classification of the individual RRH from both
interfaces, as mentioned earlier. This module returns
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Algorithm 1 Pseudocode for Training Local, Global Model,
and the Gateway Adjustment
Require: Data = {x1, x3, ... X, ym} denotes n of
general features as X with y,, target feature in the global
dataset, and the network resource statuses classification ¢y
on k gateways.
Ensure: Optimal global learning model to classify into
targets of Y = {y1, y2, ¥3 . ...y} associating with k
gateways

1:  Initialize the synchronous c, nepoch, Wupdare parameters,
a, wg for [Global Server]
2:  [Local Client c]
2: for each db. in (Data) do
3: Input o hyperparameter, c; network resource statues
on k gateways, wg, and Wypqare parameters
4: Initialize empty gw 4y list for local
5: Define class lowDNN(self, c, wg):
6: for each client in ¢ do
7: wflp Jate = globalwgparameters—
o AMSE(prdm; db.)
8: end for
9: for each epoch in range(ngpocy) do
10: if random (0, k) gateway has bad condition cg
then
11: Restrict on model updating w,pgaze On
lowDNN()
12: Append the gateway to gw,,,;,, and suggest
gateway not in gw,, ., list
13: pass
14: else
15: Increase model updating wypare t0 maximum
w;p date ©N JOWDNN()
16: Update selected gateway resource condition
¢y for local experience
17: end if
18: end for
19: end for
20: [Global Server]
21: Define class highDNN():
22: for each epoch in range(ngpocn) do
23: Import lowDNN() from c clients viak gateways
24: Aggregating the model w, for next epoch by using
FedAvg algorithm [21]
25: Update gateway resource condition ¢ after
received
26: for each gateway in range(k) do
27: Update gw,,,/4, list for local by modifying
resource statuses
28: Update selected gateway resource condition
cy for global experiences
29: end for

30: end for

the inspected results of each interface representing
the network conditions. The inspected outcomes are
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Algorithm 2 Network Path Selections
[Input]
Network observations
Caching metrics pools

1 While communication is not terminated, do
2 Compare network observed conditions
3 If — Network stability = true, then

4 Selection of the cached metrics

5 Flow configuration

6 Else — Network fluctuation = true, then
7 Optimal path prediction

8 Flow configuration

9 End if

10 Update caching metrics

11 End while

essential for SDN controllers regarding local devices
gateways and optimal aggregation server selections.

3) The SDN controller selects the optimal gateway based
on inspected metrics. The gateway with high loading
metrics will be considered the high-risk gateway that
can cause network failure. The reliability gateways and
aggregation server will be considered on the available
resource with the possibility of providing low latency.
According to the adjustment policy, the matching mod-
ule will guarantee model communication based on the
throttling process as depicted in Algorithm 2.

Additionally, the client will be restricted from sending
updated information w;p Jate @nd its mini-batches. In the local
clients [Local Client c], the controller restricts the send-
ing update of the model parameter concerning the network
resource statuses. The throttling method reduces the lim-
ited network gateway and suggests an optimal gateway with
sufficient serving resources for carrying the model param-
eters. Furthermore, a network gateway will be configured
to increase the delivery ratio of local models (reduce the
restriction) whenever the gateway statuses are not under the
limited threshold. The classified network resources presented
particular gateway statuses and distinguished each gateway’s
capability, which is an effective utilization for resource con-
figuration from client to server and vice versa.

IV. SYSTEM EVALUATION

A. DATA AND SIMULATION ENVIRONMENTS

The utilizing data for model evaluation comprised two cate-
gories, E2E FL model reliability evaluation and network QoS
aspects. The opened dataset tff.simulation.datasets.emnist.
load_data() [22] are loaded from the federated EMNIST. The
EMNIST dataset was sliced to meet the number of clients for
testing by using the google platform. Each client has each
slice of the dataset (individual dataset) and training model,
and the aggregate server is utilized the FedAvg function
offered by TensorFlow Federated [22]. And network dataset
was generated by utilizing the python software program.
KNN was used to perform classification processes for the
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generated network gateways resources. The reliability of the
FL model was evaluated by utilizing FedAvg of Tensor-
Flow by google. And the network’s QoS evaluation system
was simulated by two different scenarios, including the con-
ventional scheme (random and equal-cost based methods)
and proposed network resources adjustment. ML algorithms’
training and testing model were conducted using the opened
ML library, sci-kit learn [23]. And the real-time network
simulation was conducted using the discrete network simula-
tion version 3 (NS3) [24]. MEC gateway configured default
priority first in first out (pFIFO) queue to buffer the incoming
traffic. The network resources are generated according to
4 RRH, 4 MEC gateways, 40 user devices, and 200 seconds
of simulation periods.

