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ABSTRACT Most of the advanced nonlinear control strategies reported in the literature for underactuated
mechanisms, such as overhead cranes, require the knowledge of all state variables. For cranes, the state vector
includes variables related to the load sway and its velocity. The flatness property of crane-like systems can
be exploited to solve both motion planning and tracking problems, so that the load (whose coordinates are
included in the set of the flat outputs) exponentially follows a rapid reference trajectory. However, unmodeled
friction phenomena and limitations on the direct measurement of sway-related state variables usually impede
the practical implementation of flatness-based control laws. This paper proposes the use of an adaptive
unscented Kalman filter to estimate friction forces and unmeasured state variables. The convergence of the
filter is improved using a novel technique, called condition-based selective scaling. The performance of the
suggested scheme is verified through a set of computer simulations on a 2D overhead crane system.

INDEX TERMS Overhead crane, feedback linearization, flatness based control, adaptive unscented Kalman
filter, condition-based selective scaling.

I. INTRODUCTION
Automatic control of cranes generally aims to quickly trans-
port heavy loads from one place to another with the least
sways possible and accurately position them at a target
point to improve productivity and safety. Since the demand
for automation of crane systems has increased, numer-
ous control strategies for cranes have been increasingly
developed [1]. Open-loop techniques such as input shaping
approaches [2]–[5] are easy and cost-effective to implement
without additional sensors. However, they are highly sensitive
to unknown external disturbances (e.g., frictional forces),
since the control input is predetermined and not adjusted dur-
ing motion. Thus, various closed-loop techniques have been
proposed: model predictive control [6], [7], energy-based
control [8]–[10], intelligent control approaches [11], [12],
slidingmode control [13]–[16], Lyapunov-based control [17],
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nonlinear control methods [18]–[20], and other methods [21],
[22]. In addition, adaptive fuzzy control was presented in [23]
to address actuator dead zones. An observer-based nonlin-
ear control method to avoid actuator saturation was pro-
posed in [24]. Some authors proposed motion planning-based
tracking control by exploiting the flatness property of
cranes, which is useful to design trajectories and tracking
controllers [25]–[30].

Feedback control has two objectives in the case of cranes:
to follow a desired (non quasi-static) load trajectory, and to
eliminate sway due to external disturbances and uncertain
parameters. Both design and tracking of aggressive load tra-
jectories require knowledge of the nonlinear model of the
crane. In addition, for both tracking and sway elimination,
knowledge (measurement or estimation) of the load posi-
tion, sway angles, and frictional forces is necessary. Various
feedback control techniques have been presented under
the assumption that continuous measurements of the sway
angles are available using sensors such as rotary encoders.
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Continuousmeasurements of sway angles are usually realized
by a mechanism in contact with the cable, which is usually
feasible only in laboratory environments. Such measurement
systems are currently not applied to industrial crane systems
to the best of our knowledge because they lack sufficient
reliability and robustness and introduce extra wiring and
additional potential failure causes. The direct measurements
of the load position and frictional forces are also unreliable or
nonexistent in real crane systems. In real applications, only
motor positions are easily measured, so issues in the practi-
cal implementation of advanced feedback control techniques
involve the availability of estimation techniques that provide
robust estimates of unavailable signals needed by the control
laws.

The estimation of sway angle is impeded by the unknown
inputs (frictions) and dead zone. Many attempts to estimate
the sway angle have been accomplished by employing differ-
ent types of additional sensors, such as load cells [31], IMU
sensors [32], [33], and vision sensors [34], [35], to overcome
the unknown frictions and dead zones, despite increasing
complexity for system integration. Meanwhile, various dis-
turbance observers and similar techniques are designed to
cancel the effect of frictions and dead zones on control inputs
to improve the steady-state tracking results [36]–[39]. How-
ever, the performance of these disturbance observers may not
be guaranteed, unless the sway angle is available or the cranes
are initially in equilibrium.

In this work, an adaptive unscented Kalman filtering
technique is developed to estimate both state variables and
unknown inputs. Standard versions of the Kalman filter
(KF), including nonlinear filters such as EKF and UKF,
use constant noise/uncertainty covariance matrices Q and R,
i.e., a priori knowledge about the noise properties. If the
uncertainty covariance matrices are inconsistent with the real
uncertainty between the system and the deterministic model
in the KFs, such KFs will diverge or be biased. To solve
this problem, standard KFs have been combined with vari-
ous adaptation techniques. On-line estimation techniques and
scaling techniques for noise covariance matrices result in a
family of adaptive KFs [40]–[44].

