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ABSTRACT In this paper we evaluate a system based on the Microsoft KinectTM sensor, aimed at the
automatic detection of risk postures during human work activities. We first introduce a pick and place
task, where three different lateral standing subjects move light cardboard boxes from the various levels of
a bookcase to its top, and then putting them back to their original places. They repeat the task over several
work cycles and we capture all their natural movements in a continuous way using Kinect, storing the joint
positions and the color images. Secondly, from the joint positions, our system detects specific risk postures
following the definitions of the Rapid Upper Limb Assessment (RULA) method. Finally, we compare the
posture detections by our system with the baseline detections made by a panel of five experts who used the
captured color images. In our study we find that the experts have problems to distinguish among some RULA
postures during a work cycle because of the narrow detection margin and the difficulty to perceive if a limb
reached a certain position; which is particularly true for the cases of wrist and neck. This leads to a larger
false positive rate and to a lower general accuracy, with our system detecting postures that experts do not.
After applying a ±1◦ of relaxation to our system, which in negligible for human perception, we are able to
reach an accuracy of 0.93 in the comparison with the baseline. Our results show the suitability of Kinect for
lateral risk posture detection in pick and place activities.

INDEX TERMS Ergonomics, Kinect, RULA, workplace MSDs.

I. INTRODUCTION
Musculoskeletal disorders (MSDs) are injuries that affect
human body movements or the musculoskeletal system (i.e.,
muscles, tendons, ligaments, nerves, discs, blood vessels,
etc.),1 whose symptoms include pain, discomfort, numbness
and tingling in the affected area. MSDs are known to be the
single largest category of nonfatal workplace injuries that can
lead to temporary or permanent disability, and are responsible
for almost 30% of all worker compensation costs.2 In the
U.S., it is estimated that companies in 2011 spent about

The associate editor coordinating the review of this manuscript and
approving it for publication was Kin Kee Chow.

1http://ergo-plus.com/definition-of-musculoskeletal-disorder-msd/
2http://www.bls.gov/iif/oshsum.htm

50 billion USD on directMSDs-related costs, with an average
expenditure of 15, 000 USD per incident. Moreover, it is also
estimated that the indirect costs can add up to five times the
direct costs of MSDs.3

MSDs represent a trans-disciplinary phenomenon that
affects workers in all types of industries, organizations and
activities. There are several factors that influence MSDs at
the workplace, including socio-demographic, psychological
and physical [1]. Socio-demographic factors include age,
education level, gender, smoking/drinking habits and work
hours. Psycho-social factors include job demands, job control
and job satisfaction. Physical factors include lifting heavy
items, bending, static postures, vibrations, reaching overhead,

3https://www.osha.gov/dcsp/smallbusiness/safetypays/estimator.html
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pushing and pulling heavy loads, working in awkward body
postures and performing the same or similar tasks repetitively.

Assessing the ergonomics of workers during daily work
activities helps to control and take actions in order to mini-
mize the likelihood of suffering a MSD. As such, there are
several methods to measure the risk factors a person can be
affected by during a work day. These methods can be gener-
ally classified into three types [2]: observational, direct and
self-report. Observational methods [3]–[6], involve observing
a person during the course of his/her work day. They have the
advantage of being easy to use, cheap, and applicable to a
large number of activities and a large number of participants.
Nevertheless, postural data collection produces data that is
not very accurate, given the high dynamics of real-world envi-
ronments and the dependency on human expert evaluation,
producing only broad results. On the other hand, direct meth-
ods [7]–[9] make use of instruments and sensors attached
to the individuals in order to collect information about their
postures and movements. Data collected is accurate, but the
cost is high, and they are invasive and therefore hard to use
in real-world scenarios. Additionally, there have been some
attempts to put together techniques and devices from the two
previous methodologies, in order to create more complete
tools [10], [11]. In the two previous type of methods, a visu-
alization of the worker from an external point is necessary,
either by an expert or by a technological instrument [12].
In contrast, self-reports [13] are self-evaluations where work-
ers write questionnaires or work diaries to report pain, pos-
tural discomfort or levels of effort. Self-reports can include
paper surveys, or questionnaires through the web or a mobile
application. Self-reports have some advantages, since they
can be less expensive than direct and observational methods
for evaluating large populations, or in conditions where the
space of research is limited, or where privacy must be main-
tained [14]. Nevertheless, there is a low level of reliability
with this type of methods because the perceptions of the
workers on the postures are imprecise and the pain thresholds
are subjective.

