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ABSTRACT Metaheuristic algorithms are constructed to solve optimization problems, but they can-
not solve all the problems with best solutions. This work proposes a novel self-adaptive metaheuristic
optimization algorithm, named Optimal Stochastic Process Optimizer (OSPO), which can solve different
kinds of optimization problems with promising performance. Specifically, OSPO regards the procedure
of optimization as a realization of stochastic process, and with the help of Subjective Probability Distri-
bution Function (SPDF) and Receding Sampling Strategy proposed in this paper, OSPO can control the
exploration-exploitation property online by the adaptive modification of the parameters in SPDF. This
adaptive exploration-exploitation property of OSPO contributes to dealing with different kinds of problems;
thus, it makes OSPO have the potential to solve at least a vast majority of optimization problems. The
proposed algorithm is first benchmarked on uni-modal, multi-modal and composite test functions both
in low and high dimensions. The results are verified by comparative studies with seven well-performed
metaheuristic algorithms. Then, 21 real-world optimization problems are used to further investigate the
effectiveness of OSPO. The winners of CEC2020 Competition on Real-World Single Objective Constrained
Optimization, SASS algorithm, sCMAgES algorithm, EnMODE algorithm and COLSHADE algorithm
are used as four comparative algorithms in real-world optimization problems. The analysis of simulations
demonstrates that OSPO is able to provide very competitive performance compared to the comparative meta-
heuristics both in benchmark functions and in real-world optimization problems; thus, the potential of OSPO
to solve at least a vast majority of optimization problems is verified. A corresponding MATLAB APP demo
is available on https://github.com/JiahongXu123/OSPO-algorithm.git.

INDEX TERMS Optimization, metaheuristic algorithm, benchmark, exploration, exploitation.

I. INTRODUCTION
Nature is the source of metaheuristic algorithms, and
researchers tend to mimic different creatures or natural
phenomena to get all kinds of metaheuristic algorithms to
solve various optimization problems. However, according to
‘‘No Free Lunch Theorem’’ [1], every metaheuristic algo-
rithm has its own advantages and limits in dealing with
different kinds of problems. Specifically, one metaheuristic
algorithm may perform well on some kinds of problems,
but its performance may be degraded when solving other
kinds of problems. Thus, for different optimization problems,
different types of metaheuristics are needed to obtain best
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solutions, and this is one of the underlying motivations for
researchers to create new metaheuristics.

Although researchers have put forward a number of novel
metaheuristics, there exists a problem as stated in [2], ‘‘A key
question naturally arises: Which is the best one to use?
Is there a universal tool that can be used to solve all or at
least a vast majority of optimization problems? The simple
truth is that there are no such algorithms.’’

The main motivation of this contribution is to propose a
self-adaptive metaheuristic algorithm which has the potential
‘‘to solve at least a vast majority of optimization problems’’
with promising performance.

There are two important characteristics in metaheuris-
tics influencing the performance of the optimization:
exploration and exploitation. And in this contribution,
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they are denoted as exploration-exploitation property for
brevity.

For metaheuristics that are imitations of nature, the
exploration-exploitation property can be regarded as a habit
of a species - one metaheuristic algorithm is one species,
and every species has its own habit. Accordingly, every
metaheuristic algorithm has its own exploration-exploitation
property which mimics a habit. In addition, each species
has its own habitats, and these habitats are suitable for its
living. Different kinds of problems play the role of different
habitats, and the metaheuristic algorithm can perform well on
specific problem if the habit and the habitat fits, like a duck
to water. Furthermore, a species can change its habit in order
to survive in a new habitat. If one metaheuristic algorithm
can mimic this adaptation ability, this algorithm may have
the ability to solve a vast majority of optimization problems
with promising performance.

Today, many researchers focus on coming up with
new metaheuristics which have new exploration-exploitation
properties. In this way, people can choose an algorithm with
suitable habit (the fittest exploration-exploitation property) to
deal with a specific optimization problem (a specific habitat)
in order to obtain best solutions.

Some recent proposed metaheuristic algorithms are:
The Ant Lion Optimizer [3], Artificial Algae Algo-
rithm [4], Moth-flame optimization algorithm [5], Yin-
Yang-Pair Optimization [6], Salp Swarm Algorithm [7],
PSSA Ant Lion Optimization [8], Shark Smell Opti-
mization [9], Dynamic Butterfly Optimization [10], Lion
Optimization Algorithm [11], Dragonfly Algorithm [12],
Water Evaporation Algorithm [13], Competitive Optimiza-
tion Algorithms [14], Galactic Swarm Optimization [15],
Electromagnetic Field Optimization [16], Selfish Herds [17],
GrasshopperOptimization algorithm [18], Thermal Exchange
Optimization [19], Owl Search Algorithm [20], Tree Growth
Algorithm [21], Squirrel Search Algorithm [22], Butter-
fly Optimization Algorithm [23], Henry Gas Solubility
Optimization [24], Equilibrium Optimizer [25], Bald Eagle
Search [26], Nuclear Reaction Optimization [27], just to
name a few.

Unfortunately, choosing a suitable metaheuristic from
algorithm library is not a simple task. On the other hand,
it seems inefficient and even impossible to create specific
algorithms for every kind of problem. Thus, the adaptive
exploration-exploitation property which mimics the adapta-
tion ability of intelligent species is needed to settle these
two problems. To be specific, when intelligent species are
put into a new environment, they can change their habits
in order to survive. In this sense, the algorithm with adap-
tive exploration-exploitation property can be regarded as a
nature-inspired metaheuristic algorithm, and it is denoted as
adaptive metaheuristic algorithm hereafter.

An important issue of adaptive metaheuristic algorithms
is the adaptive modification of exploration-exploitation prop-
erty, and it can be divided into three sub-problems: 1) (What)
the definitions of exploration and exploitation; 2) (When) the

time to modify the exploration and exploitation; 3) (How)
how to control exploration and exploitation.

Despite the hot research on metaheuristics, widely-
accepted formal definitions of exploration and exploita-
tion within the community are still absent [28]. Different
researchers described these two characteristics in different
ways. Such as in [28], Črepinšek defined exploration and
exploitation as follows: ‘‘Exploration is the process of visit-
ing entirely new regions of a search space, whilst exploitation
is the process of visiting those regions of a search space
within the neighborhood of previously visited points.’’ Under
this definition, the search agents tend to search the new
distant sub- search space in exploration phase. While in
the exploitation phase, the search agents tend to search the
existed nearby sub- search space. However, it is hard to recog-
nize the border between distant exploration region and nearby
exploitation region, which makes this definition somewhat
ambiguous.

Similarly, Morales-Castañeda proposed definitions of
exploration and exploitation in [29]: ‘‘Exploration refers to
the ability of a search algorithm to discover a diverse assort-
ment of solutions, spread within different regions of the
search space. On the other hand, exploitation emphasizes the
idea of intensifying the search process over promising regions
of the solution space, with the aim of finding better solutions
or improving the existing ones.’’ This definition relies on
diversity. However, the relationship between diversity and
exploration-exploitation property is unclear. The use of diver-
sity makes this definition imprecise, and there is a need for
clear definitions of exploration and exploitation.