The adaptation technique in this paper is technically a mix
of estimation techniques and selective-scaling techniques for
the process noise covariance matrix Q, and its concept is first
suggested in [45]. Indeed, the estimation of Q is necessary in
systems with unknown input disturbances, because the statis-
tical property (covariance) of process noise usually changes
over time. The derived estimation formula for Q is valid
when the actual covariance of the process noise is assumed to
slowly change. However, in practice, this assumption is not
true for the crane system that experiences rapidly (step-like)
changing disturbances such as friction. Thus, the selective
scaling technique is required to tune the estimate of Q to
prevent diverging and improve the convergence rate of the
Kalman filter. Furthermore, we propose a condition-based
use of the selective scaling method to deal with a transient
estimation phase. When inaccurate transient estimates are

used for the feedback, the control mechanism results in an
unexpected state transition from the filter viewpoint, which
leads to excessive scaling of Q and prevents the filter from
reaching a steady state. This problem can be resolved by the
conditional usage of the selective scaling technique.

We exploit the flatness property (exact linearization) of the
crane system to avoid any linearization approximations in the
controller design process. The contribution of the paper is to
implement the flatness-based control law using the proposed
filter without being supported by any additional sensors. The
proposed filtering technique is highlighted by the fact that
the state variables and unknown input disturbances can be
simultaneously estimated, considering the nonlinear model
and a conditional selective scaling-based adaptive estimation
technique. The simulation results show that the proposed
filtering technique is suitable for the control of cranes.

The remainder of the paper is as follows. An overall struc-
ture of observer-based feedback linearization and input com-
pensation for flatness-based motion control is presented in
Section II. Section III describes an extension of the adaptive
UKF algorithm to a continuous-discrete stochastic system
and the detailed adaptation laws, including a condition-based
selective scaling law. In addition, a variant of the adaptation
law according to the discretization of the continuous-time
nonlinear crane system is discussed in detail. A set of sim-
ulation results of estimation and tracking control is shown in
Section IV. Section V concludes the paper with a summary.

FIGURE 1. The two-dimensional overhead crane.

II. CONTROL SYNTHESIS
A. CRANE DYNAMICS AND FLATNESS PROPERTY
The dynamic equations of the 2D crane in Figure 1 can
be derived using the Lagrangian method (e.g., [26], [29])
so that the generalized coordinates are selected as r , l, and
θ : the trolley displacement, cable length, and sway angle
of the suspended load w.r.t. the vertical, respectively. Then,
the second order dynamics is obtained as

M

r̈l̈
θ̈

+ h =


F

−
T
ρ
0

 , (1)

M =


m1 + m2 m2 sin θ m2l cos θ

m2 sin θ m2 +
J
ρ2

0

m2l cos θ 0 m2 l2

 , (2)
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h =

−m2 lθ̇2 sin θ+2 m2θ̇ l̇ cos θ

−m2 lθ̇2 − m2g cos θ

m2 l(2l̇θ̇ + g sin θ )

 , (3)

where F and T are the driving forces applied for traveling
and hoisting actions, m1 and m2 are masses of the trolley
and load, J is the moment of inertia for the winch with
a radius of ρ, and g is the gravitational acceleration. It is
assumed that the cable that connects the load and the winch
is mass-less and rigid, and the sway of load remains within
−π < θ < π . In this work, a trajectory tracking control
approach using the flatness property of cranes is considered
to achieve anti-sway positioning for underactuated loads. The
flatness property is particularly advantageous for solving both
trajectory planning and tracking control.

The flatness is a property of the system, which implies
that a nonlinear system can be exactly transformed into a
linear system using an output feedback scheme. A nonlinear
system ẋ = f (x, u) is differentially flat if one can find a set
of variables, which is called flat output y, such that the state x
and input u can be expressed in terms of y and a finite number
of its time derivatives.

The crane system with x = [r, l, θ, ṙ, l̇, θ̇ ]T and u =
[F,T ]T is differentially flat [26]–[28]. The flat output can
be chosen as

y =
[
ξ

ζ

]
=

[
r + ρ + l sin θ
−l cos θ

]
,

such that

x = α(y, ẏ, ÿ, y(3)),

u = β(y, ẏ, ÿ, y(3), y(4)),

where ξ and ζ , which are components of y, are differentially
independent as the Cartesian coordinates of load, which is
obtained from geometric constraints.

B. FEEDBACK LINEARIZATION
The linearization scheme with dynamic feedback exploiting
the flatness property is shown in Figure 2. Dynamic feedback
is largely divided into static feedback and dynamic compen-
sator. The dynamic compensator is designed as[

F
T

]
= 9

[
µ1
θ̈

]
+ ψ, (4)

9 =

 m2 sin θ −m1l sec θ

−
m2ρ

2
+ J

ρ
−
J
ρ
l tan θ

 , (5)

ψ =

−m2g sin θ cos θ − m1 sec θ (2l̇θ̇ + g sin θ )

m2gρ cos θ−
J
ρ
lθ̇2−

J
ρ
tan θ (2l̇θ̇ + g sin θ )

 ,
(6)

µ̇ =

[
µ̇1
µ̇2

]
=

[
µ2
η̈

]
, (7)

where µ1(= η) and µ2(= η̇) are additional states owned by
the dynamic compensator, and η is the acceleration in the