One strategy to help implementing observational methods
in real-world dynamic environments consists of video record-
ing or taking pictures of the workers’ activities. Afterwards,
experts can visualize the recorded images in slow motion and
analyze the data in detail to assess the ergonomics. Using
such devices, human experts can visually detect a number
of postural variables reliably [15]–[17]. Nevertheless, this
methodology still depends on highly-skilled human experts
to discover the risk patterns, which is a slow process that can
be costly.

More modern methods for ergonomic assessment try to
automatize the process of detecting diverse postural variables
by using cameras/sensors arrays, and applying computer
vision and movement/joint detection [18]. It is noteworthy to
mention the recent use of low-cost sensors, such as Microsoft
KinectTM [19]–[23] as a good alternative to more expensive
devices [7], [24], [25]. Nevertheless, most studies where such
technology is used focus on strictly controlled experiments,

where subjects are instructed to perform specific (sometimes
fixed) postures to capture data, and then evaluate methods to
detect those postures automatically [2], [26]–[28].

In this paper we propose to enrich the studies in ergonomics
in work environments by assessing the use of Kinect for
automatic risk evaluation of postures in human work activ-
ities. In order to conduct the assessment, we first use Kinect
to collect postural data of three lateral standing individuals
performing the same task independently. With Kinect cap-
turing the joint positions and the images from the subjects
when performing the task. For this study, we designed a pick
and place task that consisted of repetitive short work cycles
where each individual had to move small light cardboard
boxes from the various levels of a three-level bookcase to its
top, and the other way around. Pick and place is an activity
that many workers in different industries conduct on a daily
basis. For example, in the Bajio region inMexico, where there
are installed several car assembly factories and many metal
mechanic manufactures, the companies indicate the pick and
place activities as some of the most predominant in their work
routines.

In our work, we collected the postural data with Kinect
for the whole activity in a continuous dynamic way. That
is, the subjects did not stop to simulate a specific posture
but performed natural movements. After the capture, with
the joint positions we used an in-house developed framework
to analyze them automatically and evaluate the ergonomic
risk in each posture, following the definitions of the obser-
vational method RULA (Rapid Upper Limb Assessment) [5].
We focused on the analysis of the upper arms, lower arms,
wrists, neck and trunk, since these are the most relevant body
parts for RULA, and the most convenient to observe using
Kinect. Finally, similar to other works in the literature [2],
we use the observational evaluation made by five human
experts, that analyzed the corresponding color images cap-
tured by Kinect, as the baseline to compare the results of the
automatic evaluation.

We have two research hypotheses:

1) It is possible to detect lateral standing ergonomic pos-
tures using the Kinect joint data that is captured in a
continuous dynamic way for a pick and place activity.

2) It is hard for the experts to distinguish among some
RULA postures for a subject during a work cycle,
in particular the cases of wrist and neck.

In our study, we indeed find that for the human eye it is hard
to distinguish correctly among some RULA postures during
a work cycle for the wrist, neck and trunk, because their
detection margins are narrow or because it was difficult to
perceive if the limb reached a certain position. The difficulty
to perceive some postures is observed when analyzing the
images captured by Kinect; the observability rate of postures
by the expert panel; and the false positive rate (a false positive
is a posture detected by Kinect but not observed by the expert
panel). We thus apply in our system a relaxation angle in
the detection margin on the outputs of Kinect, producing
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an increase in the general accuracy by allowing a softer
match between automatic and human detections. With only
±1◦ of relaxation, that is negligible for human perception,
we reached an accuracy of 0.93 when matching the Kinect
detections with the experts evaluation.

Our experiments present encouraging results for the lateral
detection of ergonomic postures for pick and place activities;
reinforcing the suitability of the use of Kinect for the study
of ergonomics in work environments.