B. RESULTS AND DISCUSSION

In this section, the experimental results and discussion are
provided. The FL model reliability evaluations are compared
based on the vital QoS in terms of E2E packet lost ratio,
E2E communication reliability, average communication
throughput of the systems, and E2E communication jitters.
The simulated results are compared with the equal-cost, ran-
dom, and proposed algorithm. Due to the real-world network
environments, traffic handling is commonly based on random
handling. The incoming traffic can be selected as the serving
gateway aimlessly. So, the selection of inappropriate serving
gateways will be made. The optimal approaches for appro-
priate serving gateways selection are required to increase the
E2E network fault tolerance for enhancing communication
reliability. In real-world FL. model communications, massive
local devices in the networks consist of heterogeneous serv-
ing gateways with different capacities, including the server
busy, delay at each server, serving bandwidth, and other
conditions, based on the apparent environments. Each serving
gateway is required to handle the incoming traffic that is
adjusted with its capacity. Moreover, suppose the incoming
requests exceed the available serving capacity. In that case,
the incoming requests can be queued for an extended period,
and the local model will be dropped during the waiting times
are expired.

Four conditional simulations of the federated model exper-
iments are conducted to evaluate the system performances.
Cl1, C2, and C3 present the 50%, 30%, and 10% loss of
aggregation from clients, respectively, in ineffective network
resources handling. C4 denotes the optimal network adjust-
ment in the proposed model. C4 also presents the selected
gateway with appropriate network resources. Fig. 4 illus-
trates the summation of errors in four different conditions,
namely Loss-C1, Loss-C2, Loss-C3, and Loss-C4. The pro-
posed model presented in Loss-C4 by minimizing the loss
function’s metric through an efficient optimization method
with adequate aggregation capabilities, which outputs the
average reduction of 1.0723, 0.7243, and 0.4315 loss values
compared to Loss-C1, Loss-C2, and Loss-C3, respectively,
within 99 round communications for global model averaging
and aggregation. Fig. 5 presents the precision accuracy of
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the proposed model on Accuracy-C4 and other three experi-
mental scenarios, including Accuracy-C1, Accuracy-C2, and
Accuracy-C3, on conventional gateway selections. Accuracy
evaluation is a significant metric for performance analyt-
ics on ultra-reliable communication requirements. The pro-
posed scheme reached an accuracy of 99.6707%, which was
21.8689%, 14.4414%, and 11.9040%, 17.6995% higher than
Accuracy-C1, Accuracy-C2, and Accuracy-C3, respectively.
By determining the congestion circumstance critically and
selecting the gateway with efficient communication and com-
putation resources, the proposed scheme can significantly
advance promising ultra-reliable low-latency communica-
tion (URLLC) requirements. In each round of communica-
tion, a loss is measured through the backpropagation process
with mean squared error (MSE).

Fig. 6(a) compares the total packet drop ratio with different
schemes between the random handling method, equal-cost
load balancing, and the proposed algorithm. The proposed
scheme shows a remarkable outperformance compared to the
two conventional approaches. Based on the graphs, the pro-
posed scheme achieved the minimum packet drop ratio during
the communication. Therefore, the proposed scheme rep-
resentation of the model exchanges between the local and
global servers (E2E communication) can be adjusted and
reliable. For the conventional schemes, the equal-cost tech-
nique has lower packet drop ratios than the random method.
The equal-cost handling method provides the equal-cost
load balancing for traffic handling. The incoming traf-
fic will be divided equally for each network interface
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(e.g., RRH and aggregation server gateways), which gets the
exact incoming requests to be served. However, this method
can be suffered from inadequate gateway capacity with lim-
ited resources, which cannot handle the massive requests.
Then, the user requests will be discarded during under-control
periods.

Additionally, in a traditional network, the servers with
higher capacity will receive only a tiny amount of the
requests, while the remaining serving capacity will be unuti-
lized. The user requests possible select the unreliable gateway
with poor or high loading metrics for the random selection
method. When a vast amount of local clients send their update
models to the lowest capacity gateways, the packet will be
waiting in a queue that can be discarded when the waiting
period has expired. The poor optimal gateway selections will
increase the network failure ratio. Consequently, conven-
tional schemes are incompatible for future FL environments,
especially the FL systems for time constraint applications,
including ultra-high reliability communication and ultra-low
latency systems. The proposed scheme provides the opti-
mal distributed edge cloud gateways selection based on the
integration of ML algorithms with SDN controllers. Thus,
the recommendation based on the ML approach significantly
offered mechanisms to balance the network gateways in fluc-
tuation communication systems.