FIGURE 2. Feedback linearization scheme.

cable direction, which is defined by

η = −
TL
m2
+ g cos θ = r̈ sin θ + l̈ − lθ̇2

TL is the tension exerted by the cable. By integrating the
system (1)-(3) and dynamic compensator (4)-(7), one can
obtain the extended model as follows:

˙̄x = f̄ (x̄, ū) (8)

with

x̄ = [r, l, θ, ṙ, l̇, θ̇ , µ1, µ2]T , (9)

ū = [µ̇2, θ̈ ]T . (10)

Then, the extended system (8)-(10) is combined with static
feedback, whose equations are derived by taking the time
derivative of y to order 4:[
µ̇2
θ̈

]
= 8

([
ξ (4)

ζ (4)

]
− φ

)
, (11)

8 =

[
sin θ µ1 cos θ − g cos 2θ

− cos θ µ1 sin θ − g sin 2θ)

]−1
, (12)

φ =

[
2µ2θ̇ cos θ − θ̇2(µ1 sin θ − 2g sin 2θ)

2µ2θ̇ sin θ + θ̇2(µ1 cos θ − 2g cos 2θ)

]
. (13)

This yields the linear system described by

ẋ ′ = Ax ′ + Bu′ (14)

with

x ′ = [ξ, ξ̇ , ξ̈ , ξ (3), ζ, ζ̇ , ζ̈ , ζ (3)]T , (15)

u′ = [ξ (4), ζ (4)], (16)

where x ′ is the new state vector whose components are the flat
output and its time derivatives, which govern the transition
of the linear system (14). The dynamic feedback renders a
decoupled linear input-output map from the new input u′

to the flat output y. The missing new state variables are
represented in terms of x and µ as follows:

ξ̇ = ṙ + l̇ sin θ + lθ̇ cos θ,

ξ̈ = µ1 sin θ − g sin θ cos θ,

ξ (3) = µ2 sin θ + µ1θ̇ cos θ − gθ̇ cos 2θ,

ζ̇ = −l̇ cos θ + lθ̇ sin θ,

ζ̈ = −µ1 cos θ − g sin2 θ,

ζ (3) = −µ2 cos θ + µ1θ̇ sin θ − gθ̇ sin 2θ.
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C. DESIGN OF THE TRACKING CONTROLLER
We suppose that the reference load trajectories (ξr (t), ζr (t))
are sufficiently smooth to have their time derivatives up to
order 4. For the resulting system defined by (14)-(16), one
can easily design a tracking controller based on the following
linear feedback law:

u′1 = ξ
(4)
r + kξ,3e

(3)
ξ + kξ,2ëξ + kξ,1ėξ + kξ,0eξ , (17)

u′2 = ζ
(4)
r + kζ,3e

(3)
ζ + kζ,2ëζ + kζ,1ėζ + kζ,0eζ , (18)

where eξ and eζ are the tracking errors defined by

eξ = ξr − ξ,

eζ = ζr − ζ.

By substituting u′1 = ξ
(4) and u′2 = ζ

(4) into (17) and (18),
we can obtain error dynamics of the closed-loop system as
follows:

e(4)ξ + kξ,3e
(3)
ξ + kξ,2ëξ + kξ,1ėξ + kξ,0eξ = 0, (19)

e(4)ζ + kζ,3e
(3)
ζ + kζ,2ëζ + kζ,1ėζ + kζ,0eζ = 0. (20)

If the error dynamics (19) and (20) are made stable by an
appropriate choice of the control gains kξ,i and kζ,i for i =
0, . . . , 3, the tracking errors exponentially converge to zeros.
The control gains can be simply determined using the pole
placement method. Considering four-fold poles as desired
ones, the characteristic polynomials of the closed-loop error
dynamics are such that

(s− aξ )4 = s4 − kξ,3s3 + kξ,2s2 − kξ,1s+ kξ,0,

(s− aζ )4 = s4 − kζ,3s3 + kζ,2s2 − kζ,1s+ kζ,0,

Thus, the control gains are determined by

kξ,3 = 4aξ , kξ,2 = 6a2ξ , kξ,1 = 4a3ξ , kξ,0 = a4ξ , (21)

kζ,3 = 4aζ , kζ,2 = 6a2ζ , kζ,1 = 4a3ζ , kζ,0 = 4a4ζ , (22)

where aξ < 0 and aζ < 0 are the desired, four-fold poles.

