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ABSTRACT High-resolution (HR) Mars images have great significance for studying the land-form features
of Mars and analyzing the climate on Mars. Nowadays, the mainstream image super-resolution methods
are based on deep learning or CNNs, which are better than traditional methods. However, these deep
learning based methods obtain low-resolution(LR) images usually by using an ideal down-sampling method
(e.g. bicubic interpolation). There are two limitations in the existing SR methods: 1) The paired LR-HR data
by using such methods can achieve a satisfactory results when tested on an ideal datasets. But, these methods
always fail in real Mars image super-resolution, since real Mars images rarely obey an ideal down-sampling
rule. 2) The LR images obtained by ideal down-sampling methods have no noise while real Mars images
usually have noise, which leads to the super-resolved images are not realistic in texture details. To solve the
above-mentioned problems, in this article, we propose a novel two-step framework for Mars image super-
resolution. Specifically, to address limitation 1), we focus on designing a new degradation framework by
estimating blur-kernels. To address limitation 2), a Generative Adversarial Network (GAN) is trained to
generate noise distribution. Extensive experiments on the Mars32k dataset demonstrate the effectiveness of
the proposed method, and we achieve better qualitative and quantitative results compared to other SOTA
methods.

INDEX TERMS Generative adversarial network, kernel estimation, mars image super-resolution, noise
model.

I. INTRODUCTION
Among the eight major planets,Mars is themost similar to the
Earth, and it is also considered the most likely to give birth
to life. The natural environment of Mars is also similar to the
earth, therefore, Mars becomes the main target for deep space
exploration in this century.

In the process of exploringMars, obtaining high-resolution
images of Mars is of great significance for subsequent sci-
entific research. For example, high-resolution Mars images
are used to identify rock types, compositions, rock texture,
structure and characteristics, etc. . Moreover, high-resolution
Mars images can also be used for the missions of navigating
and exploring the Mars rover, i.e. , through the obtained high-
resolution Mars images, the path and distance of the rover
can be further planned. Furthermore, during the process of
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transmission fromMars to earth, high-resolution images may
face problems of slow transmission speed and transmission
failure. Here, lower-resolution images can be used during
transmission to reduce communication delays, and super-
resolution algorithms can be used on the earth to finish the
specific computation tasks.

Moreover, Mars often has dust storms and the atmosphere
on the Mars is thin, the atmosphere and the environment in
outer space is unpredictable, and the temperature changes
drastically, which makes the image obtained from the camera
on Mars rover board unstable. At the same time, the Mars
rover imaging system will be affected by cosmic radiation,
which also makes the images of Mars taken by the probe
are blurry. Generally, improving the hardware equipment can
increase the resolution of Mars images, which is also the
simplest and most intuitive method. However, this type of
method has a high cost and a long development period, and
increasing the complexity of imaging equipment may bring
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negative effects such as noise and slowing down the trans-
mission rate. Therefore, from a long-term perspective, it is of
high practical value and necessity to improve the resolution
of Mars images through algorithms.

Super-resolution methods aim to reconstruct a High-
resolution (HR) image from a Low-resolution (LR) image by
recovering high-frequency details. Among them, a boost in
performance was achieved in past few years by introducing
deep learning based methods [1]–[9]. These methods assume
that LR images are obtained by the following degradation
method:

ILR = (IHR ∗ k) ↓s +n (1)

where k and n indicate super-resolution (SR) kernel and noise
respectively, and the goal is to recover HR images IHR from
the given LR images ILR.

However, these deep learning based super-resolutionmeth-
ods usually cannot achieve satisfied results when directly
applied to real Mars images. Specifically, they may suffer
from two limitations. First, most of them use an ideal down-
sampling methods (e.g. bicubic) to prepare the corresponding
LR images when training the SR networks. However, the HR
and LR images of real Mars do not obey the those ideal
interpolation relation. The reason is that the ideal down-
sampled images (LR) do not belong to the same domain as
the original Mars images, and the high-frequency details of
imageswill be lost. Figure 1 shows the results that directly use
the deep learning based methods on ’non-ideal’ LR images.
From Figure 1, we can see that EDSR [5] and ESRGAN [10]
produce unsatisfied super-resolution results for the real Mars
images.

FIGURE 1. Visualization comparison results of EDSR [5], ESRGAN [10], and
ours.

