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ABSTRACT Assessing cross-space risk of cyber-physical distribution system under integrated attack is
investigated in this paper. Firstly, a hierarchical structure of cyber-physical distribution network according
to IEC 61850 is established and a deliberate attack scenario with limited adversarial knowledge and
stealth requirement is developed based on a general linear model for state estimation. Then, we formulate
two optimization problems to describe the attack implementation and propagation process and obtain the
likelihood of attacks including a robust solution and a risk solution in a fuzzy Bayesian network (BN). On this
basis, a physical impact metric is defined as the integrated deviation of system states and measurements.
Thus, the cross-space risk assessment can be performed. Finally, the simulation results of case studies
demonstrate that the proposed method is effective and provides a broad and clear view of cyber-physical
distribution system security situation.

INDEX TERMS Cross-space risk, cyber-physical distribution network, integrated attack, limited adversarial

knowledge, fuzzy Bayesian network, state estimation.

I. INTRODUCTION

Distribution network is a critical part of smart grid which
meets the increasing requirement of supply reliability, opera-
tion cost-effectiveness and renewable energy consumption by
employing advanced information and communication tech-
nology (ICT). In addition, it is also the core object of the
Electric Internet of Things construction. With the broad-scale
sensing and communication networks, distribution network
has become one of the largest cyber-physical systems. Since
the distribution network directly faces users, its importance
is self-evident. Unfortunately, with the introduction of intel-
ligent electronic devices (IEDs) and open communication
systems, there are conspicuous security risks in cyber system
and they can be further transmitted across spaces to disrupt
physical system and cause far reaching impacts [1]. Many
real-world events have confirmed this, including the deliber-
ate cyber-attacks on Ukrainian power grid in 2015 [2], Israel
Outage in 2016 [3] as well as Venezuela Blackout in 2019.
As mentioned above, a clear understanding of the security
situation of distribution network is extremely important.
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Considering the demand of extensive interconnection
and intelligent interaction for the future smart grid,
IEC61850 based distribution automation system (DAS) is
believed to be one of the most promising development
directions. However, IEC 61850 standards do not cover
corresponding security functions and hence IEC 62351 is
used as complement responsible for related data and com-
munication security in power system. But there is still a
long way for this standard to be mature enough to guide
large-scale engineering application of the 61850-based smart
grid due to the following key problems, i.e., 1) real-time
requirements for security protection; 2) security key distri-
bution and management mechanism; 3) compatibility with
substation configuration language (SCL). Thus, the security
risks and threats of mentioned system mainly come from
two aspects. First, unlike substation operating in an enclosed
space which is physically isolated, distribution network
covers a wide area and a large number of remote-control
devices. Once terminal equipment lacks effective protec-
tion, it can easily become a starting point for adversaries
to initiate attacks. On the other hand, IEC 61850 standards
stipulate that SV/GOOSE/MMS data packets are transmitted
in plaintext, which lacks effective encryption methods and
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therefore causes security risks [4]-[6], i.e., i) the messages
in IEC 61850 standards contain many security vulnerabil-
ities since they focus on solving interoperability between
different IEDs and realizing data sharing while not too much
attention was given to security; ii) the MMS protocol lacks
identity authentication and access control mechanisms and
uses plaintext for transmission. Related vulnerabilities, e.g.,
overflow vulnerability, can cause equipment shutdown or to
go offline; iii) SV and GOOSE messages are encoded by
ASN.1 without encryption to meet the high requirements
for real-time performance, thus the data may be tampered,
copied and tapped. With the rapid development of smart
grid, the cybersecurity issues of IEC 61850 based distribution
network will become more prominent and urgent for both
academy and industry [7]. Considering the high dependence
with cyber system, attack paths and targets of adversaries,
the cyber-attack on distribution network is a cross-space
behavior. Consequently, the corresponding risk assessment
must naturally cross the cyber-physical space. This paper
makes it clear that the cross-space risk assessment is a process
of possible cybersecurity threats identification and potential
physical loss evaluation, which plays a vital role in guiding
cyber vulnerability reducing and system resilience enhanc-
ing. This paper exactly focuses on establishing an effective
and objective cross-space risk assessment method.
Generally, quantitative risk assessment is preferred
because it can provide accurate reflections of system security
situation while qualitative methods cannot. The total risk of
cyberattacks is defined as the likelihood of attack multiplied
by the potential attack impact [8]. Consequently, the research
is also carried out from the above two aspects, i.e., the
propagation of cybersecurity risk and impact evaluation. For
the former one, numerous models have been introduced in
recent years, including Bayesian network (BN) [9], Petri
net [10], attack tree [11], attack graph [12] and fault tree [13],
etc. However, the shortcomings are also obvious, i.e., i) it is
difficult to obtain a large amount of cyberattack prior knowl-
edge due to limited corresponding data; ii) it is hard to
capture the time-varying characteristics of components and
systems since the models are intrinsically static; iii) the attack
scenario setting is relatively simple. Undoubtedly, much
effort has been performed to address these issues, e.g., ref-
erence [14] proposed a fuzzy probability BN for modeling
risk propagation to overcome the limitation of historical
data. Unfortunately, there is accuracy loss to some degree
when mapping from linguistic probability to conditional
probability. In [15], a hierarchical Bayesian reliability model
was developed to integrate historical data and real-time data
for dynamic risk assessment while it may not be suitable for
cyber-physical systems. The insufficient cyberattack data is
not enough to support the establishment of the mentioned
model. Reference [16] defines the cyber-to-physical risk as
the physical impact of cyberattacks and presents a cyber
to physical dynamic risk assessment method with BN and
stochastic hybrid system (SHS) model. However, the complex
attack scenarios are not considered in this model and it is
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assumed that the adversary possesses the full knowledge of
the system.