In order to determine when to control exploration-
exploitation property, a metric of exploration and exploitation
is always needed. The simplest metric is iteration - when the
optimization iteration is greater than a pre-defined threshold,
the algorithm enters the phase of exploration, and all the
iterations before are in the phase of exploitation. This method
is also called deterministic scheme [30]. Another metric is the
diversity of a population - when the performance of the best
search agent does not improve for several iterations, increase
the ability of exploration [31]; or when the value of diversity
is lower than a pre-defined threshold, increase the ability
of exploration [32]. This kind of method is called adaptive
scheme. However, the deterministic scheme is too simple, and
the adaptive scheme relies on a threshold which is hard to
determine. Thus, there is a need for a more intelligent method
to determine when to control exploration and exploitation.

As for controlling the exploration and exploitation, there
exists three typical methods: diversity maintenance, diver-
sity control and diversity learning [28]. However, all these
methods are indirect control methods, and the diversity is not
identical to the balance between exploration and exploitation.
Thus, there is a need for a more direct method to control
exploration and exploitation.

To summarize, there are three main difficulties in con-
structing adaptive metaheuristics: 1) the ambiguous defini-
tions of exploration and exploitation; 2) it is hard to determine
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when to control exploration and exploitation; 3) it is hard to
control exploration and exploitation directly.

Some intelligent metaheuristics have been proposed
recently with adaptive exploration-exploitation properties.
In [33], authors introduced Spherical Search (SS) algorithm
with self-adaptive control parameters ci, rank and the size
of population N . However, this algorithm: 1) takes the num-
ber of function evaluations as the criterion to distinguish
exploration and exploitation, which is too simple; 2) uses
search history to update new parameters in the next iter-
ation, which may lead to local optimum. In [34], authors
proposed self-adaptation versions of GreyWolf Optimization
(AMGWO) and Moth Flame Optimization (AMFO). The
self-adaptive parameters of these two algorithms are con-
trolled by the previous obtained solutions. However, these
algorithms do not control the exploration-exploitation prop-
erty directly; thus, the modification of parameters is hard to
understand in the sense of exploration and exploitation. Other
self-adaptive algorithms such as [35]–[40] have also been put
forward in order to dynamically update the control parameters
online. However, the aforementioned three problems (What-
When-How) are not solved in these algorithms. In other
words, they lack a direct control of exploration-exploitation
property, and the adaptation mechanisms of the algo-
rithms have weak relationships with exploration-exploitation
property.

The adaptive metaheuristics reviewed above tend to judge
the exploration-exploitation property in a reverse way - if
an algorithm has obtained satisfactory solutions, then this
algorithm is considered to have a good balance between
exploration and exploitation. However, this reverse think-
ing does not take advantage of the exploration-exploitation
property to improve the performance of the algorithm during
the optimization. Thus, positive thinking is needed to utilize
exploration-exploitation property online directly, and that’s
just what our adaptive metaheuristic algorithm OSPO tries to
realize.

In order to have a better understanding of the term
‘‘adaptive’’ in adaptive metaheuristics, we discuss it briefly.
This ‘‘adaptive’’ could mean two possibilities in the existing
metaheuristics: one is the adaptive selection of the parameters
and the other is the adaptive selection of the update oper-
ators. For the first possibility, such metaheuristics use only
one update operator and rely on the control parameters to
explore and exploit the search space. For example, PSO [53]
uses three control parameters within one update operator,
and these control parameters (w, c1 and c2) try to keep a
balance between exploration and exploitation. For the second
possibility, such metaheuristics have no particular way to
control exploration and exploitation directly. More precisely,
take TLBO [54] as an example, it does not have any control
parameters, but it provides two update operators: teacher
phase (for global exploration search) and student phase (for
local exploitation phase). TLBO simply calls these two oper-
ators in a deterministic sequence (explore - exploit - explore -
exploit . . . ) to perform the search process. However, these

two possibilities have their own limitations: 1) for the adap-
tive selection of the control parameters, it is hard to determine
the specific value of these parameters, and the relationship
between these values and the exploration-exploitation prop-
erty is unclear; 2) for the adaptive selection of the update
operators, the exploration-exploitation property is clear since
one operator can represent the exploration phase and the
other operator can represent the exploitation phase. However,
it is hard to intelligently determine when to change update
operators, and a poor sequence of update operators may even
degrade the performance of the algorithm.

Hyper-heuristics (HHs) comprise a set of approaches that
are motivated (at least in part) by the goal of automating
the design of heuristic methods to solve hard computational
search problems [55], and they perform another kind of
adaptive in a higher level. HHs have emerged as a way to
raise the level of generality of search techniques, and the
current state-of-the-art in HHs comprise a set of methods that
broadly concerned with intelligently selecting or generating
a suitable heuristic for a given situation [56]. A basic dif-
ference between metaheuristics and hyper-heuristics is that
the former explore the solution space of a problem, whereas
the latter focus on the solver space. So, a hyper-heuristic
does not solve a problem directly. Instead, at each step of
the solution process, it selects a heuristic for dealing with
such a step [57]. As stated in [58], HHs can be regarded as
a dual-stage methodology, the first stage is to compile a col-
lection of Search Operators (SOs) from metaheuristics, and
the second stage is to implement a Random Search approach
to tune the hyper-heuristic. Once a metaheuristic is con-
structed by SOs, this metaheuristic is then used to solve the
optimization problem in the solution space. The applications
of HHs can be referred to [59]. Since HHs can design meta-
heuristics automatically, it avoids the problem of choosing
suitable metaheuristic for the optimization problem. In other
words, HHs may be the one direction to solve the motivation
‘‘a self-adaptivemetaheuristic algorithmwhich has the poten-
tial to solve at least a vast majority of optimization problems
with promising performance’’. However, 1) there is no theo-
retical promise that the HHs can outperform metaheuristics
in all kinds of problems; 2) the online-construction of meta-
heuristic in HHs is another kind of choosing of metaheuris-
tics; 3) in addition, the higher-level in HHs is something like
a reset of the exploration-exploitation property in metaheuris-
tics, and the algorithm proposed in this contribution (OSPO)
also has this reset-ability ensured by the Receding Sampling
Strategy. So, we do not focus on HHs in the current contribu-
tion, and our future research may focus on this direction.

In this paper, we propose a novel adaptive metaheuris-
tic algorithm called Optimal Stochastic Process Opti-
mizer (OSPO), which uses positive thinking to control
exploration-exploitation property directly during the opti-
mization. Specifically, OSPO regards the optimization pro-
cedure as a stochastic process, and the sample center and
the sample extent at every optimization iteration determine
the exploration-exploitation property directly. This proactive
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control of exploration-exploitation property can improve both
the global exploration ability and the local exploitation abil-
ity. In addition, the adaptive modification of parameters in
Subjective Probability Distribution Function (SPDF) makes
the sample path of the stochastic process become a searching
trajectory, and then the Receding Sampling Strategy resets
the exploration-exploitation property in order to find the
global optimum of the problem. The simulation results of
benchmark functions and real-world optimization problems
demonstrate that, thanks to the adaptive modification of
exploration-exploitation property, OSPO can solve different
problems with competitive performance compared to other
metaheuristic algorithms. Thus, OSPO is demonstrated to
have the potential ‘‘to solve at least a vast majority of opti-
mization problems’’ with promising performance.

The rest of the paper is organized as follows:
Section 2 presents the basic idea of Optimal Stochastic

Process Optimizer. Then, the realization of OSPO is detailed
in Section 3. The simulation results and discussion of bench-
mark functions as well as real-world optimization problems
are presented in Sections 4. Finally, Section 5 concludes the
contribution and suggests some directions for future studies.