The second limitation is that the LR images obtained by
ideal interpolation methods have no noise, while real Mars
images usually have noise. Moreover, the noise distribution
of the real Mars images are very complex so that some
methods [11]–[13] add a known noise ( e.g. Gaussian noise)
to address this issue. Therefore, one solution for this problem
is to learn a noise distribution over Mars images and inject it
to LR images.

In this paper, we propose a new degradation framework
for Mars image Super-Resolution, which contains a kernel
estimation and a noise model. To address the first limitation,
we use the kernel estimation method to generate realistic LR
Mars images. To address the second limitation, we use the
noise extraction algorithm to collect noise from the original
images and add it to the down-sampled images (LR). In this
way, the burden of feature extraction is reduced as the model

has rich prior information from real Mars images. To ver-
ify the effectiveness of our proposed method, we conducted
extensive experiments on the Mars32k dataset. The experi-
mental results show that each component of our method is
helpful to improve the quality of the super-resolution images,
and our proposed method achieve a better result compared
current SOTA methods.

In summary, our contributions are three fold:

• We design a kernel estimation method to obtain real-
istic LR images which can remove artifacts in SR
images.

• A noise extraction algorithm and a GAN-based method
are utilized for noise modeling and sampling, which
make the degraded images have a similar noise distri-
bution with the real image.

• We demonstrate the effectiveness of our proposed
method in Mars image super-resolution and show that
a better result is achieved over previous state-of-the-
art approaches on Mars32k dataset (PSNR increase
2.074dB by kernel estimation and 0.198dB by noise
injection).

The rest of the paper is organized as follows. We review
the related work in Section 2. In Section 3, the kernel esti-
mation, noise extraction algorithm, the detailed architec-
ture of our noise model, and the SR model are described.
In Section 4, we present some experiments and ablation stud-
ies on Mars32k dataset. Finally, the conclusions are provided
in Section 5.

II. RELATED WORKS
The method of obtaining super-resolution Mars images
mainly relies on optical cameras. In November 1996,
the United States launched the Mars Global Surveyor
probe [14], [15], which carries a Mars orbiting camera and a
narrow angle camera that obtained gray-scale high resolution
images (typically 1.5 to 12 m per pixel), and includes red and
blue wide angle cameras for collecting context (240 m per
pixel) and daily global images (7.5 km per pixel). Europe’s
first Mars exploration project (i.e. Mars Express) [16] was
launched in June 2003, its high-resolution stereo camera
can achieve full-surface shooting of Mars with a resolution
of 10m, and it can achieve 2 m ultra-high resolution [17] on
the local surface of Mars.

Usually using the ability of hardware system to improve
resolution of images is limited by factors such as volume and
quality, and the sub-pixel imaging technology has become
an effective method of using algorithms to improve image
resolution under the limitations of the current hardware
systems. Since most of images obtained by the probe are
under-sampled, the sub-pixel technology is a method of
increasing the sampling rate, and then using a series of sub-
pixel processing (such as interpolation and recursive itera-
tive operations) to obtain clear Mars images. In following,
we main introduce some related works about the image
super-resolution.
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A. IMAGE SUPER-RESOLUTION
Interpolation is the earliest image super-resolution algo-
rithm. [18] first proposes the image super-resolution algo-
rithm, which was implemented in the frequency domain
using Fourier transform. In the frequency domain, the under-
sampling samples of the image appear as spectrum alias-
ing, and finally the super-resolution data is computed by
the under-sampling data. Based on [18], Kim [19] proposes
blur noise to improve the super-resolution algorithm. The
reconstruction-based methods realizes the registration of LR
images and HR images through prior knowledge. The tra-
ditional learning-based methods [20], [21] mainly use HR
images to obtain LR images through some degradation pro-
cessing, or through algorithm to learn the mapping from LR
images to HR images, and then use this mapping for image
super-resolution reconstruction.

In recent years, with the development of deep learning
theory, neural networks have demonstrated their excellent
performance. SRCNN [1] uses a convolutional neural net-
work for image super-resolution, and only uses three convolu-
tional layers to achieve a satisfactory super-resolution results.
The three convolutional layers correspond to feature extrac-
tion, nonlinear mapping and finally image reconstruction,
respectively. A jump connection in the residual network [22]
promotes the performance of convolutional neural networks.
Many scholars use this framework in image super-resolution
and achieve good results. VDSR [4] is proposed to use ResNet
to accelerate the network convergence, and by expanding the
receptive field and increasing the depth of the network to
improve the super-resolution results.