D. MOTION PLANNING
For a rest-to-rest motion planning of the load, it is necessary
for the reference trajectories to satisfy the following initial
and final conditions:

ξr (tI ) = ξI , ξ̇r (tI ) = ξ̈r (tI ) = ξ (3)r (tI ) = ξ (4)r (tI ) = 0,

(23)

ξr (tF ) = ξF , ξ̇r (tF ) = ξ̈r (tF ) = ξ (3)r (tF ) = ξ (4)r (tF ) = 0,

(24)

ζr (tI ) = ζI , ζ̇r (tI ) = ζ̈r (tI ) = ζ (3)r (tI ) = ζ (4)r (tI ) = 0,

(25)

ζr (tF ) = ζF , ζ̇r (tF ) = ζ̈r (tF ) = ζ (3)r (tF ) = ζ (4)r (tF ) = 0,

(26)

where (ξI , ζI ) is the set point of the initial position at t = tI ,
and (ξF , ζF ) is that of the final position at t = tF > tI .
It is reasonable to select a set of polynomials to provide

smooth and continuous motion with some level of continuous

derivatives [55]. With the polynomial interpolation method
using the given conditions (23) and (24), the reference load
trajectory ξr (t) for the X -axis can be generated as follows:

ξr (t) = ξI + (ξF − ξI )
9∑
i=5

ci

(
t − tI
tF − tI

)i
, t ∈ [tI , tF ],

with c5 = 126, c6 = −420, c7 = 540, c8 = −315, and
c9 = 70. If ξr (t) 6= ξI , the desired path of the load in
the XZ -plane can be designed by considering the following
geometric relation: ζr (t) = ζr (ξr (t)) [46]. In this work,
a parabolic path is considered so that reference trajectory
ζr (t), which satisfies conditions (25) and (26), is generated
as follows:

ζr (t) = ζr (ξr (t)) = a(ξr (t)− ξm)2 + ζm,

a =
ζI − ζm

(ξI − ξm)2
,

ξm =

√
ζI−ζm
ζF−ζm

ξF + ξI√
ζI−ζm
ζF−ζm

+ 1
,

where ζm is a design parameter that determines a and ξm.

E. OBSERVER-BASED CONTROL AND
INPUT COMPENSATION
The control scheme described above requires that all state
variables are available for feedback and there be no dis-
turbances. However, in practical crane applications, only
displacements r and l are usually measured, and the crane
system is disturbed by unknown inputs such as friction and
traction. Considering the disturbance inputs that act on the
trolley and winch, we can rewrite the state-space model of
the crane system as

ẋ = f (x, ũ),

with ũ, the disturbed input vector specified by

ũ =
[
F − γ1
T + γ2

]
= u+3ud , (27)

where ud = [γ1, γ2]T is the additive disturbance input vector.
An alternative is to develop an observer that can simul-

taneously estimate the state variables and unknown inputs
so that the state feedback and disturbance rejection can be
collaboratively achieved. The observer-based control strategy
is illustrated in Figure 3. The input to the crane system and
observer is replaced with the compensated input uc:

uc = u−3ûd ,

where ûd is the estimate of the disturbance input.
The simultaneous estimation problem for a crane system

with unknown input disturbances is extremely challenging
due to the nonlinearity and inconsistent information about
the model and process uncertainties. To tackle these difficul-
ties, we propose an adaptive unscented Kalman filter with
a condition-based selective scaling (AUKF-CSS) technique
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FIGURE 3. Architecture of the proposed AUKF based crane control.

that can handle nonlinear equations and adapt to the pro-
cess uncertainty worsened by unmodeled disturbance inputs.
A specific algorithm of the proposed AUKF-CSS is shown in
Section III.

III. ADAPTIVE UNSCENTED KALMAN FILTER
In this section, a novel adaptive UKF is discussed in detail
to solve the simultaneous state and unknown input estima-
tion problem, which ranges from constructing an extended
state-space model including the unknown inputs as state
variables, through discretizing, to adapting to inconsistent
process uncertainty.

A. MODEL DESCRIPTION FOR KALMAN FILTERING
Consider a continuous-discrete stochastic system:

dx(t) = f (x(t), ũ(t))dt + dw(t), (28)

z(k) = H1x(tk )+ v(k),

where x(t) ∈ Rn is the state vector, ũ(t) ∈ Rm is the
disturbed input vector, and z(k) ∈ Rp is the measurement
vector taken at t = tk via a digital processor. In addi-
tion, w(t) is Brownian motion with diagonal diffusion matrix
Q1(t), and v(k) is zero-mean Gaussian measurement noise
with covariance matrix R(k). Here, it is assumed that the
disturbance is additive to the known input such that ũ(t) =
u(t)+3ud (t), where ud (t) ∈ Rq for q ≤ p is the disturbance
input vector, and 3 is a known constant matrix. We sup-
pose that the measurement equation is linear. This holds true
for many applications, including mechanical systems, where
measurements are obtained on configuration variables and
their derivatives, or the linear dependence of measurements
on the state variables can be ensured by nonlinear coordinate
transformation [47]–[49].