II. BASIC IDEA OF OSPO
Most metaheuristic algorithms have the following properties:
1) they are nature-inspired; 2) they use some kind of random
operators; 3) they do not calculate the gradient of hessian
matrix of objective functions; 4) they have some parameters
to be tuned.

On the one hand, these properties are the foundations of the
superiorities of metaheuristics. On the other hand, these prop-
erties also limit the application of metaheuristic algorithms.

Nature inspired: most metaheuristic algorithms mimic
some kind of natural phenomena or species; thus, they have
some specific exploration-exploitation properties. However,
if metaheuristics cannot change their exploration-exploitation
properties online during the optimization procedure, they can
only perform well on limited optimization problems.

Random operators: random operators let search agents
have the abilities to explore the entire search space and to
escape from the local optimal traps. However, these abilities
are not reliable because random operators may even degrade
the performance of the algorithm.

No gradient or hessian matrix computation: the avoidance
of computation of gradient and hessian matrix can decrease
the computation burden, but metaheuristics also lose a con-
nection between adjacent iterations. As a result, the conver-
gence speed of metaheuristics may become slow.

Parameter tuning: the performance of metaheuristics can
be improved by parameter tuning. However, this parameter
tuning is often off-line, and if poor parameters have been
chosen, the performance of the algorithm cannot be promised.

The above four limitations can be explained in the
sense of the exploration-exploitation property: 1) the
exploration-exploitation property cannot be modified adap-
tively; 2) the exploration-exploitation property may not

lead to the global optimum; 3) the exploration-exploitation
property is not efficient enough for optimization; 4) the
exploration-exploitation property cannot be controlled
online.

The adaptive metaheuristic algorithm OSPO introduced
in this contribution has the ability to solve these limitations
by controlling the exploration-exploitation property online
directly. The basic idea of OSPO is presented in this section.

A. STOCHASTIC PROCESS PERSPECTIVE ON
OPTIMIZATION
In order to solve optimization problems, metaheuristic algo-
rithms come up with different kinds of bio-inspired search
agents x ∈ Rn, such as artificial ants, to search for the global
optimum in a search space � ⊆ Rn. Every single point x in
the search space is related to a scalar value calculated by an
objective function f (x) ∈ R, and this function is what the
algorithm tries to optimize (minimize in this contribution).
The differences between different metaheuristics are mainly
their distinctive definitions of the search agents as well as
the relevant intelligent seeking strategies. These intelligent
seeking strategies reflect the latent exploration-exploitation
properties of the metaheuristics.

In probability theory, there exists a sample space
U ⊆ Rn which is the set of all possible sample points u ∈ Rn.
A random variable X (u) is a measurable function defined on
a probability space that maps from a sample spaceU to a real
number space R.

Several significant similarities can be recognized between
these two mechanisms: 1) the search space is similar to the
sample space; 2) the search agents are the same as the sample
points; 3) in addition, they both have a scalar mapping.

On the other hand, metaheuristics utilize an objective
function as a ‘‘feedback’’ to guide the trajectory of search
agents; thus, the search agents have the ability to eventually
converge to the global optimum. Different feedback schemes
result from different intelligent seeking strategies, and these
strategies give algorithms different exploration-exploitation
properties.

While in probability theory, such ‘‘feedback-like ability’’
is absent. Luckily, random variables indexed by time coor-
dinates T (or other coordinates) form a stochastic process,
and the realizations of such stochastic process are something
like the ‘‘searching trajectories’’ in metaheuristics. However,
these realizations of stochastic process are just ‘‘records’’
of the variation of random variables without any ‘‘searching
ability’’. If the stochastic process can be equipped with some
kind of searching ability, then the realization of stochastic
process can be regarded as an intelligent seeking strategy, and
the random property of the stochastic process becomes the
adaptive exploration-exploitation property.

In order to build a bridge between optimization and
stochastic process, a feedback mechanism should be intro-
duced into stochastic process first. In this way, the real-
ization of stochastic process is no longer a random record,
but a searching trajectory related to optimization problems.
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This optimization-oriented stochastic process will generate
an optimization-oriented sample path, and the last sample
point of the sample path is just the global optimal solution.
In other words, the random variable approaches to the opti-
mum (X (u)→ fmin) at the end of the sample path.
Definition 1: Let the search space of the optimization

problem � ⊆ Rn be the sample space, let the search agents
x ∈ Rn be the sample points, and let the objective function
f (x) be the random variable Y (x). Denote {Y (x, s) , s ∈ S}

as the optimizing stochastic process indexed by set S, where
S = {1, 2, . . . , l} denotes the sampling iteration.

In Definition 1, the elements in metaheuristics are intro-
duced into probability theory. Similar to time index which is
mostly used in stochastic process, sampling iteration index
S used here represents the iteration of optimization. Specif-
ically, S = {1, 2, . . . , l} where l is the length of the corre-
sponding optimizing stochastic process.

With this optimizing stochastic process {Y (x, s) , s ∈ S},
the realization of such stochastic process (sample path) can
now be regarded as a searching trajectory. At sampling iter-
ation i, the current sample point is x(si), and the value of
random variable is Y (x, si) = f (x(si)) or just Y (si) for
brevity. Sample l times from sample space, then a sequence
of random variables is obtained as follows

{Y (x, s1) ,Y (x, s2) , . . . ,Y (x, sl)} , (1)

and this sequence is exactly one realization of the optimizing
stochastic process {Y (x, s) , s ∈ S}.

There are countless realizations of such an optimizing
stochastic process, and each specific sequence of random
variables is called one sample path of the corresponding
optimizing stochastic process.
Definition 2: One of the realizations of the optimizing

stochastic process {Y ∗ (x, s) , s ∈ S∗} is called the optimal
sample path, and the corresponding optimizing stochastic
process which can generate optimal sample path is denoted
as optimal stochastic process. The optimal sample path must
satisfy

{Y ∗ (x, s) , s ∈ S∗}

=
{
Y (x, s1) ,Y (x, s2) , . . . ,Y (x, sl) ; si ∈ S∗

}
,

where

Y (x, sl) ∈ B
f
δ(f
∗).

In Definition 2, l is the length of sampling iteration set S,
f ∗ is the optimal value of the objective function, Bf

δ(f
∗) is a

δ-neighborhood of f ∗ which satisfies

B
f
δ

(
f ∗
)
=
{
f | f ∗ − δ ≤ f (x) ≤ f ∗ + δ, δ ≥ 0

}
. (2)

The δ-neighborhood B
f
δ(f
∗) builds a bridge between the

random variable Y (x, s) and the algebraic variable f (x).
As for optimization problem, the algorithm wants to find the
optimal solution xopt which minimizes the objective function
to the optimal value f ∗ = f (xopt ). However, the probability
of a continuous random variable to any specific value is 0, in

other words, P
{
Y (x) = f

(
xopt

)}
= 0. To overcome this,

the optimal sample path tries to find a small enough region δ
of the optimal solution instead of a specific point, then the
probability of this region becomes

P
{
f
(
xopt

)
− δ ≤ Y (x) ≤ f

(
xopt

)
+δ
}
=

∫
B
f
δ(f (x

opt ))
y(x)dx

which has a value bigger than 0.
The sample path is determined by the random variable

at each sampling iteration, and each random variable has a
corresponding probability distribution that represents the
likelihood of the occurrence of any possible point. Thus,
the problem of getting the optimal sample path becomes
a problem of getting optimal probability distributions at
each sample iteration. Once the probability of random vari-
able Y (x, s) that falls into the optimal region B

f
δ

(
f (xopt )

)
increases as the sampling iteration si increases, then the
realization of the optimizing stochastic process becomes the
optimal sample path, and the optimization problem is solved.
Definition 3: Let xopt be the optimal solution of the given

optimization problem, and f (x) be the corresponding objec-
tive function. Then yo(x) is said to be the optimal probability
distribution if it satisfies∫

D
yo(x)dx = 1,D = B

f
δ

(
f (xopt )

)
. (3)

Fig. 1 shows some possible optimal sample paths which all
converge to the δ-neighborhood of the optimal solution. The
dashed lines corresponding to si is the range of the random
variable at sith sampling iteration. As shown in the figure, the
range of random variables is decreasing over iterations, and
finally this range decreases intoBf

δ

(
f (xopt )

)
. This decreasing

tendency is not a necessary property in the definition of the
optimal sample path, and it is added here for the purpose of
alleviating the difficulty of obtaining the optimal probability
distribution.