The rest of the paper is organized as follows: in Section 2,
we briefly review the relevant literature; in Section 3,
we describe the general RULA method and the simplified
version we used in this study; in Section 4, we present and
explain our methodology; in Section 5, we show and discuss
the experimental results; and in Section 6, we conclude the
paper with a general overview and possible future research
directions.

II. LITERATURE REVIEW
In order to reduce health issues and high costs related with
bad postures, several methods have been developed over the
years to record and detect those bad ergonomic postures
during work activities. The first methods were manual and
observational, such as RULA [5], REBA (Rapid Entire Body
Assessment) [3], OWAS (Ovako Working posture Assess-
ment System) [29], and EAWS (Ergonomic Assessment
Worksheet), to name but a few.With these methods, an expert
uses a working sheet and follows the workers to record
every occasion in which they execute an awkward or bad
posture. More modern methodologies use recorded videos
and images to help experts to detect problematic postures
visually [15], [16].

The most recent observational methods are based on using
video cameras, computer vision and sensors in order to
automatize the ergonomic postures detection process. Among
the sensor-based methods, Kinect [30] has gained popularity
because of its low cost, portability and user-friendly inter-
face. In [31], the author used Kinect to capture relative 3D
coordinates of four 0.10 m cubes in a range of 1 to 3 m,
and compared the estimated postures with the ones of the
Vicon system. He established that, with some corrections,
Kinect can be used as a portable 3D motion capture system
to perform ergonomic field assessments. In [32], the authors
used Kinect for posture analysis and compared the results
with those of an observational method. Their results showed
that Kinect could be incorporated into and effective and
efficient system to help with injury prevention, and made it
clear that the use of Kinect significantly reduced costs when
compared to the use of experts andmanual evaluation. In [33],
the authors performed real-time evaluations of assembly line
operations, using Kinect for 3D motion detection and RULA
as the posture evaluator. Their system produced an alert when
the operator took a risk posture or could become injured.
They encountered challenges in determining voxel size as a
control factor for the accuracy and performance of joint angle
calculations; in particular, they had problems to track the

movements of the wrist. In [34] and [35], the authors devel-
oped a system based on Kinect, RULA and REBA, and
used it to detect postures of seated workers in order to pre-
vent the syndrome of the office workers, caused by sitting
too long in front of the computer. Additionally, the system
used a data mining classification for detection of prolonged
sitting, and it gave an alert to the user when it detected
unhealthy postures. In [2], the authors used Kinect to extract
3D information of persons performing specific predefined
postures, and validated its use to assess their ergonomics.
Their system estimated scores for OWAS and compared the
system scores with the ones provided by human experts,
which used videos and photographs to produce an eval-
uation. They found that the sensor position angle affects
the precision in posture classification. In [36], the authors
developed a system that used Kinect to extract features of
depth images and trained a classifier with such features to
categorize postures based on EAWS. The system calculated
a score for EAWS and compared it with the one calculated
manually. It was applied by adjusting the height of a work
table when the worker’s posture was uncomfortable. In [37],
the authors built a system that analyzed human movements
from a sequence of depth images acquired using Kinect. The
system calculated the information of the dynamic movement
of the body and at the same time classified each move-
ment. In [19], the authors proposed a method to correct the
output data of Kinect to see if there were occlusions that
could produce errors when detecting the body joints. The
method used prerecorded postures to help with the correction,
and calculated a RULA score using both the corrected and
the uncorrected data. The results were compared with those
obtained using the Vicon camera in a work environment with
and without obstruction, and found that the corrected data
produced lower detection errors. In [24], the authors pre-
sented a tool called K2RULA to detect RULA postures using
the depth camera of Kinect. They conducted experiments
using 15 predefined fixed postures performed by an actor in
a controlled scenario. The authors validated their tool in two
ways; first, by comparing the K2RULA scores with those
obtained with the BTS SMART-DX 5000 optical motion
capture system, finding a statistically perfect match, and
second, by comparing the system scores with those obtained
by a RULA expert rater, finding again a statistically perfect
match.