We encounter the problem of continuous-discrete
unscented Kalman filtering (CD-UKF) (see [50], [51] for
a detailed discussion on the CD-UKF). A possibility is to
use the Euler method to derive a numerical solution of the
stochastic differential equation (28) for the time increment,
1t = tk+1 − tk . Then, one can obtain

x(tk+1) = x(tk )+ f (x(tk ), ũ(tk ))1t +1w(tk )+ o(1t2),

where 1w(tk ) ∼ N (0,Q1(tk )1t). o(1t2) is higher-order
terms with powers of 1t greater than or equal to 2, and the
higher-order terms can be ignored when 1t is sufficiently
close to zero.

Assuming that the behavior of the disturbance inputs is
also a Brownian motion with diagonal diffusion matrixQ2(t),
we model the stochastic process of ud (tk ) for the time incre-
ment as the random walk process:

ud (tk+1) = ud (tk )+1wd (tk ), (29)

where 1wd (tk ) ∼ N (0,Q2(tk )1t). Similar to the joint
parameter-state estimation approach suggested in [52], [53],
the extended model with the augmented state vector,

xa(tk ) = [x(tk ), ud (tk )]T ,

is introduced as follows:

xa(tk+1) =
[
x(tk )+f (x(tk ), ũ(tk ))1t

ud (tk )

]
+

[
1w(tk )
1wd (tk )

]
,

xa(tk+1) = fa(xa(tk ), u(tk ))+1wa(tk ), (30)

z(k) =
[
H1 0

]
xa(tk )+v(k) = Hxa(tk )+v(k), (31)

where 1wa(tk ) ∼ N (0,Q(tk )1t) such that Q(tk ) =
diag{Q1(tk ),Q2(tk )}.

Provided that the extended model defined by (30) and
(31) is observable, a discrete-time UKF can be constructed.
With the zero-order holding assumption that the variables are
piecewise constant over the sampling interval, we will write
xa(k) := xa(tk ), u(k) := u(tk ), and1wa(k) := 1wa(tk ) where
1wa(k) ∼ N (0,Q(k)) so that Q(k) := Q(tk )1t .

B. ADAPTIVE UKF ALGORITHM
In the simultaneous estimation problem, the measurement
noise covariance R(k) is assumed to be completely known
independent of k with reasonable accuracy; hence, R(k) = R.
However, the process noise covariance matrixQ(k) is consid-
ered time-varying, so an adaptation technique is required for
its estimation.

As usual, we distinguish the estimates of the time
update (prediction) phase and the measurement update phase.
For step k , we denote by x̂−a (k) (resp. P

−(k)) the state estima-
tion (resp. its covariance matrix) after the prediction phase
and by x̂a(k) (resp. P(k)) after the measurement update. The
unscented transform [54] of estimate x̂a(k − 1) and that of
covariance matrix P(k−1) under nonlinear mapping fa with
fixed u(k−1) are denoted byUT {f (·, u(k−1)), x̂a(k−1),P(k−
1)} so that the time update phase of the AUKF (through Q̂: the
adaptation of Q) reads

[x̂−a (k), P̄(k)] = UT{fa(·, u(k−1)), x̂a(k−1),P(k−1)},

P−(k) = P̄(k)+ Q̂(k−1).

Since the measurement equation (31) is linear, the time
update phase is combined with a linear measurement update
phase, which is represented by

ẑ−(k) = Hx̂−a (k),

Pzz(k) = HP−(k)HT
+ R(k),

K (k) = P−(k)HTP−1zz (k),

x̂a(k) = x̂−a (k)+ K (k)(z(k)− ẑ−(k)),

P(k) = P−(k)− K (k)Pzz(k)KT (k),

108632 VOLUME 9, 2021
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where K (k) and Pzz(k) are the Kalman gain and innovation
matrix, respectively.

The AUKF further includes the adaptation phase that pro-
vides Q̂(k) to be used for step k + 1 in the following form:

Q̂(k) = S(k)Q̂−(k),

where Q̂−(k) is an estimated process noise covariance matrix,
and S(k) is a so-called scaling matrix.

C. ADAPTATION PHASE
1) ESTIMATION OF Q
Let 1wa(k) =

√
1tω(k), where ω(k) ∼ N (0, Q(k)

1t )
is the Gaussian noise sequence, which is discussed
in a discrete-time adaptation scheme. We apply the
innovation-based adaptation method [44] derived from the
maximum likelihood (ML) cost function using a window of
N samples:

k∑
j=j0

Q(j)
1t
=

k∑
j=j0

1x̂a(j)1x̂a(j)T +
k∑

j=j0

(P(j)− P̄(j)) (32)

where1x̂a(j) = K (j)z̃(j) is the state correction sequence, and
z̃(j) = z(j) − ẑ−(j) is the innovation. For a window of N
samples j0 = k − N + 1.