FIGURE 1. Optimal sample paths of stochastic process.

At every sampling iteration si, OSPO will obtain a specific
random variable based on the probability distribution of the
random-variable-generator (RVG). Since the length of the
stochastic process is l, the RVG uses l sequential probability
distributions to form a sample path with l random variables.
In order to make this sample path become the optimal sample
path which can solve the optimization problem, the joint
distribution should satisfy some specific conditions.
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Definition 4: Let {Y (x, s) , s ∈ S} be an optimizing
stochastic process, fi, i = 1, 2, . . . , l be the reference val-
ues of the objective function. Then, for any l ≥ 1 and
s1, s2, . . . , sl ∈ S, the optimizing joint distribution function of
random variable vector (Y (s1) ,Y (s2) , . . . ,Y (sl)) is defined
as

F (f1, f2, . . . , fl; s1, s2, . . . , sl)

= P{Y (s1)≤f1,Y (s2)≤f2, . . . ,Y (sl) ≤ fl},

where

f1 ≥ f2 ≥ . . . ≥ fl .

Additionally, if the last reference value fl satisfies

fl ∈ B
f
δ

(
f (xopt )

)
,

this optimizing joint distribution function is said to be the
optimal joint distribution function and is denoted as Fo.
Proposition 1: Given a sampling iteration index S and

an optimal joint distribution function Fo which both satisfy
the consistency conditions proposed in Kolmogorov exten-
sion theorem, then there must exist a corresponding optimal
stochastic process {Y ∗ (x, s) , s ∈ S∗}whose joint distribution
function is Fo according to Kolmogorov extension theorem.
In Definition 4, since fl ∈ B

f
δ(f (x

opt )), Fo(·, fl; ·, sl)
becomes the probability of generating the optimal sample
path of an optimal stochastic process, and the existence of
this optimal stochastic process is promised by Proposition 1.
Thus, every optimization problem can be turned into the prob-
lem of finding an optimal sample path of the corresponding
optimal stochastic process.

Despite the existence of the optimal stochastic process in
the search space of the optimization problem, the probability
distribution for generating the optimal sample path is still
unknown. It is impossible to find this optimal sample path
by totally random sampling, and there is a need to control the
probability distribution intelligently. This intelligent control
of the probability distribution is similar to the intelligent
searching strategy of the search agents in metaheuristics.
Assumption 1: Assume the probability distribution among

different sampling iterations are independent, then

F (f1, f2, . . . , fl; s1, s2, . . . , sl)

= P {Y (s1) ≤ f1,Y (s2) ≤ f2, . . . ,Y (sl) ≤ fl}

= 5l
i=1P{Y (si) ≤ fi}.

Definition 5: At sampling iteration si, regard the current
probability distribution function (PDF) as the optimal proba-
bility distribution yspi (x), and then this type of PDF is denoted
as Subjective Probability Density Function (SPDF).
The SPDF can be any kind of distribution, and in this

contribution the multivariate Gaussian distribution is chosen
for its simplicity. At every sampling iteration si, modify the
parameters of SPDF adaptively and then use the updated
SPDF to generate new sample points. But this modified SPDF
is not the realistic distribution that will definitely form an
optimal sample path; in other words, Y (si) ≤ fi cannot be

guaranteed. It is only the ‘‘subjective belief’’ of the algorithm
that the optimal sample paths will occur by using SPDF.

With the help of SPDF, the optimization problem is simpli-
fied into the intelligent control of the parameters in the SPDF.
These parameters are modified online based on the feedback
information during the optimization procedure; thus, feed-
back mechanisms are introduced into OSPO. Based on this
feedback mechanism, and inspired by the Model Predictive
Control concept in control theory, the optimal sample path
can be eventually obtained through a strategy called receding
sampling.
Definition 6: At the outer sampling iteration Souter , set the

initial label of the inner sampling iteration to s1, and a series
of SPDF is used to create a sample path. If the resulting
sample path {Y outer (x, s) , s ∈ Souter } is not one of the
optimal sample paths, then take the k-th sample point x(sk )
in the current sample path as the initial sample point x(s1)
of another sample path at the next outer sampling iteration
Souter+1. Repeat this operation until the current sample path
becomes an optimal sample path {Y ∗ (x, s) , s ∈ S∗}, and
this procedure is denoted as Receding Sampling Strategy. The
outer sampling iteration is also denoted as receding sampling
iteration.

The parameter k can be changed over iterations satisfying
1 ≤ k ≤ l; or, x(s1) can be chosen randomly. The specific
value of k depends on the performance of the current sample
path. The simplest idea of choosing k is to choose the best
sample point in every sample path, and this simplest receding
sampling strategy is depicted in Fig. 2. The receding sampling
idea can be understood as cascaded sample paths.

FIGURE 2. Illustration of receding sampling strategy.

Remark 1: In standard stochastic process, the probability
space (�,F,P) is fixed, while in our optimal stochastic pro-
cess, the probability space is variable, whichmeans (F,P) can
be changed by SPDF. This changing probability space gives
the optimal stochastic process the ability of optimization.
Remark 2: The essence of using receding sampling strat-

egy is to reset the exploration-exploitation property of
the algorithm in a higher level. Specifically, within single
outer receding sampling iteration, the adaptive modification
of SPDF has already changed the exploration-exploitation
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property in order to form an optimal sample path. However,
this adjustment is in a lower level and may lead to local
optimum. If the resultant sample path is not the optimal sam-
ple path, this minor modification of exploration-exploitation
property is not enough for optimization, and some aggressive
modifications are needed to find the global optimum.

Based on the aforementioned discussions, the following
proposition can be concluded about Optimal Stochastic Pro-
cess Optimizer for solving optimization problems.
Proposition 2: For any optimization problem, given an

initial point at the sample space, receding sampling strategy
together with SPFD can be used to find an optimal sample
path of a corresponding optimal stochastic process. The last
random variable in this optimal sample path Y ∗ (x∗, sl) is
the optimal value of the given optimization problem, and
the corresponding sample point x∗ is the optimal solution.
This whole procedure for finding the optimal solution of
the optimization problem is denoted as Optimal Stochastic
Process Optimizer (OSPO).

III. THE REALIZATION OF OSPO
The brief flowchart of OSPO is illustrated in Fig. 3.

FIGURE 3. Brief flowchart of OSPO.