Our study differs from others in the literature in two main
aspects. First, in the scenario, where we are considering a
worker that is situated in front of a machine/furniture per-
forming a repetitive task. In this case, it is not possible
to locate the sensor in a frontal view, that is the common
consideration in most of the related works, because of the
obstruction caused by the machine/furniture. Locating the
sensor to capture the subjects in a lateral view, helps to avoid
such obstruction; considering that the precision of Kinect in
frontal and lateral views is similar as shown in [38], where
the authors track upper body joints with Kinect and with a
BTS multi-view stereo system as the ground truth, finding
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FIGURE 1. Body parts, postures and points in RULA considered in this study.

a precision of 0.25 degrees for frontal and lateral views for
several joints.

The second difference, is that we collected the postu-
ral data for a whole activity in a dynamic way, with the
subjects performing continuous natural movements, while
in most of the works in the literature they captured fixed
postures performed by actors in very controlled and spe-
cific scenarios, which reduces the applicability of the
methods.

III. RULA
RULA [5] is a well-established method used to evaluate the
risk level of a worker suffering an upper limp injury, based
on an analysis of the body posture, muscle use, load weight,
task duration and task frequency. For the analysis, the method
uses a worksheet, where it first divides the human body into
two groups, A and B. Group A corresponds to upper arms,
lower arms and wrists, and group B to neck, trunk and legs.
Second, it evaluates the individual postures of each body part
and rates them in a scale from one to four, depending on the
body part, with one being the most comfortable posture, and
the individual scores are recorded on the worksheet. Third,
the method considers extra postures that affect the individual
scores, such as if the shoulders are raised or the wrist, neck
or trunk are twisted. Fourth, it uses two tables to assign two
aggregate scores between one and nine to group A and group
B independently, depending on the individual scores of all
the group’s body parts. Fifth, it considers two other factors for
each group: muscle use and weight load. Muscle use adds one

point if the posture is held for more than ten minutes or if the
posture occurs more than four times per minute. Weight load
(a weight that is loading by a worker) adds from one to three
points depending on the weight the worker is lifting/moving.
Finally, RULA uses another table to assign a global score of
one to seven.

In this study, we have chosen RULA because it is easy
to implement and understand, and it evaluates different risk
factors of workers in their environment quickly but concisely.
Additionally, it is a recommended method when someone
wants to have a general overview of the workers’ ergonomics
before introducing amore complete and expensive ergonomic
plan. Furthermore, the information obtained from RULA is
sufficient to detect possible injuries produced by incorrect
postures or repetitive movements executed during the work
cycle.

An additional reason for using RULA is that it evalu-
ates postures that are feasible to capture and analyze using
an automatic observational approach based on Kinect; this
makes it possible to compare automatic and human assess-
ments. For practical reasons, in this study we did not use the
complete version of the RULA method. We did not consider
wrist, neck or trunk twists, because it was not feasible to
capture them in our context. Also, the loadwas not considered
because it could not be detected directly usingKinect. Finally,
the legs were not detected because RULA only considers
them if at any point in the task the person discharges the
weight of his body on a single foot, which was not rele-
vant in our study given the design of the task. Nevertheless,
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FIGURE 2. A work cycle of the performed pick and place activity. The first and third rows show
some of the color images acquired, and the second and fourth rows depict the corresponding joint
positions of the subject on the scene.

the impact in the final RULA score of the twists in neck or
trunk, or the leg rising, is minimal.

We thus focused on analyzing the postures of the upper
arms, lower arms, wrists, neck and trunk, considering the
different angles defined by RULA to determine specific pos-
tures. Fig. 1 shows the body parts that we considered in this
study for analysis, together with the different postures of each
body part and the corresponding points in RULA for each
posture.

IV. MATERIALS AND METHODS
A. EXPERIMENTAL SETUP
We conducted our experiments inside a room with natural
light where three subjects standing in lateral view performed
cycles of a pick and place task, and we used a Kinect OneTM

sensor to capture the postures of the subjects. We selected
subjects of different height, weight and sex to ensure diver-
sity, as shown in Table 1.

The Kinect was located approximately at 2.9 m in front
of the scene and over a table at 0.5 m from the floor.