As for the impact evaluation, the researchers can be essen-
tially divided into two categories. One only focuses on cyber
system risk assessment. For example, reference [17] uses
complex network statistical features to assess the risk of
smart grid related to cyber network malfunction and latency.
Reference [18] develops a cyber-physical security assess-
ment metric for microgrid by integrating all the resiliency-
related factors with Fuzzy Choquet Integral. The other one
usually constructs many physical impact metrics. Taking
reference [19] as an example, it proposes an impact metric
by combining the production loss, incidence loss and eco-
nomic loss from a perspective of asset. However, the cyber-
physical interaction is ignored and the same problem also
exists in [20] and [21].

To fill the gaps of the above-mentioned methods, this paper
presents a novel method with fuzzy BN and system state esti-
mation to quantify the cross-space risk for IEC 61850 based
cyber-physical distribution system. Here, we consider the
core links of cyber-physical interaction, i.e., actuators and
sensors, to establish a general linear state estimation model
for the system. Meanwhile, deliberate attack scenarios are set
up, i.e., i) coordinated attacks between actuators and sensors;
ii) combined attacks for data integrity and availability. The
main contribution is three-fold:

1) This paper proposes a probabilistic indicator to char-
acterize the availability of vulnerabilities and input it to the
fuzzy BN as the prior probability. We establish a NP-Hard
problem from the perspective of adversary which take two
factors into consideration, i.e., i) the limited system knowl-
edge that adversary possesses; ii) the necessity of attacks to
keep stealth.

2) To quantify the likelihood of attacks, this paper conducts
a risk probability interval with the robust and risk solutions
by formulating a linear optimal problem with the fuzzy con-
ditional probability table given by experts and scholars. It is
meaningful to formulate security strategies more flexibly
according to risk preferences.

3) To objectively assess the cross-space risk which is
defined as the physical impact of cyberattacks [16], this
paper proposes a physical impact metric which calculates
and integrates the deviation of system states and measure-
ments with a general linear state estimation model. The
marginal effect of the attack is fully revealed which pro-
vides a broader and clearer insight of the system security
situation.

The rest of this paper is organized as follows. Section II
presents the IEC61850-based cyber-physical distribution sys-
tem model and the integrated attack model with limited
adversarial knowledge. Section III proposes the computa-
tional methods to describe the implementation and propaga-
tion process of attacks in a fuzzy BN. Section IV quantifies
the cross-space risk by proposing a physical impact metric
which integrates the system states and measurements biases.
In Section V, a series of numerical experiments are conducted
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and further illustrations are presented. Finally, the concluding
remarks are given in Section VI.

Il. MODELS OF CYBER-PHYSICAL DISTRIBUTION
SYSTEM AND INTEGRATED ATTACK

In this section, a hierarchical structure of cyber-physical
distribution network according to IEC 61850 is established
and its cybersecurity characteristics are analyzed here. Then,
a complex attack scenario is considered and modeled.

A. MODEL OF CYBER-PHYSICAL DISTRIBUTION

SYSTEM ACCORDING TO IEC 61850

According to the difference in devices and functions, the
cyber-physical distribution network can be divided into three
layers, i.e., the backbone layer, the access layer and the
terminal layer. As shown in Fig. 1, the backbone layer is a
pure cyber system, including the master distribution station
system, supervisory control and data acquisition (SCADA)
system and management information system (MIS), etc. The
terminal layer is dominated by the distribution primary sys-
tem, including circuit breaker (CB), section switch, volt-
age and current transformers, etc. Note that, the terminal
layer contains the entire distribution primary system which
includes power source, loads, primary devices, etc. However,
we only point out the nodes for cyber and physical interaction,
namely actuators and sensors, for the sake of simplicity. The
access layer is the information hub of the entire system,
as well as the core part of the interaction between informa-
tion flow and energy flow. It can realize the fault diagnosis,
isolation and recovery of the distribution network within the
corresponding jurisdiction. Meanwhile, it is also the focus of
this paper.