However, these SRmethods assume that the LR images are
down-sampled from the HR images by a fixed bicubic inter-
polation. In this paper, we focus on using GAN to estimate
the process of down-sampling.

B. NOISE MODELING
Noisemodeling approaches are usually used to address image
blind de-noising problems [23]–[28]. These methods include
the conjunction of noise modeling and an adaptive de-noising
algorithm generally. For example, Multiscale [23] is an adop-
tive of Non-local Bayes approach [29] which assumes the
noise model of each patch and its nearby patches to be zero-
mean correlated Gaussian distribution. NMBD [27] is pro-
posed to model image noise with mixture of Gaussian (MoG)
and developed a Low-rank MoG filter to recover the clean
images. However, these methods only utilize the internal
information of a single input image and explicitly define the
noise model, which may limit the capability of noise mod-
eling. Unlike the previous methods, in order to utilize more
external information, we use a noise extraction algorithm
to get noise blocks from Mars images and use an GAN to
generate similar noise distribution.

C. GENERATIVE ADVERSARIAL NETWORK
Recently, GAN [30] have attracted widespread atten-
tion [31]–[34]. The essence of GAN is to generate similar

distributions through adversarial learning strategy. On the
one hand, this feature makes it is possible to train a GAN
to obtain a mapping from a pair of LR and HR images for
image super-resolution. SRGAN [2] is the first work that
uses of GAN for super resolution. The authors find that the
high PSNR results will cause discomfort in human visual
perception, and propose to use the perceptual loss of the VGG
network to replace the original MSE loss, thereby improving
the visual experience of the SR images. Wang et al. improves
the network structure on the basis of SRGAN and proposes
ESRGAN [10]. They remove batch normalization layer (BN),
and the network structure is changed to more complex RRDB
(Residual in Residual Dense Block) and relative discrimina-
tors is used to further improve the quality of super-resolution
images. Reference [35] gives a survey for image synthesis
with adversarial networks, readers can refer this survey for
more details about GANs.

On the other hand, a lot of works [36]–[40] have proved
that GANs could learn complex distribution. Therefore,
we think GAN has great capability to learn the latent noise
model. However, training a GAN is tricky and GAN not
easy to converge. In this paper, we choose DCGAN [36]
to generate noise distribution and use WGAN [41], [42] to
overcome the balance between the generative network and the
discriminative network.

III. PROPOSED METHOD
In this section, we describe the details of the proposed degra-
dation framework for Mars image Super-Resolution. First,
we analyze the difference between Mars images and Earth
images. Then, we introduce the pipeline and the overview of
the proposed degradation framework, as shown in Figure 2
and Algorithm 1 respectively. Finally, a noise extraction algo-
rithm and noise model are designed to obtain a more realistic
LR image.

Algorithm 1 Degradation Framework
Input: Real Mars images X , HR Mars images Y
Init Kernel Bank K = null and Noise Bank N = null
for all isrc ∈ X do
Estimate k from isrc
Add k to K.
Extract n from isrc
if n meets Equal 4 and 3 then

Add n to N
end if

end for
for all IHR ∈ Y do
Randomly select ki ∈ K
Ik = (IHR∗ki) ↓s where s is a downsampling scale factor

Randomly select ni ∈ N
ILR = Ik + ni

end for
Output: Realistic paired images {ILR, IHR}
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FIGURE 2. The pipeline of the proposed Mars Image Super-Resolution method. Kernel estimation obtains blur-kernel from real Mars images and puts
them into a kernel bank’, noise model extracts noise from images and puts them into a ’noise bank’. Finally, randomly selecting a blur-kernel and noise
from ’kernel bank’ and ’noise bank’ to produced realistic LR-HR image pairs for training an SR network.

FIGURE 3. Comparison of gray-scale between Earth images and Mars images. This is a gray-scale histogram which (a) is the Earth
image and (b) is the Mars image. The horizontal direction represents pixel values from 0 to 256 and the vertical direction represents the
number of pixels.

A. DIFFERENCE BETWEEN MARS IMAGES AND EARTH
IMAGES
In order to study whether it is possible to directly apply the
existing earth image super-resolution methods to the Mars
images, we first analyze the gray-scale of the earth image and
the gray-scale of the Mars image, as shown in Figure 3.