TABLE 1. Physical features of the subjects.

We determined the position of the sensor experimentally,
in order to capture the complete body and extremities of each
subject.

The designed task consisted on repetitive short work cycles
where each subject had to move nine empty cardboard boxes
measuring 0.25× 0.21× 0.05 m, from the various levels of a
three-level bookcase to its top, and the other way around. The
levels were located at three different heights from the floor:
0.24, 0.66 and 1.07 m respectively, with each level containing
three boxes, and the top of the bookcase was at 1.5 m. The
subjects were located at 0.60 m from the bookcase.

In our design, a work cycle consisted on moving one box
from a given level to the top of the bookcase or to move
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FIGURE 3. Joints detected in the human body by Kinect.

one box from the top to its original place. Each of the three
subjects performed 18 work cycles, moving the nine boxes
to the top and then putting them back. The subjects per-
formed the tasks in a natural continuous and dynamic way,
without stopping in any particular position. We recorded the
work cycles at a rate of 10 frames per second to capture
color images and joint positions using the Microsoft Kinect
Development Kit and a desktop PC with 16 GB in RAM,
one Corei7-3960x 3.30 GHz microprocessor and Windows
10. We acquired an average of 40 images per work cycle per
subject, for a total of 2,160 images.

Fig. 2 illustrates some of the color images acquired during
one of the work cycles. The images below depict the corre-
sponding joint positions of the subjects on the scene. Note
that, images (a) and (h) show the subject at the initial and final
postures, respectively, of the work cycle. Thus, a complete
work cycle consisted of a subject taking the box from one of
the three levels, putting it on top of the bookcase and moving
his hands back to the initial posture just before being ready to
pick up another box.

B. JOINT ANGLES COMPUTATION
Fig. 3 depicts the location of the 25 joints detected by Kinect
on a human body. Kinect provided the 3D location (x,y,z) of
each joint. Using these locations we obtained the angles used
by our system to evaluate the RULA postures. Fig. 4 illus-
trates the specific joints and the directions of the angles used
to calculate the postures considered in this study, in accor-
dance with RULA as specified in Fig. 1. We evaluated a total
of 18 postures for the upper arms (five postures), lower arms
(three postures), wrists (four postures), neck (four postures)
and trunk (four postures).

The system used joints 8, 9 and 16 to measure the
upper arm postures. It measured arm postures (see Fig. 4)

FIGURE 4. Joints and angles used with Kinect for detecting the
considered RULA postures.

1.a (0◦
− ±20◦), 1.c (20◦

− 45◦, 1.c (45◦
− 90◦) and

1.d (> 90◦) considering the angle counterclockwise, as illus-
trated in Fig. 4a. For the in-extension posture 1.b (< −20◦) of
the arm, the system considered the clockwise angle to locate
the arm posture, as shown in Fig. 4b. To locate the lower arm
posture, the system used joints 8, 9 and 10 with a clockwise
angle (see Fig. 4c). Using such joints, it located 3 postures
of the lower arm: 2.a (60◦

− 100◦), 2.b (0◦
− 60◦) and

2.c (> 100◦).
The system used joins 9, 10 and 11 to locate the wrist

postures 3.a, 3.b, 3.c and 3.d (see Fig. 4d-f). It measured
the posture 3.a (0◦) by evaluating if the points were colinear.
It measured the posture 3.d calculating the complementary
angle of the counterclockwise angle.

The system computed the neck postures using joints 3,
2 and 20 measuring clockwise, as shown in Fig. 4g
and Fig. 4h. Finally, the system used joints 17, 0 and
20 to calculate the last postures corresponding to the
trunk.

C. EXPERT EVALUATION
A committee composed of five experts visualized the
recorded color images captured with the Kinect sensor,
and separately evaluated the same postures as our system.
The experts are researchers with postgraduate degrees in
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engineering or related areas, and trained to identify postures
as specified in the RULA worksheet.