The proposed scheme outperformed the conventional
approaches in E2E communication reliability, as shown
in Fig. 6(b). The graphs show that the random and equal-
cost-based handling methods showed poor transmission reli-
ability, while the proposed scheme provided the highest E2E
reliable communication. IoT networks required efficient traf-
fic handling to improve the E2E QoS, especially communi-
cation reliability, which evolves with ubiquitous and other
lightweight sensor devices with limitations of capacity. Fur-
thermore, lightweight IoT systems communicate over the
UDP communication protocol, which has poor communica-
tion reliability. Hence, the proposed schemes can be meaning-
ful for lightweight IoT systems in enhancing communication
reliability.

Moreover, in the FL environments, the primary concern
is communication reliability since the global server aggre-
gates the average model based on the update parameters
from the local devices. In future edge network infrastructure,
the aggregation servers will be distributed in various RAN
areas and significantly obligated the reliable model with
global monitoring of the statuses for massive aggregation
servers. The URLLC is required to enhance the QoS and
QoE of real-time IoT communications. Regarding the drop
and delivery ratios demonstration in Figures 6(a) and 6(b),
the maximum number of received model updates and param-
eters from local clients occurred in the proposed scheme.
Since the proposed scheme enhances communication relia-
bility, the aggregation server can collect sufficient models
from various clients to establish a reliable global model with
satisfying accuracy. Based on the given graphs in Fig. 4,
the summation of training loss in each condition reflects
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FIGURE 6. The comparison of E2E communications QoS between proposed gateway resource adjustment and conventional schemes in terms of
packet drop ratio, delivery ratio, delay, and jitters are shown in (a), (b), (c), and (d), respectively. The proposed scheme was applied both at radio

and aggregation gateways.

the model drop ratio expressed in Fig. 6(a). Whenever the
local model is discarded in the communication, the insuf-
ficient accurate model will occur at aggregation servers.
At the same time, Fig. 6(b) reflects model accuracy expressed
in Fig. 5. The maximum E2E reliability of model communi-
cation between client and server brings the maximum model
accuracy and representing the model reliability. The ran-
dom and equal-cost-based gateways selection have the low-
est and second-lowest communication reliability (minimum
numbers of the receiving models, parameters, respectively),
representing the lower model accuracy in particular network
conditions.

In future FL communication systems, real-time IoT users
will suffer from the loading delay during MAC scheduling
in the radio networks. Consequently, to guarantee E2E QoS,
a real-time IoT network is required to handle both con-
gestions at radio gateways and MEC gateways. The pro-
posed scheme systematically supervises the massive traffic
to match the existing communication resource (RRH gate-
ways and MEC gateways). Fig. 6(c) illustrates that the pro-
posed method surpasses the random and equal-cost-based
approaches in E2E communication delay. However, IoT
communicates over 5G communications; the mission-critical
IoT applications will suffer from highly queuing peri-
ods at network interfaces that raise the network loading
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metrics and lead to failure transmission for time-critical
applications.

Furthermore, the gateway with high loading metrics is
highly vulnerable to fail the model exchange between client
and servers, especially in lightweight WSN devices, which is
a kind of resource constraint device that shares information
over unreliable transmission protocols. Hence, the ultimate
traffic adjustment for E2E networks and will be significant for
future HetloT applications. Regarding the proposed scheme
consists the tiniest drop ratio, the URLLC for lightweight
systems is performed. The E2E communication latency can
be lessened when the poor conditions at bottleneck areas
can be handled. Due to the limitation of radio resources
and edge gateways, the stability of the RAN environments
will be insufficient for massive IoT traffic. The proposed
scheme solved these significant issues, which relied on ML
algorithms for classifying DP resources and recommending
optimal gateway selection for serving the incoming traf-
fic according to identified network loading metrics. Conse-
quently, the E2E optimal resource utilization overcomes the
communication latency for both communication delay and
jitter, as elaborated in Fig. 6(c) and Fig. 6(d), respectively.

Typically, the communication throughput performances
rely on the communication delay. The average communica-
tion throughput is shown in Fig. 7, and the proposed scheme
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consists of higher potential in forwarding client models to
global servers. The proposed method offers a remarkable
outperformance compared to the conventional approaches.
Due to the optimal steering with the appropriate MEC gate-
way statuses, the fluctuation of improper resource comput-
ing was reduced. The conventional schemes were handling
the communication based on splitting the incoming requests
equally for each network gateway. As the illustrated results,
the proposed systems suited the adequate balance between
IoT requests and serving entities’ available resources; the
proposed scheme achieved QoS in E2E communications reli-
ability, delay, jitter, and throughput.