DIV2K and Mars32k datasets are use to analyze the dif-
ference between Earth and Mars images. From Figure 3,
we can find that the gray-scale distribution of the Earth image
is uniform, while the gray-scale range of the Mars image
is narrow, mostly between 0-40. This means Mars images
lack surface information, thus to extract the feature of Mars
images is very difficult.

To further verify the difference between the images of
Mars and Earth, we perform feature extraction experiments
on these two type of images. We select SURF [43], which
has a better execution efficiency than the SIFT algorithm [44],
to calculate the number of feature points in the Earth andMars
images, as shown in Figure 4. From Figure 4, We find that
the number of feature points in the Earth image is 752, and
the number of feature points in the Mars image is 256. The
feature points of Mars image are obviously less than that of
Earth image.

FIGURE 4. Feature distribution of Earth images and Mars images.

We draw conclusions through experiments that the earth
image has many feature points and rich texture features,
and the foreground and background of images are obvi-
ously different. The number of feature points in the Mars
images is relatively small, mainly concentrated in areas
with complex land-form. Moreover, most of Mars is still

108892 VOLUME 9, 2021



C. Wang et al.: Mars Image SR Based on GAN

plain and with sparse texture features, which brings great
difficulties and challenges to the task of Mars images
super-resolution. In the following parts, we mainly describe
the details of our proposed Mars images super-resolution
method.

B. OVERVIEW OF DEGRADATION FRAMEWORK
For image super-resolution, an important task is to obtain
HR-LR image pairs. Generally, one of the easiest methods
to obtain LR images is image sub-sampling. However, in the
process of down-sampling, the high-frequency details are
lost, at the same time, the noise distribution of images is also
changed. In this paper, we use GAN to learn the distribution
of real Mars images and to generate a noise distribution
similar to the real Mars image.

As shown in Figure 2, there are three components in the
proposed architecture. The first component is the kernel esti-
mation, which uses s generator G to generate a down-sampled
image that its distribution is as close as possible to that of the
LR image. The output of the kernel estimation is underlying
SR kernel and then put them into a ’kernel bank’. The second
component is the noise model, in which the noise is collected
through the noise extraction algorithm, and then put into a
’noise bank’. The last component is to obtain final LR image,
we randomly select kernel from ’kernel bank’ and randomly
select noise from the ’noise bank’ to generate the final LR
Mars images by Equal 1. To describe our method concisely,
we show this process as an algorithm as in Algorithm 1.
In the following parts, we will detailed introduce the kernel
estimation and noise model, respectively.

C. KERNEL ESTIMATION
We use KernelGAN [45] to explicitly estimate kernels
from real Mars images, and the appropriate parameters
are set based on real Mars images. The Generator G
constitutes the down-sampling model, which is a 6 lay-
ers convolutional network with 64 channels and without
any activation layer. Therefore the parameters of all lay-
ers can be combined into a fixed kernel. The filters are
7× 7, 5× 5, 3× 3, 1× 1, 1× 1, 1× 1, respectively.

The Discriminator D is a fully convolutional network, and
the architecture is a 7 × 7 convolution filter followed by six
1× 1 convolutions, including Batch normalization(BN) [46],
ReLU [47] and a Sigmoid [48] activation function. The goal
of the discriminator D is to learn the distribution of patches
of the input image ILR and to discriminate the real patches
belonging to this distribution or the fake patches generated
by G.

The kernel is implicitly captured by the trained weights
of G. Convolving all the filters of G sequentially with
stride 1 can obtain the kernel k. When the kernel is obtained,
it is a small array that can be supplied to SR algorithms.
In order to prevent the optimization process from producing
too scattered and smooth kernels, the estimated kernel needs

to meet the following constraints:

argmin
k
||(Isrc ∗ k) ↓s −Isrc ↓s ||1 + |1−

∑
ki,j|

+

∑
ki,j · mi,j + |1− D((Isrc ∗ k) ↓s)| (2)

where (Isrc∗k) ↓s is the down-sampled LR image with kernel
k , and Isrc ↓s is the down-sampled image with ideal kernel.
Our purpose is to minimize this error to encourage the down-
sampled image to preserve the low-frequency information of
real images. What’s more, the second term of Eq. 2 is to
constrain the sum of k is equal to 1. The third term of Eq. 2
is to limit the boundary of k . Finally, the discriminatorD(·) is
to ensure the consistency of original Mars images.