We obtained a total of 2,160 recorded images that were
analyzed by the experts, with an average of 40 images per
work cycle per subject. The experts made their evaluation
independently of each other. For each subject, we obtained
five worksheets reporting all the risk postures observed dur-
ing a work cycle per subject. In each worksheet it was
recorded a 1 in case the posture was observed, and 0 other-
wise. The final evaluation was obtained based on a consensus
of the five expert results, yielding a uniqueworksheet for each
subject evaluated, indicating whether a posture was observed
or not. The evaluations were made per posture, per subject,
per work cycle, for a total of 1,134 evaluations. The results of
the expert committee were used as a baseline to compare and
evaluate our system results.

A deeper analysis of the expert committee results was
performed to know the real percentage of votes when a body
part position was observed or not during a work cycle. Con-
sidering five expert results, then six events could define the
observability of a specific posture: 1) all experts agreed to
observe the posture, 2) 4 of 5 experts agreed, 3) 3 of 5 agreed,
4) 2 of 5 agreed, 5) only 1 observed the posture, 6) nobody
observed the posture. Events 1 and 2 labelled the posture as
‘‘observable’’ with a high percentage of votes. In contrast,
events 5 and 6 labelled the posture as ‘‘not observable’’
(abbreviated as ‘‘Not obs.’’) with a high percentage of votes.
Finally, events 3) and 4) group the cases ‘‘observable’’ or ‘‘not
observable’’ with a minimal difference of votes, and this case
is labelled as ‘‘unsure’’.

Table 2 illustrates the observability rate of all the postures
by the expert committee during the evaluation of all the work
cycles of the three subjects. The numerical values denote the
rates of ‘‘observable’’, ‘‘not observable’’ and ‘‘unsure’’ per
posture. The values of each rate goes between 0 and 1, and
the sum of the values of the three rates per posture is 1. High
values in a columnmean the experts agree about they observe,
not observe, or were unsure about a posture. Values in the
unsure column means there is a degree of uncertainty.

In the case of the upper arm, we have in all postures a
high degree of agreement for the observable or not observable
cases, which means there is a low degree of uncertainty about
the observability (or not) of the postures. Postures 1.a, 1.c, 1.d
and 1.e were observed most of the times, while posture 1.b
was not observed most of the times. Only posture 1.a has a
slight degree of uncertainty. The same degree of agreement
and certainty for observability occurs with the lower arm
postures 2.a and 2.b. Posture 2.c has a median agreement for
the unobservable case, but there is a significant value in the
unsure column.

In the case of the wrist, we have three postures with a high
degree of agreement; postures 3.a and 3.b were observed (3.b.
with a certain degree of uncertainty) and posture 3.e was not
observed. Postures 3.c and 3.d are more uncertain, because
there are high values in the unsure columns, specially for
posture 3.c.

TABLE 2. Observability rate of postures by the expert committee.

For the neck, there is a posture, 4.a, with a high degree
of agreement that it was observed. Posture 4.c was not
observed but with a certain level of uncertainty. Postures 4.b
and 4.d were observed in some cases and not observed in
others, but both have a degree of uncertainty, specially for
posture 4.b.

For the trunk, we have a posture, 5.b, that was observed
with a slight degree of uncertainty. Posture 5.a has a high
value in the unsure column and thus a high degree of uncer-
tainty. Postures 5.c and 5.d have values in the observed and
not observed columns, but low values in the unsure col-
umn, that would mean that in some cases the postures were
observed and in others they were not. In this case, that was
expected, since for the designed task, only in some cases (for
the boxes at the bottom levels of the bookcase) the subject
would have to bend to such degrees.

To better understand from where uncertainty comes and
why the experts were unsure about observing some postures,
we analyze the color images shown in Fig. 2, which are part
of the ones used by the expert committee to do its assessment
on the RULA postures. From the images, we can observe that
for a human evaluator it would be difficult to perceive small
angles(< 10◦), and therefore it would be hard to distinguish
among some RULA postures during a work cycle or if a limb
reaches a certain position. That apply in the case of postures
3.c, 3.d, 4.b, 4.c and 5.a.

We computed two measures of inter-agreement among
experts: Pearson correlation coefficient, and Krippendorff’s
alpha coefficient. Table 3 shows the Pearson correlation
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FIGURE 5. Performance of our system in terms of accuracy and complement of false positives and false negatives
regarding the correction angle for subjects 1, 2 and 3.