V. CONCLUSION

This paper presented an intelligent network resource adjust-
ment by integrating the SDN controller with a lightweight
ML algorithm to enhance E2E FL communication reli-
ability for massive real-time IoT applications in future
edge cloud servers. The proposed schemes deliver system-
atic resource adjustment and outperform the conventional
approaches in terms of crucial QoS aspects. According to the
communication gateways, the local client and its traffic
will be controlled to meet the network conditions. More-
over, the proposed scheme improves the main critical fac-
tors of user QoS in reducing E2E communication delays
and jitters, increasing communication reliability, and enhanc-
ing communication throughput; therefore, the stability of
the communication systems will be significantly improved.
These mentioned vital outcomes implied the reliability of the
E2E model in the massive FL clients. The paper is dedi-
cated to the lightweight methods which meet the perspective
of fronthaul MEC network infrastructure and real-time IoT
applications. The proposed scheme is mainly suitable for
lightweight computation systems that require short periods
of computation and resource-constrained systems. Future
research will integrate the autonomous SDN rules implemen-
tation for software-defined routing approaches based on the
network loading prediction to enhance model reliability for
federated mobility systems in big data-sharing networks.

REFERENCES

[1] “5G end-to-end architecture framework (phase-3),” NGMN Alliance,
White Paper, 2020. [Online]. Available: https://www.ngmn.org/wp-
content/uploads/201117-NGMN_E2EArchFramework_v4.31.pdf

[2] M. M. Algarni, A. Cherif, and E. Alkayal, “A survey of computa-
tional offloading in cloud/edge-based architectures: Strategies, optimiza-
tion models and challenges,” KSII Trans. Internet Inf. Syst., vol. 15, no. 3,
pp. 952-973, 2021, doi: 10.3837/tiis.2021.03.008.

VOLUME 9, 2021

[3]

[4]

[5]

[6]

[71

[8]

[91

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial
Internet of Things: Challenges, opportunities, and directions,” IEEE Trans.
Ind. Informat., vol. 14, no. 11, pp. 4724-4734, Nov. 2018.

N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450-465,
Feb. 2018.

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G network
edge cloud architecture and orchestration,” IEEE Commun. Surveys Tuts.,
vol. 19, no. 3, pp. 1657-1681, 3rd Quart., 2017.

P. Tam, S. Math, and S. Kim, “Intelligent massive traffic handling scheme
in 5G bottleneck backhaul networks,” KSII Trans. Internet Inf. Syst.,
vol. 15, no. 3, pp. 874-890, 2021, doi: 10.3837/tiis.2021.03.004.

A. H. Sodhro, S. Pirbhulal, and V. H. C. de Albuquerque, “Artificial
intelligence-driven mechanism for edge computing-based industrial appli-
cations,” IEEE Trans. Ind. Informat., vol. 15, no. 7, pp. 42354243,
Jul. 2019.

Y. Ye, S. Li, F. Liu, Y. Tang, and W. Hu, “EdgeFed: Optimized
federated learning based on edge computing,” [EEE Access, vol. 8,
pp. 209191-209198, 2020.

L. U. Khan, M. Alsenwi, I. Yaqoob, M. Imran, Z. Han, and C. S. Hong,
“Resource optimized federated learning-enabled cognitive Internet of
Things for smart industries,” IEEE Access, vol. 8, pp. 168854-168864,
2020.

X. Lu, Y. Liao, P. Lio, and P. Hui, ‘“‘Privacy-preserving asynchronous
federated learning mechanism for edge network computing,” IEEE Access,
vol. 8, pp. 48970-48981, 2020.

P. Shantharama, A. Thyagaturu, N. Karakoc, L. Ferrari, M. Reisslein,
and A. Scaglione, “LayBack: SDN management of multi-access edge
computing (MEC) for network access services and radio resource sharing,”
IEEE Access, vol. 6, pp. 57545-57561, 2018.

W. Saeed, Z. Ahmad, A. I. Jehangiri, N. Mohamed, and A. I. Umar, “A fault
tolerant data management scheme for healthcare Internet of Things in fog
computing,” KSII Trans. Internet Inf. Syst., vol. 15, no. 1, pp. 35-57, 2021,
doi: 10.3837/tiis.2021.01.003.

J. H. Kwak, “A study on the evolution of post-smartphone technologies in
the 5G technology environment,” KSII Trans. Internet Inf. Syst., vol. 14,
no. 4, pp. 1757-1772, 2020, doi: 10.3837/tiis.2020.04.019.