D. NOISE MODEL
1) NOISE EXTRACTION ALGORITHM
In order to model the noise distribution, noise patches need
to be extracted from real Mars images. We choose the weak
background in the given real Mars images to reduce the
impact of the Mars image background. By this way, GAN
can focus on learning the distribution of noise, which makes
the distribution more accurate.

Inspired by GCBD [37], we adopt a noise extract algorithm
as follows. Let pi denotes an image block with a size ofm×m
extracted from a given Mars image with step sg, qij represents
an image blockwith a size of n×n extracted from the obtained
pi block with the step sl . A filtering rule is used to extract
noise with mean and variance in a certain range, which can
be formulated as follows:

|Mean(qij)−Mean(pi)| ≤ µ ·Mean(pi) (3)

and

|Var(qij)− Var(pi)| ≤ γ · Var(pi) (4)

where Mean(·) and Var(·) denote the function to calcu-
late mean and variance respectively. µ and γ are hyper-
parameters, where µ, γ ∈ (0, 1). For each block n × n j,
if the Eq 3 and Eq 4 are satisfied the condition, pi will be
regarded as a smooth patch and added to the noise bank S =
{s1, s2, . . . , st }. Then the noise patches N = {n1, n2, . . . , nt }
can be obtained by ni = si −Mean(si).

2) ENLARGE NOISE BANK WITH GAN
When input images are not enough, the extracted noise
patches might lack of diversity. However, GAN can lever-
age the great capability of CNN to learn the noise model
implicitly and to capture more features of noises without
human knowledge of image priors. Therefore, in our method,
the GAN is introduced to generate more noise data, and the
result is that a larger ’noise bank’ is obtained.

We adopt the similar network as DCGAN [36] to generate
noise samples for enlarging N , and finally we get a large
’noise bank’ N ′ = {n′1, n

′

2, . . . , n
′
t }. The network structure is

illustrated in Figure 5, the Generator is used to generate noise
to enlarge ’noise bank’ which consists of a feature extraction
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FIGURE 5. The network architecture of the noise model. Generator includes three
de-convolution units which can enlarge the receptive field, so that each convolution output
contains a larger range of information, while keeping the number of parameters unchanged.
Discriminator includes logistic regression at the end of the network to realize two
classification. The filter number of the generative network from the second to the last unit is
256, 128, 64, and is equal to the output channel number respectively. The filter number of the
discriminator network from the first to the fourth unit is 64, 128, 256, and 512 respectively.

unit, three de-convolution units and an output unit. The fea-
ture extraction unit including a 5× 5 convolution, a BN [46]
layer and a ReLU [47] activate function. De-convolution
units including a 5×5 fractionally-strided convolution, a BN
layer and a ReLU activate function. Output unit including
a 5 × 5 fractionally-strided convolution and a Tanh activate
function. The Discriminator is try to distinguish real noise
from those noise generated by Generator. The structure of
the discriminator is composed of a 5 × 5 convolution layer,
a convolution unit and an logistic regression as output. The
convolution unit including a 5 × 5 convolution, a BN layer
and a ReLU activate function.

E. SUPER-RESOLUTION MODEL
Following ESRGAN [10], we implement an SR network
and train it on constructed paired HR-LR data. Specifically,
the SR network contains several RRDB [10] blocks and the
BN [46] layers are removed. In addition, some advanced
techniques including residual scaling and smaller initializa-
tion are used to facilitate the training of a deeper model.
Moreover, relativistic average GAN is used to improve the
performance of the discriminator, and it is designed to ’dis-
criminate whether an image is more real than another’ instead
of ’an image is real or fake’. This improvement helps the gen-
erator to recover more realistic texture details. Furthermore,
the perceptual loss is proposed on the basis of SRGAN, and
the VGG feature is used before the activation layer instead of
after the activation layer, which can generate clearer edge and
a good visual results. To sum up, the final loss function of the
proposed SR network is the weight sum of three losses:

Ltotal = λ1 · L1 + λper · Lper + λadv · Ladv (5)

whereL1, Lper and Ladv denote pixel loss, perceptual loss
and adversarial loss respectively. λ1, λper and λadv are set as
0.01, 1, 0.005 empirically.

