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ABSTRACT With the development of hardware technology, we can collect increasingly reliable time series
data, in which time series anomaly detection is an important task to find problems in time and avoid risks.
It is not easy to establish a multivariate time series anomaly detection system, because the collected data
not only have different attributes, scales, and characteristic information but also have horizontal and vertical
connections among these data collected by various sensors. In addition, there is no clear boundary regarding
whether the data are abnormal, and there is currently no unified definition of multidimensional time-
series anomalies. Recently, deep learning methods have shown outstanding advantages in the processing
of multidimensional time series. In this paper, we propose a definition of point anomalies in multivariate
time series and an unsupervised deep learning method, the multilayer convolutional recurrent autoencoded
anomaly detector (MCRAAD), which is used to detect anomalies in multivariate time series. We calculate
the feature matrix sequence through the data in the sliding window, extract the characteristics of the feature
matrix sequence by a multilayer convolutional encoder, obtain the time relations in the feature matrix by
using several ConvLSTM units, and finally reconstruct the feature matrix sequence with the convolutional
decoder to predict the self-feature matrix. In addition, we propose a threshold setting method to assist with
the determination of anomalies. Finally, we test our model on synthetic datasets and a real dataset of house
monitoring. The results of experiments show that our method is superior to these basic models in detecting
ability and robustness. This model also provides an effective method for multivariate time-series anomaly
detection in real life.

INDEX TERMS Anomaly detection, multivariate time-series, deep neural network, unsupervised learning.

I. INTRODUCTION

There are many time-series data in the real world such
as stock prices, weather data, personal health data, and
sensor data. One of these important fields of time-series
is anomaly detection. Time-series anomaly detection has
very important significance and has become a necessary
part of the modern manufacturing industry and information
services, because undetected anomalies may cause serious
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damage [1]. Currently, there are many studies on abnor-
mal detection of time-series data for specific scenarios. For
example, Gupta et al. [2] studied abnormal changes in GDP
components over time, and Derya Birant and Alp Kut [3]
identified abnormal weather from the wave heights of the four
seas. Keogh et al. [4] checked whether an electrocardiogram
had abnormal fluctuations. Although many researchers have
performed many studies on time-series anomalies, they are
still ambiguous.

At present, there is no unified definition of time-series
anomalies [1], and they are defined as unusual patterns that do
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not conform to expected behavior. Anomaly can be described
as a data point that is significantly dissimilar to other data
points in [5]. Anomalies can be classified into three cate-
gories [6]: point, contextual and collective. Point anomalies
refer to when the data of a single instance are abnormal
compared to other data, which can occur in any type of data.
A contextual anomaly means that the data are abnormal in a
specific scenario but normal in another scenario, which can
only occur in relative data. Time is a context attribute in a
time-series that determines the position of instances in the
entire sequence. A collective anomaly means that there may
be no correlation among multiple individual instances, but
they may be abnormal as a group. In this paper, we take
the contextual attributes and behavioral attributes of each
data instance into consideration and define a point anomaly
of multivariate time-series based on the relationship of a
single instance and its historical data. Anomaly detection of
multidimensional time-series is inseparable from multivariate
time-series data.

In recent years, due to the development of industry and
the Internet of Things [7], multivariate time-series anomaly
detection technology has made great progress. We can obtain
more reliable time-series data from the devices by config-
uring a multisensor system. However, processing these data
from sensors is a major problem. First, the data that are
collected by different sensors may have different attributes,
frequencies, and dependencies. Therefore, the preprocess-
ing of these data is a very time-consuming task and may
require some domain knowledge. Jin et al. [8] proposed an
innovative learning framework for multi-variate air pollutant
concentration prediction. This method, which separated the
features and trends by decomposing the original data into
high-frequency part and low-frequency part to learn them
respectively in a multi-channel module, provided a great idea
for us to acquire the features of multivariate time series.
In addition to the problems mentioned above, there are still
some unavoidable problems; for example, it is difficult to
set an accurate boundary for normal and abnormal data,
or the data collected by different sensors may contain noise
due to other factors. These data with serious noise may
look similar to anomalies [1], lead to false alarms [9], and
affect the performance of algorithms [10]. The fact that
the amount of normal data is much larger than the amount
of abnormal data is another problem, and the problem of
extremely unbalanced data has become another major trou-
ble spot in time-series anomaly detection [11]. Researchers
have tried many ways to process multivariate time-series
data.