With the assumption that Q(k) is slowly changing inside
the observation window of lengthN , let us define the estimate
Q̂−(k) as

Q̂−(k) :=
1
N

k∑
j=j0

Q(j). (33)

Substituting (33) into (32) yields

Q̂−(k) =
1t
N

k∑
j=j0

(1x̂a(j)1x̂Ta (j)+ P(j)− P̄(j)).

Recall that the process noise is supposed to be white
Gaussian noise, whose components are considered a
sequence of serially uncorrelated random variables so that
off-diagonal elements are not up for discussion. Therefore,

Q̂−ii (k) =
1t
N

k∑
j=j0

(
1x̂2a,i(j)+ Pii(j)− P̄ii(j)

)
, (34)

where i = 1, . . . , n+q. The terms P̄ii(j) maymake the expres-
sion on the right-hand side negative. Some authors eliminate
this problem using a steady-state assumption, i.e., Pii(j) ∼=
P̄ii(j); then equation (34) becomes

Q̂−ii (k) =
1t
N

k∑
j=j0

1x̂2a,i(j), for k ≥ 1 (35)

with initial values for j ≤ 0

1x̂a,i(1− N ) = · · · = 1x̂a,i(−1) = 1x̂a,i(0) = 0.

The estimates of Q in (35) are subject to the sampling
interval in contrast to the original adaptation formula derived

for the discrete-time system in [44]. The sampling interval
is an important factor that determines the convergence of the
adaptive Kalman filter that utilizes the discretized model of a
continuous-time system, which should not be overlooked in
practical algorithm implementation.

2) CONDITION-BASED SELECTIVE SCALING LAW
If disturbance input ud changes in a different manner from the
stochastic process (random walk movement) defined by (29),
the estimated matrix Q̂−(k) is not entirely reliable. Defi-
nitely, in such situations, the filter with the extended model
experiences considerable process uncertainty due to the lack
of a deterministic dynamic model for the disturbance input.
Therefore, it is necessary to appropriately increase Q̂−(k)
to ensure a quicker convergence of the filter, which can be
achieved using a scaling technique.

Without loss of generality, measurement matrix H can
have an identity matrix component of size p, if necessary,
by performing the state transformation and/or rearrangement
of state variables. When the measurement matrix is given by
H = [Ip 0], diagonal matrix Q̂−(k) can be decomposed into
Q̂−(k) = diag{Q̂−1,m(k), Q̂

−

1,m̄(k), Q̂
−

2 (k)}, where Q̂
−

1,m(k) and
Q̂−1,m̄(k) are the process uncertainties of the measured and
unmeasured system states, respectively. Since the submatrix
Q̂−1,m(k) is reliably corrected using the measurements, it is not
our concern. Only the other submatrices Q̂−1,m̄(k) and Q̂

−

2 (k)
are selectively tuned by scaling factors.

The (selective) scaling of Q tends to increase a posteriori
error covariance matrix P(k) [45]. This property is important
for a quick convergence property of the filter, but, it implies
that the filter is in a transient phase, since the estimates may
not be sufficiently accurate in the mean squared error sense.
In closed-loop systems where the estimates are directly used
for control purposes, the control mechanism, including input
compensation, can result in the indiscriminate scaling of Q,
which prevents the filter from reaching a steady-state. This
phenomenon can be seriously observed when there are initial
errors between the actual outputs and the desired outputs.
If one can introduce conditions to timely apply the scaling
technique, the control and estimation performance can be
greatly improved.

First, we suppose that1x̂a(k) is a Gaussian random vector
with

E[1x̂a(k)] = 0 (36)

Cov(1x̂a(k),1x̂a(k)) = G(k).

Using the relations 1x̂a(k) = K (k)z̃(k) and Pzz(k) :=
E[z̃(k)z̃T (k)] and the steady-state assumption that yields a
constant Kalman gain, the covariance G(k) can be approxi-
mated as a function of the filter-computed matrices:

G̃(k) = K (k)Pzz(k)KT (k). (37)

Now, it is possible to introduce the statistical evalua-
tion index that arises from the Gaussian random variables
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normalized using (36) and (37):

λi(k) =
1x̂2a,i(k)

G̃ii(k)
∼ χ2

1 , i = 1, . . . , n+ q,

where λi(k) has the Chi-squared distribution with 1 degree of
freedom. The chi-square statistic λi(k), which is obtained at
step k ≥ 1, is used as a measure to detect anomalies caused
by changes in unknown inputs. When a condition is given for
λi(k), the filter can determine whether to enable the scaling of
Q̂−ii (k) at step k + 1. The detailed law of the condition-based
selective scaling is described as follows:
• For i = 1, . . . , p, Sii(k) is always 1 without regard to
λi(k):

Sii(k) = 1, ∀λi(k),

• For i = p + 1, . . . , n, Sii(k) is conditionally 1 or a
value greater than 1, the ratio of an estimated variance
to the filter-computed variance for the state correction
sequence:

Sii(k) =


1, λi(k) < λ̄i

max

(
1,
Ĝii(k)