Backbone Layer l

SCADA MASTER DI!TRIBUTION !MJS

STA[TION

[ ] Station Level
MONITORING REMOTE -
CONTROL
MMY
B 1
Access Layer e
MONIT. &(CONTR. PROT. MONIT. &|CONTR.
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FIGURE 1. Model of cyber-physical distribution system.

In order to analyze the system structure of the access layer,
i.e., slave distribution station in more detail, this paper con-
structs the corresponding automation system model accord-
ing to the IEC61850 standards modeling method, and further
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divides the access layer into process level, bay level and
station level. The data exchanged between the process level
and the bay level includes two types. One is the real-time
sampling data of voltage and current transformers, which
are transmitted from bottom to top through the merging unit
(MU); the other is the control data transmitted from top to
bottom, e.g., tripping signal and switch position. The above-
mentioned data are transmitted through the SV protocol and
the GOOSE protocol, respectively. Data exchanged between
bays, e.g., blocking control, is transmitted by GOOSE proto-
col or private protocol. The data exchanged between the bay
level and the station level, e.g., protection settings, teleme-
try, etc., is transmitted through the MMS protocol. So far,
the security concerns of the IEC 61850 standards mentioned
above are all reflected in this model.

According to the model proposed in this paper, the attack
can be launched from two perspectives. For an attack initiated
from the top of the model, it generally constructs fake instruc-
tions by modifying the key parameters of the CBs or segment
switches configuration files, and causes the mistake action
and rejecting action of above-mentioned devices. Thereby,
the distribution network would be disrupted and fall into
trouble. This type of attack can usually be divided into three
steps, i.e., 1) using security vulnerabilities of the monitoring
host and remote interface to obtain corresponding control
authority; 2) using protocol or message vulnerabilities to
continuously penetrate and reach related IEDs; 3) interfer-
ing or destroying the normal function of IEDs to make the
controlled physical devices run in an undesirable state, and
disrupt the normal operation of the distribution network.
On the other hand, if the attack begins with the power trans-
formers which locate at the bottom of the model, it usually
makes the real distribution network states invisible to the
control center by tampering and interrupting the sensor data.
Consequently, the issued control command will inevitably
deviate from the actual demand which leads to the destruction
of the distribution network.

B. DESCRIPTION OF SYSTEM STATE AND

INTEGRATED ATTACK MODEL

Although the attack can be performed from different per-
spectives, the ultimate goals are either actuators or sensors.
In addition, they are the crucial nodes of the interaction
between cyber and physical system. Therefore, to reveal the
essential features of cyber-physical interaction and cyber-
attacks, it is reasonable to establish the attack model and
describe the state of the system after being attacked from
these two types of devices. First, for the purpose of simplicity,
given the preliminary hypothesis that both the state-transition
function and measurement function are linear, the distribution
network state can be described as follows [22], [23]:

X1 =Ax, +f, + o (D
zr = Hx; + v, 2)
ft = But + 6[ (3)
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where x; € R” represents the system state vector, e.g., voltage
magnitudes and phase angles; f, € R” represents the control
vector; z; € R represents the measurement vector, includ-
ing pseudo-measurements, current phasors, etc.; #; € R”
represents system inputs; §; € R” represents the additional
inputs by using Holt’s linear smoothing method; A € R™*"
represents the transition matrix; B € R"™ " represents a
nonzero diagonal matrix; H € R™*" represents the system
model matrix; @; and v, are usually zero mean Gaussian
noise with covariance matrices W, and V, respectively.

In addition, common attack methods also include data
integrity attacks and availability attacks. Taking the integrity
attack on sensors as an example first. The adversary would try
to modify the measurement vector z into Zasack_ins DY inject-
ing false data ¢, (subscript is omitted for easier reading) [24]:

Zattack_int =2+ Cz 4)

Considering that a successful attack requires the cor-
rupted measurements to keep stealth to the bad data detec-
tion scheme which is built in energy management system
(EMS), the attack vector ¢, should follow ¢, = Ha. Thus,
the measurement vector with integrity attack Zusack_ins can be
written as:

Zattack_int = H(x+a)+v )

In practice, the data availability attacks, e.g., DoS attacks
and jamming attacks are favored by attackers since the
required resources are relatively few. Here, we introduce the
availability attacks to sensors:

Zattack_avai = diag(Ez) - (Hx +v) (6)

where §, € {0, 1} and &, (i) = 1 represents that measure-
ment i is unavailable. Note that, it is reasonable to assume
that the availability attack would not trigger alerts in bad data
detection because data loss is common for SCADA system.
Similarly, the attacks on the actuator can be described as:

Xattack_int =AX+Bu+b)+5+ o @)
Xattack_avai = AX + diag(§,) - (Bu + 8 + ») (8)

Note that, the attack vector ¢, follows ¢, = Bb.
In addition, the attack expression methods of actuator attacks
and sensor attacks, i.e., the attack models are similar, but the
attack paths are different. The actuator attacks are initiated
from top to bottom and will directly affect the state of the
distribution system with the actuator malfunctions or refusal
to move. But the sensor attacks will first affect the system
measurement data, and then make the actuator malfunc-
tions or refuses to move due to the inability to obtain the real
state of the system.

The current advanced cyber-attacks have evolved from a
single target and attack method to a diversified development.
In order to get closer to engineering reality, this paper sets
up an attack scenario which integrates the attack targets,
i.e., actuator and sensor with the attack methods, i.e., integrity
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attack and availability attack all together. The integrated
attack model is shown as follows:

Xanack = Ax + diag(Ex) -[Bm+b)+3§+w] ©)]
Zatack = diag(§,) - [H (x + a) + v] (10)

Eq. (9) and (10) are built under a nature assumption that the
adversary possesses full system knowledge, i.e., the topology
of distribution network, the branch parameters, etc. In other
words, details of the control matrix B and system matrix H
have been known to the adversary. However, it is impossible
for most cases due to well protection of system data in
control center. Consequently, we can introduce the limited
adversarial knowledge attack models by coupling parts of
system model uncertainty AB and AH . The integrated attack
model is modified and shown as follows:

Xamack = Ax + diag(&,) - [fs +b)+3+ w] (11)

Zaack = diag(§;) - [H (x+a)+v] (12)
B2 B+ AB (13)
H2H+AH (14)

where B and H represent the control matrix and system
matrix, respectively, both are possessed by the adversary with
limited knowledge.

IIl. CYBERSECURITY RISK PROPAGATION

This section develops the details of the cyberattack imple-
mentation and propagation process in cyber-physical distribu-
tion network which contains the availability of vulnerabilities
and cybersecurity risk propagation.

A. THE AVAILABILITY OF VULNERABILITIES

Here, we define a successful attack or vulnerability exploita-
tion is to compromise the measurement or control vector
without triggering alerts in bad data detection. Therefore,
the contradiction between attack stealth and resources sav-
ing always exists for adversary. From the perspective of the
adversary, the security of the target system can be described
as the ratio of the minimum consumption to the maximum
consumption of launching a successful attack. The higher
this value, the lower the security of the target system and the
higher the availability of the corresponding vulnerabilities.
To this end, this paper proposes a metric to quantify the
availability of vulnerabilities and input it to the fuzzy BN as
the prior probability:

P(Vul) =y /x (15)

X = [Ee| (& + 6] +[2] (16)

v = l&lo + 1800+ [6xlo + lszlo - a7

where |-| represents the number of elements in attack vectors
which equals to either the number of elements in the system

state vector or the measurement vector; ||-||y represents the
number of non-zero elements in attack vectors; x represents
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the maximum consumption for a successful attack which is a
constant in given system scenario; y represents the minimum
consumption for a successful attack which means the number
of elements in measurement and control vectors that should
be corrupted to keep stealth. P (Vul) represents the availabil-
ity of vulnerabilities. With the limited attack resources and
stealth requirement, y can be given by:

min v = J&cly+ lecly + Jelo + Iy 019)

£k,

s.t. ¢, = diag (§x) -Bb (19)
¢, = diag (£,) - Ha (20)
0=<¢, () <amax, Viel (2D
0=<¢,() <Bmax, V€T (22)
t,()=0, VieA (23)
§:(@=1{0,1}, Vge{l,2,---,n} (24
£, (k) =1{0,1}, Vke{l,2,---,m} (25
leelly + 181, = €2 (26)

where omax and Bmax represent the maximum attack mag-
nitude for measurements; I' represents the set of attacked
measurements; A represents the set of pseudo-measurements
which cannot be attacked; €2 represents the total attack mag-
nitude, i.e., the total attack resources. The mentioned problem
is known as NP-hard to which is usually difficult to find
accurate solutions. Thus, many heuristic algorithms are used
to find approximate solutions, such as simulated annealing
algorithm, while optimal greedy algorithm is also often used.
In addition, it can be simplified by adding constraints to spe-
cific problems. In this paper, the big M method is performed
to transform it as follows:

min oy = 40+ r()
z ]:1

ab.q.ré,, 1

+ Y E@+) &K @D
g=1 k=1

s.t.Bb <M (q+§,) (28)
—Bb <M (g+&,) (29)
Ha <M (r+§&,) (30)
~Ha <M (r+&,) (31)
0<B(i,)b<amx, VieTl (32)
0<H(,)a<Pmx YjeT (33)
H(,)a=0, VYieA (34)
g)el0,1}, Yie(l,2,---.,n) (35)
r(g)ef0,1}), Vjie{l,2,---,m} (36
§,(@=1{0,1}, Vvge{l,2,---,n} (37)
£, () =1{0,1}, Vke{l,2,---.m} (38
lleell; + 181, = €2 (39
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where ¢q (i) = 1 and r (j) = 1 represent the integrity attack on
control and measurement vectors, respectively.

B. CYBERSECURITY RISK PROPAGATION

The BN which describes variables and their conditional
dependencies with a directed acyclic graph is widely used
as propagation model for cybersecurity risk. Given a set of
variables Y = {Y1, Y2, - -+ , Yy} which are the Logical Nodes
(LNs) [25] in this paper, the joint probability distribution of
Y is shown as follows:

P(Y)=P(Y. Yy Yy)=[[pilmi)  (40)

ieN
where m; represents the parent set of Y;; ¥; has two states,
i.e., T for attack success and F for attack failure. Note
that, each LN represents the smallest part of a function that
exchanges data and may reside logically in one or more
physical devices. An example of LNs data exchanging for a

typical function is shown in Fig. 2 and more details can be
found in [25].

STATION LEVEL —=db=s

BAY/UNIT LEVEL

FIGURE 2. Attack graph for IEC 61850 based.

As it can be seen from Fig.2, BN is not suitable for cyberse-
curity risk propagation modeling directly in IEC 61850 based
cyber-physical distribution system since the following issues
have not been solved, i.e., i) the complexity of exact infer-
ence in BN increases exponentially with the topology of
network; ii) the insufficient accurate prior knowledge about
risk propagation cannot support for estimation of conditional
probability table.

Therefore, this paper presents a fuzzy BN to conduct a
fuzzy conditional probability. Specifically, it contains the
following steps.

1) DETERMINING A GROUP OF LINGUISTIC PROBABILITIES

The set of linguistic probabilities contains words, e.g., high,
neutral, low, etc. which imply fuzzy probabilities and can
be represented as S = {s1, 52, - ,sm},Vsm € [8,, m].
Particularly, the certainty decreases as the subscript increases.
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2) DETERMINING THE DEGREE OF MEMBERSHIP

The degree of membership for Y; locating at the m_th linguis-
tic probability can be represented as ¢;, (¥;). To obtain the
degree of membership, we need to build an expert team with
more than 10 people [14] to define the linguistic probabilities
for each LN. Thus, the degree of membership for Y¥; can be
calculated by:

Gim =N uni,, / Numypra; (41)

where Numy, represents the number of experts who select
linguistic probability s,,; Numyy,; represents the total number
of experts.

3) OBTAINING THE FUZZY CONDITIONAL PROBABILITY

To avoid the information loss during the procedure of map-
ping the fuzzy conditional probability to the crisp conditional
probability, this paper proposes the following linear optimiza-
tion model to obtain the upper and lower bounds of the fuzzy
conditional probabilities:

M
pYilmy) = max »  Gimim (42)
Sm m=1
M
pYilmy) = min Y i (43)
Sm m=1
st.8, <8Su <5n, VYmeM 44)
M
D pim=1 (45)
m=1

Consequently, we can obtain the upper and lower bounds
of the joint probability with:

P(Y)=P(¥. Y-, Yy) = [[p(ilm:i) (46)

ieN
PY)=P(Y,Ya, -, Yy) = [[pilmi) (47)

ieN
Here, we define P (Y) as the robust solution which refers
to the most severe result of risk assessment once the physical
impact is fixed and the highest level of security protection
measures should be taken. In addition, P (Y) is defined as
the risk solution that refers to the lightest assessment result
and corresponding protection measures. With the interval
of attack likelihood, the system risk can be reflected more
comprehensively, and security protection strategies can be

formulated more flexibly according to risk preferences.

IV. CROSS-SPACE RISK ASSESSMENT

The quantitative risk is generally assessed as the likelihood
of attack multiplied by the potential attack impact [26]. This
paper further clarifies that the cross-space risk assessment
is the potential impact in physical space under cyberattacks
which are initiated from cyber space, which can be shown as
follows:

R=P(Y)xL(Y) (48)
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where P (Y) represents the likelihood of cyberattacks;
L (Y) represents the potential impact in physical space under
cyberattacks.