A. THE REALIZATION OF OSPO
1) MULTIVARIATE GAUSSIAN SAMPLING
Let the search space of the optimization problem be the sam-
ple space � ⊆ Rn, the N search agents be the sample points,
and then the searching trajectory of the search agents in
traditional metaheuristics is identical to the sample procedure
at each sample iteration iter by using SPDF as the probability
distribution. After obtaining N sample points at the current
sample iteration, OSPO calculates the fitness value of each
sample point by the objective function. The optimal sample
point x iter∗ with the best objective function value is taken as
the current random variable Y (x, si) = f (x iter∗ ), and it is used
to construct a sample path.

The most important issue in OSPO is the adaptive modifi-
cation of the SPDF at each sampling iteration. In this contri-
bution, OSPO uses Multivariate Gaussian Sampling (MGS)
as its SPDF, and the parameters in MGS should be modified
adaptively over iterations in order to construct an optimal
sample path.

Specifically, for every inner sampling iteration si in the first
outer receding sampling iteration, the SPDF has the following
n- dimensional normal joint density function form

yspi (x) =
1(√

2π
)n√

det(6i)
exp−

(x−µi)
T
(6i)
−1
(x−µi)

2 , (4)

where mean matrix µi indicates the search center, covariance
matrix 6i indicates the search extent, x = [x1, x2, . . . ,xn]
indicates the possible sample points within the search extent,
yspi (x) indicates the probability for every sample point to be
sampled. The parameters (µi, 6i) at each sampling iteration
is updated by the previous optimization information; thus,
these parameters can be controlled online through feedback.
The initial parameters (µ0, 60) are chosen randomly.

2) THE MEANING OF SAMPLE PROBABILITY IN OSPO
The underlying reasons for using SPDF to generate sample
points as search agents at every optimization iteration are
mainly twofold: a) the sample probability is assumed to be the
optimality of each sampled point. In other words, the higher
probability the sample point may be chosen, the higher opti-
mality the sample point is in optimization problem; b) the
probability and optimality are not truly identical, and it is
only a subjective assumption. Thus, the probability needs to
be corrected online in order to fit with the real optimality.

As shown in Fig. 4, the mean matrix µi (denoted by
point x1) in SPDF represents the estimated optimal point,
which means the highest probability implies the highest opti-
mality. Unfortunately, this equivalence-relation is not the real
fact, and the real highest optimality point is x2 whose prob-
ability in SPDF is not the highest. The covariance matrix 6i

represents the verification range: sample several points within
the search extent, and then use these verified-optimality (the
value of the objective function) to modify SPDF. A strategy
called Preferential Sampling is introduced to update SPDF.
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FIGURE 4. The relationship between probability and optimality.

3) PREFERENTIAL SAMPLING STRATEGY
In iter-th sampling iteration, sample m times based on SPDF,
and OSPO obtains m sample points x iter,j, j = 1, 2, . . . ,m.
Sort these sample points according to their optimality
(the objective function values f (x iter,j)), and then choose the
best q sample points. These q ordered sample points form a
matrix called ‘‘Acceptable Sample Matrix’’. This matrix is
denoted as Xa hereafter, and it has the form as follows

Xa =
[
xr(1), xr(2), . . . , xr(q)

]T
= [X1,X2, . . . ,Xn] , (5)

where the superscript r (·) represents the ordered label, and
these labels satisfies

f
(
xr(1)

)
≤ f

(
xr(2)

)
≤ . . . ≤ f

(
xr(q)

)
≤ f

(
xr(q+1)

)
≤ . . . ≤ f (xr(m)), 1 < q < m.

The motivation of constructing Acceptable Sample
Matrix Xa is as follows: the current SPDF is not accurate,
and the resulting optimality of some sampled points may be
poor, so the bad sampled points should be discarded. With
the help of Xa, OSPO can utilize the better sampled points
to update the SPDF. Thus, the consistency of the SPDF and
the optimality can be further improved in the next sample
iteration.

Here, the total m sample points are the sample, and this
sample is obtained from the population based on the entire
search space. However, what OSPO really needs is not
the sample from the entire search space, but the sample
from the promising sub-space which has the potential to
get optimal solutions. In other words, OSPO wants to sam-
ple from the ‘‘optimizing subspace’’ which has the higher
potential to generate optimal sample paths. The Acceptable
Sample Matrix is a smaller sample whose population is no
longer the initial space �, but some promising optimizing
subspace �0. The idea of using Xa to construct �0 and then
using this�0 to update the SPDF in the next sample iteration
is called Preferential Sampling Strategy.
The brief idea of preferential sampling strategy is illus-

trated in Fig. 5. As shown in the figure, the green points
represent the Acceptable Sample Matrix Xa obtained by the
current SPDF, the red points represent the real optimality of

FIGURE 5. The brief idea of preferential sampling.

this Xa calculated by the objective function. Use this optimal-
ity information as feedback information to update the next
SPDF, and OSPO obtains the green curve as a new SPDF to
generate sample points in the next sample iteration.

4) THE ADAPTIVE MODIFICATION OF µ, 6
The adaptive modification of µ, 6 is achieved by using
the feedback optimality information to update the probabil-
ity distribution. Specifically, in the current sample iteration,
OSPO utilizes Xa to update the mean vector µi+1 and
the covariance matrix 6i+1 in the next sampling iteration.
By implementing the preferential sampling strategy, the
parameters of SPDF have been updated as follows

µi+1 =

∑q
j=1 αjx

r(j)∑q
j=1 αj

, (6)

6i+1
= cov (Xa) = cov ([X1,X2, . . .Xn])

=


cov(X1,X1) cov(X2,X1) · · · cov(Xn,X1)
cov(X1,X2) cov(X2,X2) · · · cov(Xn,X2)

...
...

. . .
...

cov(X1,Xn) · · · · · · cov(Xn,Xn)

 ,
(7)

where xr(j) represents the j-th acceptable sample point,
αj represents the weight of the corresponding sample point,
and this weight has the form αj = 1/f (xr(j)) which is related
to the objective function value; Xi represents the column
vector of Xa. cov (A,B) represents the computation of the
covariance whose formula is

cov (A,B) =
1

N − 1

∑N

i=1
(Ai − µA) ∗ (Bi − µB), (8)

where µA, µB are the mean value of the vector A and B,
Ai and Bi are the elements in the corresponding vector, and
N represents the dimension of the vector.

5) THE COMPUTATION OF RANDOM VARIABLES
IN SAMPLE PATH
In the current sampling iteration, OSPO getsm sample points,
but as for the sample path, it only needs one value to be the
current random variable. Remember, xr(1) denotes the best
sample point in the current sample iteration, and OSPO takes
this best sample point as the random variable of the current
sample path. Thus, the random variable of the sample path in
the i-th inner sample iteration is

Y 1 (x, si) = f (xr(1) (si)). (9)
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After l times sampling iterations, OSPO has implemented
l times preferential sampling, and it obtains a sample path
with the length of l denoted as {Y 1 (x, s) , s ∈ S1}. If the
last random variable satisfies Y 1 (x, sl) ∈ B

f
δ

(
f (xopt )

)
,

the current sample path becomes the optimal sample path
and the optimization problem is solved; otherwise, OSPO
needs to use receding sampling strategy to get new sample
paths

{
Y 2 (x, s) , s ∈ S2

}
,
{
Y 3 (x, s) , s ∈ S3

}
, . . . until the

optimal sample path is achieved or the terminal criterion is
satisfied.