To establish an automatic detection system of anoma-
lies in time-series, many researchers have proposed many
effective models and methods to deal with time-series data.
Many scholars have been studying time-series modeling
including ARIMA [12], SVM [13], and CNN [1]. Since
the data used for anomaly detection usually have no clear
labels and the amount of abnormal data is very small,
many unsupervised discriminative approaches are used for

109026

anomaly detection, including OCSVM [14], iForest [15], and
LSTM-ED [16]. Although these unsupervised methods have
made some progress in the field of time-series anomaly detec-
tion, many models still cannot detect anomalies effectively.
We summarize several reasons. First, there is a close time
dependence between multidimensional time-series data, and
general density-based methods and clustering models cannot
capture the dependence between series. Second, multivariate
time-series from the real world containing relatively severe
noise may reduce the generalization ability of the detec-
tion model. Anomaly scores are generally used to measure
the severity of anomalies and find the root cause of the
anomaly. The existing methods for finding the root cause
of the anomaly, e.g., RCA [17], will also fail to accurately
find the root cause due to noise. Finally, the problem of
data imbalance will cause the model to be unable to fully
obtain the relationship between normal data and abnormal
data, which will lead to a poor detection effect.

Taking all the problems mentioned above into consid-
eration, we propose an unsupervised deep neural network
named the Multilayer Convolutional Recurrent Autoencoded
Anomaly Detector (MCRAAD) to detect anomalies at cer-
tain time steps in multidimensional time-series. Specifically,
MCRAAD first obtains the intercorrelation between series
by a window-based feature matrix sequence and then uses
convolutional neural networks to extract the characteristics
of the time-series. We take advantage of a convolutional
long short-term memory network to capture the temporal
patterns, reconstruct the feature matrix through a convolu-
tional decoder, predict the normal data according to the recon-
structed feature matrix sequence and compare it with the real
data to determine whether an anomaly event has occurred.
Ideally, when there is an anomaly, MCRAAD cannot predict
the current situation well. If the distance between the pre-
dicted data and the real data is greater than a certain threshold,
it will be considered that there may be an abnormal event.
Figure 1 (B) shows the difference between the actual data and
the forecast data by MCRAAD under normal and abnormal
conditions. The closer the color is to blue, the smaller the
difference; while the closer the color is to yellow, the greater
the difference. The part enclosed with blue braces in (A) is the
normal time-series data collected under normal conditions.
MCRAAD can predict its self-feature matrix well, and the
distinction between the self-feature matrix and the real one
is small, as shown on both sides of (B). The data enclosed
in red braces is the abnormal data. The difference matrix
at some time step of this period can be demonstrated in
the middle of (B), which has more parts that are close to
yellow.

The main contributions of our work are as follows:

¢ A novel framework, MCRAAD, is proposed for the

anomaly detection of multivariate time-series. Sliding-
window-based cross-correlation computation is adopted
to transform multivariate time-series into feature matri-
ces. Multilayer CNNs can capture the hidden nonlin-
ear cross-correlation features of multivariate time-series

VOLUME 9, 2021



P. Zhao et al.: Novel Multivariate Time-Series Anomaly Detection Approach

IEEE Access

normal series

normal series abnormal series

FIGURE 1. Housing emergency alarming system. (A) denotes multivariate
time-series data, (B) shows the difference between data predicted by
MCRAAD and real data at certain time steps in both normal and abnormal
situations, and (C) represents a system for collecting multivariate
time-series data.

with no need of a priori knowledge, and predict its own
feature matrix to determine abnormal events.

e We propose a novel threshold setting strategy of
anomaly scores using a normal training set, which will
help determine abnormal events in multivariate time-
series.

o We perform extensive experiments on synthetic datasets
and a real home monitoring dataset. The results of our
method demonstrate that MCRAAD is superior to other
models in terms of anomaly detection performance and
robustness.

The paper is structured as follows: section II analyzes
related work, and section III describes the proposed definition
and method in detail. The experiments and discussions are
detailed in section IV. Finally, the conclusions and future
works are listed in section V.

Il. RELATED WORK

A time-series is sequenced set of data on a metric for
each interval of time in chronological order. Data in a
sequence are related to the previous data. This type of data
can describe the changes and reflect the development of
things. A time-series X can be formally defined as X =
{x!,x2,x3, -+~ | x"}, where n is the number of observed
time steps [18], x!' is the result of the first time step
observation, and x?2 is the recording result after a certain
period of time behind the first observation. Similarly, x"
is the value of the last time step. Time-series data can
be divided into different categories according to different
aspects.

Time-series data can be classified into two types according
to the number of variables: univariate time-series and mul-
tivariate time-series. A univariate time-series only needs to
consider the tendency of the observed value of one variable
over time. However, the relationships between the various
series also need to be considered in multivariate time series.
The observed value for k monitoring variables at time t
(I<t=<nyisx’ = {x}, x5, x5, -+, xL}, where x' € X. x|
is the observation of the first variable at time 7, similarly,
x; is the value of the k-th variable at the same time step.
Generally, we store the time-series in the form of a matrix,
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andX = {xl’x27x31"'5-xn} = (x17x27x39"'3xk)T €

RX*" can be regarded as a k-dimensional vector. The
univariate time-series is a one-dimensional (k = 1) vec-
tor, while the multivariate time-series is a k-dimensional
(k > 1) vector whose length equals to n. The size of
X = (x1,x2,x3, - ,x)! is k x n, and the value x! =
(xi,xé,xg, e ,x,i) is a k-dimensional vector representing
the observed value at time ¢. Different kinds of time-series
data have different priorities to consider.