IV. EXPERIMENTS
In this section, we conduct experiments to validate our pro-
posed framework on Mars32k. First, we analyze kernel esti-
mation accuracy and compare with two common blur kernel
with our proposed method. Then, we feed the LR-HR pairs
into SR network to analyze the SR performance. Finally,
we conduct some ablation studies to verify the effective-
ness of degradation framework and each component in our
pipeline.

A. DATASETS AND EVALUATION METRICS
1) Mars32k
Mars32k dataset consists of about 32,000 color images
collected by the Curiosity rover on Mars between
August 2012 and November 2018. The images show var-
ious geographical and geological features of Mars such as
mountains and valleys, craters, dunes and rocky terrain. All
images have been scaled down using linear interpolation to
560 × 500 pixels (some images have been cropped). The
dataset is intended for unsupervised learning and the images
are only labeled with the date they are taken on. This dataset
only contains photos taken with Curiosity’s Mastcam camera
and all gray scale or other images are removed.

2) EVALUATION METRICS
We choose PSNR and SSIM to evaluate the results of
our method. PSNR and SSIM are commonly-used evalua-
tion metrics for image super-resolution. PSNR is mainly an
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evaluation metric to measure the difference between pix-
els of two images. SSIM is an evaluation index obtained
by weighted multiplication of three relatively independent
attributes of brightness, contrast and structure. Since SSIM is
more in line with visual perception, SSIM is also widely used.
The bigger the PSNR and SSIM are, the closer the generated
images is to the ground truth.

B. IMPLEMENTATION DETAILS
1) KERNEL ESTIMATION
We initialize learning rate for Generator and Discriminator
with 2e−4 and train the networks with 3000 iterations. In ker-
nel post processing, we set small filtering values of the kernel
to 40.

2) NOISE MODEL
In noise extraction algorithm, we set m, sg to 64, 32 respec-
tively, n, sl is 16, 16 respectively. µ and gamma is 0.1 and
0.25. For enlarging noise bank with GAN, we follow the
parameter settings in DCGAN [36].

3) SUPER-RESOLUTION MODEL
The entire super-resolution network is been trained for
3000 generations, using the Adam optimizer [49] (β1 = 0.5,
β2 = 0.999), the learning rate is set to 2e−4, and it decreases
by 0.1 times every 750 generations. Our system is imple-
mented in PyTorch on an NVIDIA RTX3090 GPU.

C. BLUR KERNEL ESTIMATION
To verify the effectiveness of the kernel estimation model,
we first show the kernel estimation results compared with
ESRGAN [10] in Figure 6. It can be seen from Figure 6 that
the blur kernel images obtained through learning strategy in
our method is quite different from the Bicubic kernel, and it
is similar to the blur kernel of real images.

Furthermore, we also show the quantitative results of
kernel estimation, and compare with SRGAN [2] and
ESRGAN [10]. Similar to our method, SRGAN [2] and
ESRGAN [10] can receive the down-sampled LR image
using the blur kernel as inputs, but three different blur kernels
are used as down-sampling kernels: Gaussian kernel, Bicubic
interpolation kernel and the kernel that obtained by learning
strategy, respectively.

Table 1 shows that in the ESRGAN [10] network, using
blur kernel estimation is 10dB higher than the Gauss kernel
and 5dB higher than the Bicubic interpolation kernel. More-
over, the results show that using the blur kernel estimation
is much better than using other kernels for image super-
resolution.

D. RESULTS ON MARS IMAGES SUPER-RESOLUTION
In order to verify the effectiveness of the degenerate frame-
work, the method proposed in this paper is compared with
the some classic methods including EDSR [5], ESRGAN [10]
and ZSSR [50]. We verify our proposed method on Mars32k

FIGURE 6. SR kernel estimation results.

TABLE 1. Results of Blur-Kernel Estimation. The first two lines are LR
images obtained by two traditional methods, the third line is that LR
images obtained by blur kernel estimation (Ours) and then the LR images
are used as input for training.

verification sets, and the visualization results are shown and
the evaluation indicators PSNR and SSIM are calculated
in Figure 7 and Table 2, respectively.