6) THE INTERACTIONS BETWEEN DIFFERENT SAMPLE PATHS
In the initial outer sample iteration S1, the initial SPDF can
be chosen randomly as follows

µ0
= lb+ rand∗(ub− lb),

60
= diag

((
ub− lb

10

)2
)
, (10)

where rand is the random value in the range of [0, 1]Dim,
Dim is the dimension of the problem; ub is the upper bound,
lb is the lower bound, diag(·) is the diagonal matrix.
In the following outer sample iterations Souter , outer> 1,

the values of the initial SPDF for each new sample path
cannot be chosen randomly, because random selection will
discard the useful information of the previous sample paths.
The utilization of the former information is the strength of
the population-based strategy. In order to build connections
between different sample paths and take advantage of the
previous information, OSPO selects one sample point from
the previous sample path as the initial point of the next new
sample path. A simple and straightforward way is to choose
the best sample point in the last sample path xouter∗ as the new
initial point

µ0
(
Souter+1

)
= xouter∗ . (11)

Here, µ0
(
Souter+1

)
represents the initial search center of

the new sample path, and the search extent is implied by the
covariance matrix 60 which has the following formula

60
(
Souter+1

)
= diag

((
ub− lb

10+ 10∗outer

)2
)
, (12)

where outer is the label of the current sample path. As the
number of sample paths outer increases, the initial value of
covariance matrix 60 is decreased accordingly. As a result,
OSPO will focus more on exploitation in the higher level as
the optimization goes on.

When there are a number of local optima exist in the
optimization problem, the sample path generated by SPDF
may lead to local optimum. In order to search the entire space
in these situations, the initial points of every sample path
could be determined at the beginning of the optimization.
In this way, a pre- sample path S0 is introduced to scatter the
initial points of the sample paths Souter , outer = 1, 2, . . . in
the whole search space uniformly.

7) THE STOP CRITERION
a: OUTER STOP CRITERION
Different metaheuristics have different populations and dif-
ferent searching strategies; thus, they have different compu-
tation burden for each iteration. Since the function evaluation
may contribute the major computation burden in optimiza-
tion, the maximum number of function evaluationsMax_FE
plays the role of stop criterion in this contribution to make
fair comparisons between different metaheuristics.

Specifically, when the number of function evaluations
exceeds Max_FE , the OSPO algorithm will be terminated,
and the optimal solution obtained so far is regarded as the
global optimal solution for the optimization problem.

b: INNER STOP CRITERION
For each sample path, the solutions may fall into local opti-
mum. In these situations, OSPO should have the ability to
terminate the current sample path early.

OSPO uses a criterion called three-repetition as the early
termination condition in the inner loop. Specifically, for
every sample path

{
Y outer (x, s) , s ∈ Souter

}
, if the variance

of the best three optimal solutions xbt1∗ , xbt2∗ , xbt3∗ obtained in
the current sample path satisfy a predefined condition, then
OSPO terminates the current sample path even the length is
smaller than the l.
Here, the early termination condition is defined as follows(
Var

(
xbt1∗ , xbt2∗

)
+Var

(
xbt2∗ , xbt3∗

)
+Var

(
xbt3∗ , xbt1∗

))
3

<1e−6,

(13)

where Var (a, b) is the variance of the vectors a and b.
The pseudo code of OSPO is shown in Fig. 6.

B. THE ADAPTIVE MODIFICATION OF
EXPLORATION-EXPLOITATION PROPERTY
In the traditional metaheuristic algorithms, the exploration
and exploitation need to be defined and measured in order
to improve the performance of the algorithms. While in
the OSPO, the exploration and exploitation are directly
related to the sample center and sample extent in the
SPDF. In other words, the parameters in the SPDF rep-
resent the exploration-exploitation property of the OSPO
straightforwardly, and the dynamic control of these param-
eters is equivalent to the adaptive modification of the
exploration-exploitation property.

OSPO uses multivariate Gaussian distribution as its SPDF
in this contribution. The mean vector is the sample center
representing the search center, and the covariance matrix is
the sample extent representing the search extent. Within one
single sample path, the search extent 6i is decreasing with
the help of Acceptable Sample Matrix Xa, and the smaller
covariance matrix implies the higher degree of exploitation.
On the other hand, the variance of the mean vector µi implies
the variance of the exploitation center, and a larger deviation
of µi implies a higher degree of exploration.
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FIGURE 6. The pseudo code of OSPO.

TABLE 1. Uni-modal benchmark functions.

In the same sample path, the exploration-exploitation prop-
erty is controlled by µi and 6i. When the current sample
path leads to a local optimum, OSPO will reset the val-
ues of µi and 6i to jump out of this local optimal trap,
and OSPO will generate another sample path using a new
exploration-exploitation property. This reset mechanism is
promised by the receding sampling strategy.

To summarize, there aremainly two types of active controls
of exploration-exploitation property in OSPO:

1) In the sense of SPDF, the adaptive modification of the
parameters mainly focuses on the exploitation property in
order to find the local optimum;

2) In the sense of receding sampling strategy, the inter-
actions between different sample paths mainly focus on the
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TABLE 2. Multi-modal benchmark functions.

TABLE 3. Composite benchmark functions.

exploration property in order to escape from the local optimal
traps.

C. POTENTIAL OF OSPO
OSPO can solve the three difficulties discussed in Introduc-
tion to some extent, and these difficulties are written again for
ease of reading: 1) the ambiguous definitions of exploration
and exploitation; 2) it is hard to determine when to control
exploration and exploitation; 3) it is hard to directly control
exploration and exploitation.

Firstly, OSPO uses SPDF to directly control the
exploration-exploitation property: exploration means lager
sample extent and exploitation means smaller sample extent
in OSPO. Thus, exploration and exploitation are clear in
OSPO formulation.

TABLE 4. The parameters for simulation.

Secondly, the metric of exploration and exploitation is the
difference between probability and optimality in preferential
sampling. Thus, OSPO has the ability to determine when
to control its exploration-exploitation property in a more
intelligent way.

Thirdly, OSPO can not only control exploration and
exploitation adaptively within one single sample path, but
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TABLE 5. Results of uni-modal benchmark functions (30 dim).

TABLE 6. Friedman ranks for the uni-modal test functions (30 dim).

TABLE 7. p-Values of the Wilcoxon ranksum test over uni-modal benchmark functions (30 dim).

also reset exploration and exploitation in different sample
paths in a higher level. Before local optimum has been
found, OSPO improves its exploitation ability by preferential
sampling; and when the algorithm falls into local optimum,
OSPO improves its exploration ability by receding sampling.
Thus, OSPO can control exploration and exploitation in an
intelligent way.

Since the meanings of exploration and exploitation in
OSPO are clear and the exploration-exploitation property
can be controlled directly either, OSPO has the potential
to change its exploration-exploitation property adaptively
online to fit with different optimization problems. In this
sense, OSPO has the ability to solve ‘‘at least a vast majority
of optimization problems’’ proposed in [2].
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TABLE 8. Results of multi-modal benchmark functions (30 dim).

TABLE 9. Friedman ranks for the multi-modal test functions (30 dim).

TABLE 10. p-Values of the Wilcoxon ranksum test over multi-modal benchmark functions (30 dim).

The ability of OSPO is then verified by benchmark func-
tions as well as real-world optimization problems in the next
section.