The system state information and measurements are further
applied to conduct optimal control strategies, that means they
would affect the further operations of the system. Once the
attacks take place and succeed, the system state and measure-
ments get perturbed. Thus, we design an impact metric which
is a function of the deviations on these two indices. First of
all, we consider the deviation on measurements.

'/’z = ﬁattack —Z (49)

where Zuiqcr represents the estimated measurement vector
under an integrated attack; z represents the measurement
vector without attack. Generally, for Eq. (2), the estimation
results X and Z can be obtained with weighted least squares
(WLS) criterion which are shown as follows:

% = argmin (z - Hx)" v=!'(z — Hx) (50)
N Ty,—1 LT 1

x=(H V- H) HTV 'z =Kz (51)
2 = H? = HKz (52)

The system state vector under the integrated attack, i.e.,
Xanack can be described as follows:

-%attack = Kz_avaizattack =x+ Kz_avai (Uavai + ;z) (53)

-1
Ko wi = (HiuV ' Haa)  HL V! (54)
Vavai = diag(gz)v (55)
H ;i = diag(fz)H (56)

Thus, the deviation of measurement vector can be obtained
by substituting Eq. (52) — (53) into Eq. (49).

'/’z = HK; qyai (Uavai + ;z) (57)

Similarly, we can derive the deviation of the system state
vector with the above-mentioned method. However, we need
to rewrite Eq. (9) first since the focus is on the control vector:

Aattack = Xanack — AX = diag(Ex) -[B(u +b)+8 +o] (58)

Then, the modified deviation of system state vector can be
developed as follows:

Ve = Aantack — A (59)
'ﬁx = BKx_avai (Kavai + ;x) (60)

—1
Ko wai = (BhaW 'Baai) Bh,W~' (6D
Kavai = diag(Ex) 0+ w) (62)
Bavai = diag(Ex)B (63)

Finally, to take physical impacts from both actuators and
sensors into consideration, this paper integrates ¥, and ¥,
through Eq. (2):

e=vY,+HY,
= HK; ayai (Uavai + ;z) + HBK ;_4vai (’Cavai + ;x) (64)
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The expected value of ¢ is:
E (8) = HKz_avaicz + HBKx_avaicx (65)

Furthermore, we define the physical impact metric as the
2-norm of E (&) under the integrated attack:

L(Y) = |HK_ 4i, + HBK_qail, (66)

I

Specifically, with the given information, model and
inference, the cross-space risk assessment procedure under
integrated cyber-attacks has been summarized and the
pseudo-code is presented below.

Algorithm 1 Cross-Space Risk Assessment

1: Input: cyber-physical distribution system topology,
LNs, logical connections

2: Initialize: the control matrix B, the system matrix H,
Gaussian noise @ and v, the attack magnitude o¢max, Bmax
and €2, the model uncertainty AB and AH.

3: Calculate vectors &, &, ¢, ¢, with the optimization
problem Eq. (27) - (39). Note that, the constraints related
to &, and ¢, i.e., Eq. (19) - (23) have been converted to
Eq. (27) — (36) with the big M method. Thus, the integrity
attack vectors ¢, and ¢,are converted to ¢ € {0, 1}" and
r € {0, 1}, respectively.

4: Calculate the availability of vulnerabilities P (Vul) as
the input of the fuzzy BN.

5: Establish the fuzzy conditional probability table with
experts and calculate the robust and risk solutions of joint
probability with Eq. (41) - (47).

6: Calculate the physical impact metric L (Y) according
to Eq. (66).

7: Calculate the cross-space risk R under the integrated
attack with Eq. (48).

8: Output: The cross-space risk R.

V. CASE STUDY

In this section, we apply the proposed cross-space risk assess-
ment method to IEEE33-node system [27] and validate its
effectiveness. The conducted simulations respect to the fol-
lowing preliminaries: i) The CBs and section switches on
a feeder line are controlled by the same slave distribution
station, and the corresponding control logic of all switch
devices is the same; ii) measurements are placed on each bus;
iii) buses 4, 9, 14, 19, 23, 26, 31 are treated as zero-injection
buses which possess pseudo measurements and cannot be
attacked. Specifically, the topology of test system is shown
in Fig. 3. The adversary can obtain the exact system topology
while the line parameters are under different uncertainty.
Here, the slave distribution station 1 is selected as the attack
object.

A. THE AVAILABILITY OF VULNERABILITIES
To quantify the availability of vulnerabilities of IEC
61850 based distribution network under integrated attack, this
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paper determines the y with Eq. (28) — (40) first and the
simulation results are shown in Fig. 4.