It is necessary to consider the correlation between the
series when dealing with multivariate time-series data. Rele-
vant features may produce noise and mask the true anoma-
lies [19]. Correlation analysis based on a sliding window
is an important method of preprocessing multidimensional
data [20]. This method divides sequences into many overlap-
ping subsequences and then calculates the correlations among
the subsequence data in a window by a given algorithm.
Chen et al. [21] proposed a sliding window convolutional
differential autoencoder that can detect the anomalies of
multivariate time-series in time and space. When processing
multidimensional time-series, we also need to consider the
characteristics of the data itself in addition to the correlation
between series.

There are many time-series data in the real world, but
only a small part of the data has been clearly labeled as
abnormal or not. It is difficult to design a clear boundary
between normal and abnormal data because they are relative
and related to the context in which the data are located.
In addition, the amount of abnormal data in a whole sequence
is very small compared with the normal data. Therefore,
many researchers have proposed unsupervised methods of
anomaly detection. One of these popular techniques is clus-
tering methods, e.g., One-Class Support Vector Machine
(OCSVM). Ma and Perkins [14] used OCSVM to model
the training data and distinguished the test data as normal
or abnormal. Although this method can solve the problem
effectively in many applications, it does not perform well on
time-series data because the method can only pay attention
to the information of the data itself but has nothing to do with
capturing the correlation of temporal data. Another approach
is machine learning methods, e.g., Isolation Forest (iForest).
Liu et al. [15] proposed a method based on iForest to detect
anomalies in sequence data. This approach establishes a
binary tree by random selection of features and cannot obtain
the relationship between various features, which leads to
an unstable detection effect. Some researchers considered
using predictive methods to capture temporal information.
These predictive models can predict what data will appear
at the next time step before new data arrive. Some repre-
sentative models are the Autoregressive model (AR) [22],
Moving Average (MA) [23], Autoregressive Moving Aver-
age (ARMA) [24], and its variants. These models have
shown good performance in the field of time-series anomaly
detection, but they are easily affected by noise. Thus, there
will be many false negative and false positive results when
data have serious noise. In recent years, anomaly detection
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methods based on deep learning have made great progress.
One of the representative deep learning models for processing
time-series is Long Short-Term Memory (LSTM). An LSTM-
based model can predict the data at the next time step
and calculate the distance between predicted data and real
time-series data to determine whether it is abnormal. Ergen
and Kozat [25] proposed a model based on the LSTM struc-
ture to detect product quality. Lindemann et al. [26] used the
LSTM structure to obtain the features of these fixed-length
sequences and established an anomaly detection model based
on OCSVM. Li et al. [27] combined the characteristics of
SAE and LSTM and proposed an anomaly detection method
based on unsupervised deep learning. The LSTM structure,
which can learn the nonlinear relationship of short-term or
long-term time-series data, is also sensitive to noise, which
may increase the risk of misclassification in anomaly detec-
tion. Liang et al [9] calculated the feature matrices and
added a forgetting mechanism to the model to alleviate the
influence of noise. Zhang et al. [28] proposed a model com-
bining wavelet denoising and principal component analysis
to process data noise. The autoencoder model is another
popular noise-friendly model used for detecting sequence
data anomalies. It judges whether it is abnormal by con-
sidering the difference between encoded data and original
data. Vincent et al. [29] built a self-encoding noise reduction
model that can restore the input data with noise to the data
without noise. Borghesi et al. [30] used a semi-supervised
anomaly detection method based on an autoencoder. The
autoencoder uses the idea of encoding and decoding to sup-
press the noise in time-series, which makes the model more
robust, but the autoencoder is theoretically better at dealing
with one-dimensional time-series [9] because this structure
is unable to obtain the correlation between multidimensional
time series data. AnoGAN [31] is the first framework
presented in unsupervised anomaly detection, and success-
fully detects diseased images from sets of unknown images.
Plakias [32] proposed GANs based one-class fault detection
model for the multi-dimensional problem and experiments
indicated the proposed method outperforms One-class SVM
and Isolation Forest. As stated, GANs based architecture has
been gradually developed in anomaly detection fields. The
main drawback of GAN architecture is the instability during
training [33]. Combining the advantages of the above models,
the MCRAAD model we proposed can not only capture the
time pattern effectively but also has the ability to deal with
noise. Although all of these methods based on a variety of
technologies have different effects on time-series anomaly
detection, they all need to have indicators to judge anomalies
in common.