G. Harerimana, B. Jang, J. W. Kim, and H. K. Park, “Health big data
analytics: A technology survey,” IEEE Access, vol. 6, pp. 65661-65678,
2018, doi: 10.1109/ACCESS.2018.2878254.

O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, “Federated machine
learning: Survey, multi-level classification, desirable criteria and future
directions in communication and networking systems,” IEEE Commun.
Surveys Tuts., vol. 23, no. 2, pp. 1342-1397, 2nd Quart., 2021.

Q. Wu, K. He, and X. Chen, ‘“Personalized federated learning for intel-
ligent IoT applications: A cloud-edge based framework,” IEEE Open
J. Comput. Soc., vol. 1, pp. 35-44, 2020.

E. Kim and S. Kim, “An efficient software defined data transmission
scheme based on mobile edge computing for the massive IoT envi-
ronment,” KSII Trans. Internet Inf. Syst., vol. 12, no. 2, pp. 974-987,
2018.

L. U. Khan, I. Yaqoob, N. H. Tran, Z. Han, and C. S. Hong, “Network
slicing: Recent advances, taxonomy, requirements, and open research chal-
lenges,” IEEE Access, vol. 8, pp. 36009-36028, 2020.

Y. Zhang, X. Lan, J. Ren, and L. Cai, “Efficient computing resource
sharing for mobile edge-cloud computing networks,” IEEE/ACM Trans.
Netw., vol. 28, no. 3, pp. 1227-1240, Jun. 2020.

W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” [EEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2031-2063, 3rd Quart., 2020.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), vol. 54, 2017,
pp. 1273-1282.

M. Abadi et al., “Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems,” 2016, arXiv:1603.04467. [Online]. Available:
https://arxiv.org/abs/1603.04467

F. Pedregosa, “‘Scikit-learn: Machine learning in Python,” J. Mach. Learn.
Res., vol. 12, pp. 2825-2830, Nov. 2011.

G. F. Riley and T. R. Henderson, “The NS-3 network simulator,” in
Modeling and Tools for Network Simulation, K. Wehrle, M. Giines, and
J. Gross, Eds. Berlin, Germany: Springer, 2010.

108099


http://dx.doi.org/10.3837/tiis.2021.03.008
http://dx.doi.org/10.3837/tiis.2021.03.004
http://dx.doi.org/10.3837/tiis.2021.01.003
http://dx.doi.org/10.3837/tiis.2020.04.019
http://dx.doi.org/10.1109/ACCESS.2018.2878254

IEEE Access

S. Math et al.: Reliable FL Systems Based on Intelligent Resource Sharing Scheme

108100

SA MATH received the B.E. degree from the
Department of Telecommunication and Electronic
Engineering, Royal University of Phnom Penh,
Phnom Penh, Cambodia, in 2018. He is currently
pursuing the Ph.D. degree with the Department
of Software Convergence, Soonchunhyang Uni-
versity, Asan, Republic of Korea. His research
interests include 5G distributed, core networking,
the Internet of Things, quality of service, soft-
ware defined mobile edge computing, and machine
learning.

PROHIM TAM received the B.S. degree from
the Department of Management of Informa-
tion Systems, Paragon International University,
Cambodia, in 2019. He is currently pursuing
the Ph.D. degree with the Department of Soft-
ware Convergence, Soonchunhyang University,
Republic of Korea. His research interests include
future access networks, software-defined network-
ing, artificial intelligence, bigdata transmission,
mobile edge computing, and the Internet of
Things.

SEOKHOON KIM (Member, IEEE) received the
B.E. and Ph.D. degrees in computer engineering
from Kyunghee University, Republic of Korea,
in 2000 and 2004, respectively. From 2004 to
2006, he was with IPOne, Inc., Seoul, Repub-
lic of Korea, where he led various projects as a
Research Engineer. From 2006 to 2009, he was
a Research Engineer at Neowave, Inc., Anyang,
Republic of Korea, where he developed Mobile
WiMAX (IEEE 802.16) devices. He was an Assis-
tant Professor with the Department of Mobile Communications Engineering,
Changshin University, Changwon, Republic of Korea. Since March 2016,
he has been with the Department of Computer Software Engineering,
Soonchunhyang University, Asan, Republic of Korea, where he is currently
an Assistant Professor. His research interests include cloud and mobile
edge computing, the Internet of Things, heterogenous Internet of Things,
software-defined networking and network function virtualization, mobile
system and communications, and machine learning based on bigdata.

VOLUME 9, 2021