It can be seen from Fig. 4, given a degree of uncertainty,
the availability of vulnerabilities increases with the attack
magnitude. For instance, it is enhanced from 0 to 63.08%
when the attack magnitude is increased from O to 600 under
the fixed uncertainty 0%. Note that, the attack magnitude
is dimensionless. In addition, no matter how the uncertainty
degree changes, the availability of vulnerabilities always pos-
sesses the positive relationship with the attack magnitude
which is not against intuition and illustrates the proposed
method is effective. Besides, this paper also develops case
studies under different degrees of uncertainty. The results
show that once the attack magnitude is fixed, the availability
of vulnerabilities reduces with the heightened uncertainty.
In other words, the limited system knowledge will reduce
the adversary’s ability to attack. Here, we also find another
interesting phenomenon, i.e., there is an obvious turning
point in the rise of the availability of vulnerabilities. In other
words, when the attack magnitude is less than a certain value,
the attack effect is relatively poor due to the insufficient attack
resources. The availability of vulnerabilities rises slowly.
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But once the attack magnitude rises to a certain level, the flex-
ibility of attack resource allocation becomes higher. To this
end, the better the attack effect, the higher the availability
of vulnerabilities rises. Moreover, as the uncertainty of the
system rises, this turning point continues to move toward
the direction of increasing attack magnitude. In other words,
a higher magnitude attack is needed to compensate for the
impact, i.e., the uncertainty of the system weakens the adver-
sary’s ability to attack. Thus, the effectiveness of proposed
method for quantifying the availability of vulnerabilities is
further validated.

B. LIKELIHOOD OF ATTACK IN FUZZY BN

With the attack graph which is given in Section III, this part
calculates likelihood of cyber-attack in fuzzy BN. Firstly,
the full names and symbols of LNs are shown in TABLE 1.
The prior probabilities are conducted in part. A, i.e., the avail-
ability of vulnerabilities. In addition, this paper summaries
the evaluation results of 12 experts and scholars in the field
on the association relationship of LNs in IEC 61850 based
slave distribution station. The fuzzy conditional probabilities
are shown in TABLE 2. Note that, O represents attack failure
while 1 represents attack success.

TABLE 1. Function name and number of logical node.

Logical node Full name Symbol
THMI Human Machine Interface A
Pxyz Protection Functions B

RREC Automatic Reclosing C
RSNY Synchronism-Check D
CSWI Switch Controller E
CILO Interlocking Bay/Station F
TVTR Voltage Transformer G
TCTR Current Transformer H
XCBR Circuit Breaker 1
XSWI Switch J

Specifically, the fuzzy conditional probabilities are calcu-
lated by the optimization model of Eq. (43) — (46) with the
given evaluation results. Then, the robust and risk solutions of
joint probabilities are conducted with Eq. (47) — (48). The risk
probability intervals under different attack magnitudes and
system uncertainties are shown in Fig. 5. It can be seen that as
the attack magnitude increases, both robust solution and risk
solution of attack likelihood show a significant upward trend
under a given system uncertainty. Secondly, as the system
uncertainty rises, the likelihood of attack gradually develops
in a direction that is beneficial to the defender and shows a
downward trend. In addition, Fig. 5 shows that the increase
of attack resources which is reflected in the increase of attack
magnitude will significantly enforce attack flexibility to lead
to the expansion of the risk probability interval, which is not
conducive to the defender to make protection decision. The
consistency of the results in multiple simulations shows that
the method to calculate the likelihood of attack based on the
fuzzy BN proposed in this paper is effective.

Furthermore, in the case of a given attack magnitude,
the width of the risk probability interval is negatively
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correlated with system uncertainty. That is to say, the less
system knowledge the adversary possesses, the better it is for
the defender to recognize the security situation of the sys-
tem. This conclusion is consistent with the aforementioned
experimental results, and further proves the effectiveness of
the method proposed in this paper.

C. CROSS-SPACE RISK ANALYSIS

To validate the effectiveness of the proposed cross-space
risk assessment method and analyze the system security
situation, this part calculates the system risk range with
Eq. (66) and (48). Firstly, we develop the system cross-space
risk assessment under 0% system uncertainty and the result
is shown in Fig. 7.

It can be seen from Fig. 7 that the risk of system is increas-
ing with the attack magnitude and the risk range is larger as
well. The overall system security situation is developing in
a direction that is not conducive to defenders. This validates
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TABLE 2. Expert evaluation summary table.