G̃ii(k)

)
, λi(k) ≥ λ̄i

• For i = n+ 1, . . . , n+ q, Sii(k) is conditionally 1 or the
value greater than 1 that initializes Q̂ii(k):

Sii(k) =


1, λi(k) < λ̄i

max

(
1,
Q̂ii(0)

Q̂−ii (k)

)
, λi(k) ≥ λ̄i

where λ̄i is an upper-tail critical value for the chi-square
distribution of λi(k) to detect anomalies, and Ĝ(k) is the sta-
tistically estimated covariance matrix of the state correction
sequence using N windowed samples. With the additional
assumption that the elements of 1x̂a(k) are uncorrelated,
Ĝ(k) can be simply obtained as:

Ĝ(k) =
Q̂−(k)
1t

.

The recursive algorithm of the AUKF-CSS is summarized
in Figure 4.

IV. SIMULATION
In this section, the performance of the motion planning-based
anti-sway control using the proposed AUKF-CSS is verified
through extensive computer simulations.

A. SIMULATION SETUP
The crane parameters in the simulations are m1 = 4.552 kg,
m2 = 0.048 kg, g = 9.81 m/s2, J = 3.802 ·10−4 kg ·m2, and
ρ = 0.018 m. The initial conditions of the control system
are given by x(0) = [0, 1.2, θ(0), 0, 0, 0]T and µ(0) =
[0, 0]T . For tracking control, the desired four-fold poles of the

FIGURE 4. Recursive algorithm of the AUKF-CSS.

closed-loop dynamics (19) and (20) are set to aξ = aζ = −2,
so that the control gains are determined by (21) and (22).

The unknown disturbance input γi for i = 1, 2 in (27) is
considered as Stribeck friction model, which is a function of
the relative velocity vr,i:

γi(vr,i) =
√
2e(0brk,i − 0c,i)e

−

( vr,i
vs,i

)2
vr,i
vs,i

+0c,itanh
(
vr,i
vc,i

)
+ fv,ivr,i

where vr,i corresponds to ṙ for i = 1 and l̇ for i = 2,0c,i is the
Coulomb friction force, 0brk,i is the breakaway friction force,
vs,i is the stribeck velocity threshold, vc,i is the Coulomb
velocity threshold, and fi is the viscous friction coefficient.
Both vs,i and vc,i can be represented in terms of the breakaway
friction velocity vbrk,i as follows: vs,i =

√
2 · vbrk,i and vc,i =

vbrk,i/10. Specific values of the parameters for the friction
models are given by0c,1 = 0.1,0c,2 = 0.001,0brk,1 = 0.15,
0brk,2 = 0.0015, vbrk,1 = 0.0001, vbrk,2 = 0.1, fv,1 = 0.01,
and fv,2 = 0.0001.

The AUKF-CSS is based on the unscented transform
computed using a symmetric set of sigma points [52]. The
augmented state vector and measurement vector for the
AUKF-CSS are defined as xa = [r, l, θ, ṙ, l̇, θ̇ , γ1, γ2]T and
z = [r, l]T . The state transition models for γ1 and γ2 in
the filter are assumed to be random walk processes (29).
The measurement noise covariance matrix is held constant
at all estimation steps. However, the process noise covari-
ance matrix is the filter’s self-adapting matrix, and its initial
values are roughly chosen, except Q̂2(0) must be carefully
determined through empirical tests. For the condition-based
selective scaling law, the upper-tail critical values are set to
λ̄3 = λ̄4 = λ̄5 = λ̄6 = 6.635 (corresponding to a p-value of
0.01) and λ̄7 = λ̄8 = 21.26 (corresponding to a p-value of
4 × 10−6). Although this value for λ̄7 and λ̄8 is quite large,
it is required to avoid frequent initializations of Q̂2(k).
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TABLE 1. Initial setup for UKFs.

From a control viewpoint, the performance of AUKF-CSS
is compared with that of several filters: the conventional
UKF and the AUKF-SS [45] of unconditionally applying a
selective scaling technique. Configuration variables and their
initial values of the considered UKFs are identical except for
additional variables in the adaptation phase. Further informa-
tion on the initial setup for different UKFs is summarized
in Table 1.

FIGURE 5. Tracking results in ξ and ζ for different initial angles of the
load.

We consider the scenario where the load is transported
along parabolic paths with the travel time of tF − tI . Two
parabolic paths are planned: one is planned at t = 0 to
examine the effect of the initial angle θ (0) on the estimation
and control, and the other is planned at t = 15 to verify the
convergence property of the steady-state AUKF-CSS.