TABLE 3. Correlations of the complete postures evaluation by the expert
committee.

coefficients among expert evaluations, with an average cor-
relation of 0.61. The Krippendorff’s alpha coefficient was
0.6. Both coefficients were computed considering every eval-
uation made by each expert. Both measures are similar and
present a moderate level of agreement, showing the degree of
uncertainty in the observations.

The advantage of our Kinect based system, is that Kinect
obtain the location of each joint. With those locations,
the computation of the formed angle was straightforward and
with a higher precision than by simply estimating the angle
with the naked eye.

V. RESULTS
We evaluated the accuracy of our system using the expert
panel as the baseline. We defined the accuracy as the match
between those postures observed by the experts and those
detected by Kinect. A false positive is a posture detected
by Kinect but not observed by the expert panel; and a false
negative is a posture not detected by Kinect but observed by
the experts. Similar to expert evaluation, Kinect detections
were made per posture, per subject, per work cycle, for a total
of 1,134 evaluations.

Fig. 5 illustrates the general accuracy of our system and the
complement of the false positive rate (FPR) and false negative
rate (FNR) for each subject. The first tick in the plot, indicates
that our proposed strategy using Kinect produces a direct
average accuracy of 0.83 compared to the expert panel. It can
be observed that in all cases the FPR is higher than the FNR,
whichmeans that themost common error is a posture detected
by Kinect but not observed by the expert panel. As mentioned
in the previous section, some RULA postures are difficult to
distinguish by the naked eye, generating uncertainty in the

final decision, and in such cases the expert panel produced
a result by majority with a minimal difference of votes.
On the other hand, Kinect measures the angles directly, and
can detect postures with a higher precision than a human
evaluator. For instance, posture 4.c requires an inclination of
the neck of > 20◦ to be considered, but if the angle was of
only 21◦ it could be hard to detect by the naked eye; in the case
of Kinect, this value could be detected with better precision.

Considering the previous argument, to improve the accu-
racy of our method we considered a small relaxation of the
margin in the upper and lower limit for detecting each posture
with Kinect. This would make the Kinect detection flexible
by simulating human visual perception. In Fig. 5, the rest of
the ticks illustrates the effect of the relaxation angle (from
±1◦ to ±10◦ ) in the performance. We observe that with a
correction angle of±1◦ (second tick) the average accuracy of
the three subjects increased to around 0.93, and, as expected,
we also see a general tendency to improve the performance
when we increase the relaxation angle.

As described in subsection IV-A, the subjects’ activity
was performed in 18 cycles. In cycles 1 to 9 some light
cardboard boxes were placed over a bookcase, and during
cycles 10 to 18 the boxes were put back in their original
places. In a more detailed analysis, Fig. 6 depicts the sys-
tem’s performance per work cycle using different relaxation
angles. Each column of the figure illustrates the performance
results for subjects 1, 2 and 3 respectively, and each row
illustrates the results using a relaxation angle of 0◦,±1◦,±5◦

and ±10◦, respectively. The accuracy without considering a
relaxation angle varies from 0.7 to 0.9 for the three subjects
along all cycles. Particularly, for subject 1, only work cycle
9 reached 0.9 of accuracy; for subject 2, work cycles 2 to
6 reached 0.9 of accuracy; and for subject 3, work cycles
1 to 6 obtained 0.9 of accuracy. With a relaxation angle
of ±1◦, for subject 1 the work cycles reached an accuracy
between 0.85 and 0.95; for subject 2 between 0.9 and 0.95;
and for subject 3 between 0.8 and 0.95. With a relaxation
angle of ±5◦, for subject 1 the work cycles reached an accu-
racy between 0.9 and 1 (in 12 cases); for subject 2 between
0.9 and 1 (in 12 cases); and for subject 3 between 0.85 and 1
(in 11 cases). Finally, with a relaxation angle of±10◦, almost
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FIGURE 6. Performance of our system in terms of accuracy and complement of false positive and false negative rates regarding the
correction angle and the work cycle for subjects 1, 2 and 3.
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FIGURE 7. Performance of our system in terms of accuracy and complement of false positive and false negative rates regarding the
correction angle and the RULA posture, as indicated in Fig. 1, for subjects 1, 2 and 3.

all work cycles of the three subjects reached their maximum
performance. The exceptions were cycle 18 of subject 1 and

cycles 11 and 12 of subject 3. However, such cycles show
false negative detections obtained from the expert panel;
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whichmeans that the posture was certainly detected using our
system.