Figure 7 shows the comparison of visualization results
between our proposedmethod and othermethods. In Figure 7,
we find ourmethod achieves the best performance. Compared
to EDSR [5] and ESRGAN [10], our method reconstructs
Mars image with less artifact and the color is close to ground
truth. Compared our proposed method with ZSSR [50],
although ZSSR [50] achieve a good result, our method has
rich texture details and less noise.

For quantitative results, as show in Table 2, our pro-
posed method also achieves the best performance in both
×2 and ×4 scales. Compared with GAN-based method like
ESRGAN [10], by using kernel estimation and noise model,
our method has a large margin improvement, i.e. 2.98dB,
5.22dB improvement in PSNR for scales×2,×4 respectively.
Also, our method gets better performance than ZSSR [50]
and EDSR [5], because we use perceptual loss so that the SR
images are more in line with human perception.

E. ABLATION STUDY
1) USE BICUBIC INTERPOLATION ONLY
In this case, the LR images is down-sampled by bicubic
interpolation, and then directly use these HR-LR image pairs
for training the super-resolution network, i.e. without using
kernel estimation and noise model, other parameters are set as
default, and the results are shown in Figure 8. Such conditions
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FIGURE 7. Qualitative super-resolution results on Mars32k dataset. We compare our proposed method with
EDSR [5], ESRGAN [10], ZSSR [50].

FIGURE 8. Comparison results on Mars32k dataset. We compare our method (Ours) with ’Bicubic’, ’No-kernel’,
’No-noise’ and ’GT’.

TABLE 2. Quantitative results for super-resolution on Mars32k.
Compared our proposed method with EDSR [5], ESRGAN [10], ZSSR [50] in
PSNR/SSIM and we provide both ×2 and ×4 scales in SR performance.

are equal to using the ESRGAN [10] for image super-
resolution. From the experiment results in the second column
of Figure 8, it can be found that the evaluation indicators and
visual effects are bad, the PSNR is only 20.225dB, and the

SSIM is 0.512dB. At the same time, the sand grains in the
Mars image have not been reconstructed, resulting in circular
pits and the color of the super-resolution image becomes
lighter, which is quite different from the real Mars images.

2) WITHOUT BLUR KERNEL ESTIMATION
In this case, noise is only added during the down-sampling
process. Because blur kernel estimation is not used, this
experiment can verify the effectiveness of the blur kernel
estimation. From Figure 8, we can find that when using the
blur kernel estimation, the PSNR 2.047dB and the SSIM
0.045dB are higher than that without blur kernel estimation
(as shown in (b) and (d)), which proves that the blur kernel
estimation is very important for Mars image super-resolution.
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From the above experiment, it is concluded that in the down-
sampling process, the LR images obtained by using the blur
kernel generated from GAN is better than the direct bicubic
interpolation. Furthermore, by adding noise, the color of the
image is improved compared to only using bicubic interpola-
tion. And by adding noise, the color of the image is improved
compared with that of only using bicubic interpolation.

In order to further verify the influence of blur kernel
estimation and noise model in the down-sampling process,
we conduct ablation studies on the Mars32k dataset.

3) WITHOUT NOISE MODEL
In this case, only blur kernel estimation is used in the
down-sampling process and without adding noise, so this
experiment can verify the effect of the noise model. From
the experiment results in the fourth column(c) of Figure 8,
the PSNR value increases by 0.198dB, therefore, it is neces-
sary to add noise during the down-sampling process.

The complete experimental results in the last column of
Figure 8 show that the blur kernel obtained by GAN, and then
feed the achieved HR-LR image pairs to ESRGAN [10] for
super-resolution. The texture details and colors of the Mars
images are very close to the real image, and the evaluation
indicators of PSNR and SSIM have also reach the highest
compared with other methods.

V. CONCLUSION
In this paper, we analyze the difference between Mars image
and earth image firstly. Since the LR images obtained by the
traditional bicubic interpolation method does not conform to
the down-sampling process of the real images, we propose a
new degradation framework for Mars image super-resolution
which includes kernel estimation and noise model. By using
this degradation framework, we acquire more realistic low-
resolution Mars images. Then, combining the obtained low-
resolution images with the corresponding high-resolution
images to form LR-HR pairs, and finally feed them to super-
resolution network. Experiment result shows that our pro-
posed method has a better performance than other classic
methods. We also conduct ablation experiments to prove that
our proposed components are helpful for the Mars image
super-resolution.
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