B. SIMULATION RESULTS
The tracking results in coordinates ξ and ζ for different
values of the initial angle of the load are shown in Figure 5.
Despite the unknown frictions, the initial errors are success-
fully reduced over time. Overshoots occur oven in the case
of θ (0) = 0, which involves no initial position errors in ξ

and ζ , mainly because the AUKF-CSSwith incomplete initial
statistical knowledge is in a transient estimation phase. For all
presented initial angles of the load, as expected, the second
transport is satisfactorily achieved, so we can infer that the
estimates of the AUKF-CSS converge to the actual values of
the state variables and frictional inputs.

Figure 6 shows the estimation errors for θ and θ̇ . Indeed,
the AUKF-CSS can overcome the considerable process
uncertainties caused by the unknown frictional inputs and
reach a steady state, where the oscillating estimation errors
of angular position are maintained within acceptable bounds.
The steady-state filter estimates the actual angular position
and its derivative properly without involving excessive errors
in the second transport, unlike the first transport, especially
for the case of θ (0) = 0, since the filter has sufficiently
accurate knowledge of P(k) with respect to the captured state
variables.

FIGURE 6. Estimation results of θ and θ̇ for different initial angles of the
load.

Even if all crane state variables are exactly known and con-
sequently available for feedback, and the crane system is ini-
tially in equilibrium, the influences of friction generally cause
unwanted steady-state errors in the motion control. Figure 7
shows that the AUKF-CSS based control method, which can
compensate the control inputs with the estimates regarding
the frictional forces, considerably reduces the steady-state
errors. The estimates of γ1 and γ2 are shown in Figure 8.
Figure 9 presents the AUKF-CSS-based tracking results in
the XZ -plane.

The superiority of the AUKF-CSS-based motion control is
more clearly demonstrated compared to the motion controls
using the UKF and AUKF-SS. Figure 10 illustrates the angu-
lar position of the load due to the motion control for the three
UKFs. For the case of θ (0) = 0, as shown in Figure 10(a),
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FIGURE 7. Effectiveness of the input compensation using the AUKF-CSS.

FIGURE 8. Estimates of frictions γ1 and γ2.

FIGURE 9. AUKF-CSS based control results in X-Z plane.

the conventional UKF using Q(k) as constant matrix, which
is vulnerable to changes in the process noise caused by the

FIGURE 10. Angular positions under control using different UKFs.

FIGURE 11. Calculated control inputs and actual inputs under saturation
and deadzone.

unknown frictional forces, results in a poor tracking per-
formance; accordingly, the load sway cannot be suppressed.
In contrast, when the adaptive versions of the UKF designed
to adapt to the time-varying process noise are used for motion
control, we observe that the load can be stabilized at the final
position. However, Figure 10(b) shows that the AUKF-SS and
theUKF are unreliable when there is initial error, although the
initial error is quite small. Consequently, only theAUKF-CSS
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FIGURE 12. Control results in the X-Z plane under saturation and
deadzone.

FIGURE 13. Estimation and tracking results under saturation and
deadzone.

can achieve reliable estimation due to the condition-based
timely use of the selective scaling ofQ and enables anti-sway
control, so that the load can be precisely positioned.

Further simulations are performed to demonstrate the
effectiveness of the proposed filter-based flatness control

with a crane system having input saturation and deadzone.
In the simulations, the control inputs are set to be limited by
input boundary values such as input saturations, and the dead
zones along with frictions are considered unknown inputs.
The initial angular position of the load is θ (0) = −2.5◦.
The calculated control inputs and actual inputs are illustrated
in Figure 11, where the torque T required in equilibrium
to hold the load is T = mgρ. The input saturations may
degrade the path-following performance independent of the
performance of the filter, which is obviously observed for
the second transport in Figure 12(a). However, as shown
in Figure 12(b), considering the less aggressive trajectories
can alleviate the input saturation problems, although at a loss
in time efficiency. Figure 13 shows that the estimation and
tracking errors in the steady state almost vanish due to the
compensation mechanism for friction and deadzone.

V. CONCLUSION
In this paper, an observer-based motion control scheme is
proposed for an underactuated overhead crane system to
achieve anti-sway and precise positioning of the load. The
fundamental control strategy considered is based on the flat-
ness property of the crane. To develop the flatness-based
motion control scheme for a crane system with unknown
input disturbances, a reliable observer that can simulta-
neously estimate the state and disturbance is proposed
for state feedback and disturbance rejection. Specifically,
an adaptive unscented Kalman filter with a condition-based
selective scaling technique (AUKF-CSS) is suggested to
solve the simultaneous estimation problem under the control
mechanism. The AUKF-CSS additionally includes the adap-
tation phase to adapt itself to considerable modeling (process)
uncertainties caused by unknown disturbance. In the adapta-
tion phase, first, the time-varying process noise covariance is
estimated; second, to improve the convergence performance
of the filter, the estimated process noise covariance matrix is
tuned by the scale matrix, which is calculated according to
the condition-based selective scaling law. Simulation results
are provided to demonstrate that the proposed approach can
achieve excellent motion control for different initial angles
of load with no additional sensors even in the presence of
unknown inputs.
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