Event Conditippal Fuzzy probability (%)
probability 100~90  90~80  80~70  70~60  60~50  50~40  40~30  30~20  20~10  10~0
P(B=1|4=0,G=0,H =1) 15.00~25.00% 6 6
P(B=1|4=0,G=1LH =0) 17.50~27.50% 1 7 4
P(B=1]4=0,G=1H=1) 25.00~35.00% 1 5 5 1
P(B=1|4=1,G=0,H=0) 80.00~90.00% 3 7 1 1
P(B=1|4=1,G=0,H=1) 81.67~91.67% 3 8 1
P(B=1|4=1,G=1,H=0) 83.33~93.33% 4 8
P(B=1|4=1,G=1,H=1) 89.17~99.17% 11 1
P(C=1|B=1) 84.17-94.17% 7 3 2
P(D=14=0,G=0,H =1) 5.83~15.83% 2 3 7
P(D=1]4=0,G=1,H =0) 4.17~14.17% 1 3 8
P(D=1|4=0,G=1H=1) 6.67~16.67% 1 1 3 7
P(D=1|4=1,G=0,H=0) 77.50~87.50% 1 7 4
P(D=1|4=1,G=0,H =1) 79.17~89.17% 1 9 2
P(D=1|4=1,G=1,H =0) 80.83~90.83% 2 9 1
P(D=1|4=1,G=1,H=1) 89.17~99.17% 11 1
P(E=1]4=0,C=0,D=0,F=1)  37.50~47.50% 9 3
P(E=1]4=0,C=0,D=1F=0)  25.00~35.00% 7 4 1
P(E=1]4=0,C=0,D=1,F =1) 38.33~48.33% 1 8 3
P(E=1]4=0,C=1,D=0,F=0)  48.33~58.33% 10 2
P(E=14=0,C=1,D=0,F=1)  59.17~69.17% 2 7 3
P(E=1/4=0,C=1,D=1F=0)  53.33~63.33% 4 8
P(E=1|4=0,C=1,D=1LF=1)  65.83~75.83% 2 5 3 2
P(E=1]4=1,C=0,D=0,F=0)  55.83~65.83% 2 4 5 1
P(E=14=1,C=0,D=0,F=1)  70.83~80.83% 4 6 1 1
P(E=1]4=1,C=0,D=1,F=0)  70.00~80.00% 4 5 2 1
P(E=1|4=1,C=0,D=1F=1)  79.17~89.17% 6 2 2 1 1
P(E=14=1,C=1,D=0,F=0)  71.67~81.67% 4 6 2
P(E=1/4=1,C=1,D=0,F =1) 83.33~93.33% 7 3 1 1
P(E=1|4=1,C=1,D=1,F=0)  82.50~92.50% 7 2 2 1
P(E=1|4=1,C=1,D=1,F=1)  90.00~100.00% 12
P(F=1|4=1) 84.17~94.17% 6 5 1
P(I=1]E=1) 89.17~99.17% 11 1
P(J=1|E=1) 87.50~97.50% 10 1 1

that the proposed method is effective. Specifically, the risk sit-
uation of system can be divided into three stages, i.e., 1) When
the attack magnitude is between 0 to 240, the system risk
rises slowly due to the limited attack resources and robustness
of system. The adversary can only cause less damage to the
control and measurement vectors; ii) The system risk rises
significantly faster while the attack magnitude is between
240 to 450 which illustrates that the adversary can flexibly
allocate attack resources when they are relatively abundant
and the control and measurement vectors are compromised
in a large area; iii) The system risk growth slows down when
the attack magnitude is greater than 450 due to the marginal
effect of attack because the control and measurement vectors
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are already perturbed significantly. It is difficult to increase
the system risk further linearly even if the attack magnitude
is reinforced.

Moreover, this paper also conducts the system cross-space
risk assessment under different system uncertainties and the
results are shown in Fig. 8. The positive correlation between
system risk and attack magnitude is always the same while
the system uncertainty changes. At the same time, the risk
growth rate is also slow first and then become fast, and
the turning point moves in the direction of increasing attack
magnitude as the uncertainty of the system rises. In summary,
the cross-space risk assessment method for IEC 61850 based
cyber-physical distribution system proposed in this paper is
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effective and can clearly reveal the relationship between sys-
tem risk and attack resources and their dynamic development
trend.

VI. CONCLUSION

This paper establishes a cross-space risk assessment method
with fuzzy BN and system state estimation for IEC
61850 based cyber-physical distribution system and takes the
integrated attack and limited adversary knowledge into con-
sideration. The simulation results show that the system cross-
space risk is positively correlated with attack magnitude and
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negatively correlated with system uncertainty, i.e., the limited
adversary knowledge, and the proposed method is effective.
Furthermore, with the proposed method, the marginal effect
of the attack is fully revealed which provides a broader and
clearer perspective to help the defender to understand the
system security situation. Third, by developing the risk range
which is composed by the robust and risk solutions proposed
in this paper, the defender can formulate security strategies
more flexibly according to risk preferences. Future work will
focus on building a hardware-in-the-loop simulation platform
to further verify the effectiveness of the proposed method.
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