An analysis of the system’s performance from a different
perspective compares the average accuracy of detecting each
posture along all cycles, considering the same relaxation
angles as in Fig. 6. The system’s performance regarding the
observed postures per subject is summarized in the plots
shown in Fig. 7. In the first row (without a relaxation angle),
detection of postures with a high degree of uncertainty (see
Table 2, 2.c (except subject 2), 3.b (only subject 1), 3.c, 3.d
(except subject 3), 4.b, 4.c, 4.d, 5.a (except subject 3) and 5.b
(except subject 3) show mid-values for each subject, which
shows the difficulty to detect such postures by all the experts.
In the second row, when using a relaxation angle of ±1◦),
detection of postures 3.c, 3.d, 4.b, 5.a and 5.b improved
notably. With a relaxation angle of ±5◦), practically all the
postures improved their detection accuracy, except for pos-
ture 4.d in subject 3. With a relaxation angle of ±10◦) all the
postures reached almost a perfect accuracy, except for posture
2.a in subject 3 and 1.e in subject 1. In those cases there are
false negatives, which means the expert were confused about
the exact position of the upper and lower arm for the particular
subjects.

VI. CONCLUSION AND FUTURE WORK
In this study, we have presented a system to assess the use of
Kinect in the automatic risk evaluation of postures in human
work activities following the RULA specifications. We con-
ducted experiments with a ‘‘pick and place’’ task, where three
lateral standing subjects had to move nine empty cardboard
boxes from the levels of a three-level bookcase to its top
(during 9 work cycles), and then putting them back in their
original places (with another 9 work cycles). We recorded
the work cycles using Kinect at a rate of 10 frames per sec-
ond, obtaining the joint positions and color images for the
three subjects. Our system used the joint positions to detect
the RULA postures for the upper arms, lower arms, wrists,
neck and trunk. We compared the results of our system with
the observational evaluation made by a committee of five
experts that analyzed the color images captured by Kinect.
The comparisons showed that Kinect is a suitable device for
assessing the ergonomics of lateral standing subjects at work
environments, with an average accuracy of 0.83 between the
system and the expert committee without considering any
relaxation in the margin of detection.

In our study we found that human visual perception is
prone to more mistakes than the automatic system based on
Kinect when deciding if a posture was observed or not. This
is particularly true when the angle to determine the postures is
within a small range; as is the case for postures of wrists and
neck. Following this observation, we relaxed the margin used
to consider a match between posture detections by the system
and posture detections by the experts. When we relaxed the
margin of detection by only ±1◦, we reached an accuracy
of 0.93, and with a correction of ±10◦ we reached an almost
perfect accuracy. The correction of ±1◦ is a small angle in

terms of human visual perception at the distance where we
located the sensor.

Kinect sensor is thus a reliable device to consider for
automatic detection of ergonomics when dealing with tasks
similar to the one designed here, where the subject does not
walk or move their feet constantly, and performs the task
in a lateral standing posture. Similar tasks are common in
assembly lines, workshops and warehouses.

Future studies should conduct experiments with our sys-
tem in real-world environments, in order to detect possi-
ble failures and how to deal with them. A second type of
study could explore the usability of Kinect when detecting
ergonomics in more complex tasks, where other postures are
performed, including the twist of wrists, neck and trunk, and
the use of legs to reach or place certain objects. In order
to reach this goal, we consider that the use of an array
of sensors located at different places in the work environ-
ment could help by providing postural information from dif-
ferent angles. Finally, it would be interesting to study the
effect of loads in the ergonomics, and idea for that would
be to use a system that combines Kinect with some direct
sensors.
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