IV. RESULTS
A. BENCHMARK FUNCTIONS
In this section, 19 test functions are selected to demonstrate
the effectiveness of the proposed OSPO algorithm. The test
functions are classified into three main groups: uni-modal
(Table 1), multi-modal (Table 2), and composite functions
(Table 3).

As these names suggest, uni-modal test functions have
only one single optimum, and it can measure the abilities of

the exploitation and the convergence of algorithms. While in
multi-model benchmark functions, they have several optima
which make them more complicated than uni-modal func-
tions. One of these optima is denoted as global optimum
and the others are called local optima. Algorithms should
avoid falling into local optima and converge to the global
optimum. Therefore, the superiorities of exploration and local
optima avoidance of algorithms are measured bymulti-modal
test functions. As for composite functions, they are mainly
the combined, rotated, shifted, and biased versions of other
uni-modal and multi-modal test functions. This kind of test
functions simulate the difficulties of real search spaces by
providing a large number of local optima for different regions
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TABLE 11. Results of uni-modal benchmark functions (100 dim).

TABLE 12. Friedman ranks for the uni-modal test functions (100 dim).

TABLE 13. p-Values of the Wilcoxon ranksum test over uni-modal benchmark functions (100 dim).

of the search space [3]. Algorithms should keep a satis-
fying balance between exploration and exploitation to find
the global optimum of this kind of test functions. Hence,
the effectiveness of algorithms to solve real-world problems
is tested by composite functions.

Since OSPO has the ability to modify its exploration-
exploitation property adaptively, it is expected to have
a dynamic balance between exploration and exploitation.

In addition, OSPO is believed to solve different kinds of
problems with satisfactory performance. In order to verify
the performance of OSPO, seven metaheuristics are used to
compare with OSPO, and these comparative algorithms are:
TheAnt LionOptimizer (ALO) [3],Moth-flame optimization
algorithm (MFO) [5], Harris hawks optimization (HHO) [41],
Salp Swarm Algorithm (SSA) [7], Grey Wolf Optimizer
(GWO) [36], Whale Optimization Algorithm (WOA) [37]
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TABLE 14. Results of multi-modal benchmark functions (100 dim).

TABLE 15. Friedman ranks for the multi-modal test functions (100 dim).

TABLE 16. p-Values of the Wilcoxon ranksum test over multi-modal benchmark functions (100 dim).

and Self-Adaptive Spherical Search (SASS) [42]. The last
comparative algorithm SASS is an adaptive metaheuristic
algorithm which is the winner of the ‘‘CEC-2020 Com-
petitions on Real-World Single Objective Constrained
Optimization’’.

To make the quantitative results more convincing, we run
each algorithm 30 times on every test function, and the best
approximated solutions as well as theworst, average and stan-
dard deviation of these 30 solutions are reported. These four
values can verify which algorithm has the superiority when
solving the test functions. In addition, Friedman ranks based
on best solutions are also used to compare the performance

of the algorithms, which can verify the optimality of the
algorithms. Finally, Wilcoxon’s rank-sum test at the 0.05 sig-
nificance level is employed to compare the performance of
algorithms. TheWilcoxon’s rank-sum test is a non-parametric
test in statics that can be used to determine whether two sets
of solutions are different statistically significant. It also tests
the null hypothesis as to whether both populations are of
the same distribution. This statistical test returns a parameter
called p-vale. A p-value determines the significance level of
two algorithms. In this contribution an algorithm is statis-
tically significant if and only if it results in a p-value less
than 0.05.
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TABLE 17. Results of composite benchmark functions.

TABLE 18. Friedman ranks for the composite test functions.

TABLE 19. p-Values of the Wilcoxon ranksum test over composite benchmark functions.

The parameters of OSPO for simulation is defined
in Table 4, and the parameters of the comparative algorithms
are kept the same as their initial values in literatures. Since
the maximum number of the function evaluations of all the
algorithms are equal, the comparisons are quite fair.

The corresponding MATLAB APP demo is illustrated
in Fig. 7, and is available online:

https://github.com/JiahongXu123/OSPO-algorithm.git.

1) UNI-MODAL TEST FUNCTIONS
The simulation results of OSPO and 7 comparative algo-
rithms on the uni-modal test functions with low dimensions

(30 dimensions) are shown in Table 5. Table 6 illustrates the
Friedman ranks based on the best solutions of the 8 algo-
rithms, and Table 7 reports the p-values of the Wilcoxon’s
rank-sum test.

According to the results of the algorithms on uni-modal
test functions shown in Table 5 and Table 6, it is evident
that OSPO algorithm can perform well on all these test func-
tions. OSPO can solve these problems with best or at least
promising solutions. The Friedman ranks results reported
in Table 6 illustrate that OSPO algorithm has the best perfor-
mance when dealing with different uni-modal test functions,
and the average rank value is 1.71. The p-values reported
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TABLE 20. 21 real-world constrained optimization problems.

FIGURE 7. The MATLAB APP demo for OSPO.

in Table 7 also show that this superiority is statistically
significant since the p-values are much less than 0.05. The
SASS algorithm takes the second place with the average rank
value 2.29.

Considering the characteristics of uni-modal test functions,
it can be stated that OSPO has satisfactory exploitation abil-
ity. This high exploitation assists the OSPO algorithm to suc-
cessfully converge towards the optimal solution and exploit it
accurately.

2) MULTI-MODAL TEST FUNCTIONS
The simulation results of OSPO and 7 comparative algo-
rithms on the multi-modal test functions with low dimensions
(30 dimensions) are shown in Table 8. Table 9 illustrates the
Friedman ranks based on the best solutions of the 8 algo-
rithms, and Table 10 illustrates the p-values of theWilcoxon’s
rank-sum test.

According to the results of the algorithms on multi-modal
test functions in Table 8 and Table 9, it is evident that

OSPO algorithm can perform well on all these test func-
tions. OSPO can solve these problems with best or at least
promising solutions. The Friedman ranks results reported
in Table 9 illustrate that OSPO algorithm has the best per-
formance when dealing with different multi-modal test func-
tions, and the average rank value is 1.17. The p-values
reported in Table 10 also show that this superiority is statisti-
cally significant since the p-values are much less than 0.05 for
most of the cases. The SASS algorithm takes the second place
with the average rank value 2.27.

Considering the characteristics of multi-modal test func-
tions, it can be stated that OSPO has satisfactory exploration
ability. This high exploration assists the OSPO algorithm to
finally converge towards the global optimum.

3) HIGHER DIMENSION OF TEST FUNCTIONS
In order to verify the effectiveness of the OSPO algorithm
when the dimensions are large, the dimensions of uni-modal
and multi-modal test functions are increased to 100. The
simulation results are reported in Table 11 to Table 16.

According to the results of the algorithms on higher-
dimension test functions in Table 11 and Table 14, it is evident
that OSPO algorithm can still performwell on both uni-modal
and multi-modal test functions even when their dimensions
have been increased to 100.

The Friedman ranks results reported in Table 12 and
Table 15 illustrate that OSPO algorithm has the best
performance when dealing different test functions with
100 dimensions, and the average rank values are 2.00 and
1.33 respectively. The superiority of OSPO ismore evident on
multi-modal test functions. SASS takes the second place over
unimodal test functions and the third place over multi-modal
test functions.
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TABLE 21. Results of 21 real-world constrained optimization problems.
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TABLE 21. (Continued.) Results of 21 real-world constrained optimization problems.

FIGURE 8. The convergence curves of F5 in 30 dim (left) and 100 dim (right).

The p-values reported in Table 13 and Table 16 also show
that the superiorities of OSPO are statistically significant
since the p-values are much less than 0.05.

4) COMPOSITE TEST FUNCTIONS
The simulation results of OSPO and 7 comparative algo-
rithms on the composite test functions are shown in Table 17.
Table 18 illustrates the Friedman ranks based on the best
solutions of the 8 algorithms, and Table 19 illustrates the
p-values of the Wilcoxon’s rank-sum test.

According to the results of the algorithms on composite
modal test functions in Table 17 and Table 18, it is evi-
dent that OSPO algorithm can perform well on all these
test functions. OSPO can solve these problems with best

or at least promising solutions. The Friedman ranks results
reported in Table 18 illustrate that OSPO algorithm has the
best performance when dealing with different composite test
functions, and the average rank value is 1.00. The p-values
reported in Table 19 also show that this superiority is statisti-
cally significant since the p-values are much less than 0.05 for
most cases. The SASS algorithm takes the second place with
the average rank value 2.00.

Composite benchmark functions can measure both the
exploration and exploitation of the algorithms. Therefore,
the results imply that OSPO can lead to a fascinating
balance between exploration and exploitation when facing
complicated search space. Since the composite search spaces
can properly mimic the real search spaces, these results also
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FIGURE 9. The convergence curves of F8 in 30 dim (left) and 100 dim (right).

imply OSPO has the ability to solve real-world challenging
optimization problems.

5) CONVERGENCE BEHAVIOR ANALYSIS
The convergence curves of F5 (uni-modal test function exam-
ple), F8 (multi-modal test function example) and F14 (com-
posite test function example) are shown in Fig. 8, Fig. 9 and
Fig. 10 respectively.

According Fig. 8, OSPO algorithm converges to the solu-
tions better than other algorithms both in 30 (left sub-
figure) and 100 (right sub-figure) dimensions. These results
demonstrate that OSPO can converge to optimum in
uni-modal test functions, and its exploitation ability is
promising. However, as also shown in Fig. 8, the convergence
speed of OSPO is not the fastest at the beginning, and this
is due to the usage of receding sampling strategy in OSPO.
Specifically, OSPO tends to reset the exploitation to find
other attractive regions, which slows down its convergence
speed when dealing with uni-modal test functions.

According to Fig. 9, OSPO algorithm converges to the
global optimum successfully both in 30 (left sub-figure)
and 100 (right sub-figure) dimensions. In addition, the con-
vergence speed of OSPO is also faster than other algo-
rithms. These results demonstrate the superiority of OSPO in
solving multi-modal test functions, and its exploration ability
is promising. The receding sampling strategy helps OSPO to
avoid falling into local optima.

According to Fig. 10, OSPO algorithm converges to the
optimal solution quickly, which demonstrate the effectiveness
of OSPO in solving composite test functions. It can be stated
that OSPO can balance exploration and exploitation to find
best solutions in complicated problems.

The convergence curves of other test functions are reported
in Fig. 11, Fig. 12 and Fig. 13 in the Appendix. These results
demonstrate the promising performance of OSPO in dealing
with uni-modal, multi-modal and composite test functions.

FIGURE 10. The convergence curve of F15.

B. REAL-WORLD OPTIMIZATION PROBLEMS
To further verify the effectiveness of OSPO algorithm,
21 real-world optimization problems are tested in this section.
The best four algorithms of ‘‘CEC2020 Competition on
Real-World Single Objective Constrained Optimization’’:
SASS algorithm [42], sCMAgES [43], EnMODE [44] and
COLSHADE [45] are used as comparative algorithms, and
the SASS algorithm is the winner of this competition.

The brief properties of problems as well as the maximum
number of function evaluations of each problem are reported
in Table 20. For details of these problems, one can refer
to [46].

Real-world problems are constrained by inequality and
equality constraints, and the constraint handling technique
is as important as the optimization algorithm itself. There
are a number of constraint handling techniques available,
such as Deb’s rule [47], stochastic ranking [48], global
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FIGURE 11. The convergence of F1-F12 (30 dimensions).

competitive ranking [49], adaptive penalty method [50], mul-
tiple ranking [51] and self-adaptive penalty strategy [52], just
to name a few. The choice of constraint handling technique
is out of the scope of this contribution, and here OSPO only
uses self-adaptive penalty strategy as its constraint handling
technique.

The parameters of OSPO is the same as that defined in
Table 4, and the parameters of the four comparative

algorithms are kept the same as their initial settings in litera-
tures. Since the function evaluations of each problem is kept
the same for each algorithm, these comparisons are quite fair.

The simulation results over these 21 real-world problems
are reported in Table 21 and Table 22. As shown in Table 21,
OSPO can solve most of these problems with promising per-
formance, and some of solutions are even better than compar-
ative algorithms. According to Table 22, the Friedman ranks
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FIGURE 12. The convergence of F13-F19 (30 dimensions).

TABLE 22. Friedman ranks for the 21 real-world constrained optimization problem.
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FIGURE 13. The convergence of F1-F13 (100 dimensions).
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of OSPO is 2.81, and the average ranks of SASS and COL-
SHADE are 2.14 and 2.33 respectively. OSPO outperforms
EnMODE and sCMAgES, and has competitive performance
compared to SASS and COLSHADE.

In conclude, OSPO can solve different kinds of real-world
problems successfully with satisfactory performances, and its
overall performance is quite competitive compared to other
algorithms. There are some improvements left for OSPO to
solve real-world constrained optimization problems, because
the constraint handling technique has not been investigated to
fit with the characteristics of OSPO.

V. CONCLUSION
A novel metaheuristic algorithm with adaptive exploration-
exploitation property named OSPO is proposed in this study.
The OSPO algorithm regards the optimization procedure as
the realization of optimizing stochastic process, and then
OSPO constructs optimal sample paths to seek the global
optimum of the optimization problem. SPDF and Receding
Sampling Strategy are introduced accordingly to help con-
structing the optimal sample path, and the adaptive modifica-
tion of the parameters in SPDF is a key to directly control the
exploration-exploitation property online. This direct control
of exploration-exploitation property gives the algorithm the
ability to deal with different kinds of problems.

Different kinds of test functions with different dimensions
are employed in order to benchmark the performance of the
proposed algorithm. The simulation results show that OSPO
can solve these problems with competitive performance com-
pared to other metaheuristics, and the corresponding analysis
demonstrates that OSPO can solve at least a vast majority of
optimization problems with promising performance.

In addition, 21 real-world optimization problems are tested
with four well-performed comparative algorithms, and the
results illustrate that OSPO can also solve different kinds
of real-world optimization problems with satisfactory per-
formance. Besides, the constraint handling technique can be
modified to further improve the performance of OSPO.

Nonlinear Model Predictive Control (NMPC) is an
advanced control strategy which is popular in industry, and
the receding horizon strategy used in NMPC formulation
makes the optimization problem at each sample instant dif-
ferent from each other. Since OSPO has the potential to
solve different optimization problems with promising per-
formance, OSPO may be a suitable online solver for the
NMPC formulation, and this will be investigated in our future
researches.

This contribution is the initial idea of OSPO. For
future studies, a dedicated constraint handling technique
for OSPO can be constructed. Besides, a parallel popula-
tion version of OSPO can be extended. Moreover, different
types of SPDF can be developed to adaptively control the
exploration-exploitation property.

APPENDIX
See Figs 11 to 13 here.
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