An important aspect of any anomaly detection technique
is the manner of reporting anomalies. Typically, the outputs
produced by anomaly detection techniques are two types [6]:
scores and labels. The scoring technique assigns an anomaly
score for each instance in the test data to evaluate the abnor-
mal degree of each instance. Generally, a threshold is set
to determine whether it is abnormal. Zhang et al. [34] used
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the anomaly score to determine whether it is abnormal.
Lin et al. [35] used labels that can directly mark the abnormal
state of the data to distinguish normal and abnormal events.
Due to the continuity and relevance of time-series data,
the abnormal state of the data is closely related to the context,
and it is not easy to distinguish whether it is abnormal.
Therefore, it is more appropriate to calculate the score at each
time step to measure the abnormal state of this time step. The
anomaly score can measure the degree to which the observed
value at time step ¢ conforms to the current trend. The smaller
the anomaly score, the closer it is to the current temporal
pattern. Conversely, the larger the anomaly score, the further
away it is from the temporal characteristics. To help us judge
abnormal events with abnormal scores, we also propose a
method to set the threshold of abnormal scores with a normal
training set.

Ill. ANOMALY DEFINITION AND MODEL DETAILS

In this section, we introduce the problem we aim to study
in section III-A, and then define the concept of multivariate
time-series point anomalies in section III-B. Next, we elab-
orate on the proposed MCRAAD in detail in section III-C.
Specifically, we show how to generate feature matrices. Then,
we encode the spatial information in feature matrices via a
convolutional encoder and model the temporal pattern with
ConvLSTM. Finally, we reconstruct feature matrices based
upon a convolutional decoder and predict self-feature matri-
ces with these reconstructed feature matrices. We introduce
in detail the strategy of threshold setting and the method of
calculating anomaly scores in section III-D.

A. PROBLEM STATEMENT

Given the historical data of k time-series with length n, X =
(X1, x2,x3, -+ ,xk)T € R¥*" and assuming there exists no
anomaly in the data, we aim to detect anomalous events at
certain time steps after n. We only use the normal dataset for
training to characterize the various patterns of sensors under
normal conditions. At testing time, we determine whether the
current state is normal or abnormal by means of the anomaly
score.

B. ANOMALY DEFINITION OF TIME-SERIES

1) DEFINITION 1: SUBSEQUENCE OF TIME-SERIES

A subsequence Sy, € R¥* of a time-series X is a continuous
subset of the values from X of length z starting from position
t. Formally, Sgp, z = {x', x"*1, ...y}

2) DEFINITION 2: POINT ANOMALY OF TIME-SERIES

Let X = {xl, x2 %3, ... ,x”} be a time-series, Y be a set,
z € N be a natural number, and § € R be a real number.
Jy € Y meets the mapping g : (X, Syup) — Y forall x' €
Xand 8!, = {5 x0T = 1,2, ),
asy = g(x', SI,,). The state of step  is

0 (normal),
1 (anomaly),

g(S;ub’xt) < 8
g(Sk . x") > 8.
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TABLE 1. An example of a multivariatel time-series anomalies.

Time 1 2 3 4 5 6 7 8 9 10
2 -3 2 -1 1 0 0 1 1
Data 1 3 5 3 -2 2 1 0 1 2
4 2 3 5 2 6 -7 -6 -5 -8

z 3

§ 10

0,t <=z
oSt | 9(St,at) = {25_1 Sh G-,
zxk ’

Yy 0 0 0 3 15 6 5 3 3 4
Nomal(0/1) 0 0 0 0 1 0 0 0 0 0

*The red column is the abnormal position of the time-series

To make the concept of anomalies easier to understand,
we take an example of multidimensional time-series anomaly.
Table 1 shows an example of a 3-dimensional time-series
with one point anomaly. The multivariate time-series data
with three series of length 10 has an unusual step at
time 5 marked with red color. The table also displays us
z = 3, § = 10, and the mapping formulation g. When
t < z,y = 0;and r > 1z the value of y can be
calculated by g. For example, when ¢t = 5, Sssub =

-3 -2-1

3 53

-2 -3-5

(3-124+GC—(=2)2+...+(=5-(-2))?

Y= 3 %3 =1
is greater than § which equals to 10. Thus, we will study
whether the event at time step 5 is an abnormal event.
We perform the same operation for the other time steps to
obtain the corresponding value between x” and its preceding
subsequence ! ,. For example, the value at the ninth time
step equal to 3 is less than §, which shows that it is a normal
event.

, x> = (1,-2, =2)T, the value of this step

C. DETAILS OF MCRAAD FRAMEWORK

Many of the proposed time-series point anomaly detection
methods attempt to find the mapping relation that is consis-
tent with the original series. We also propose a framework
to find mapping relationships and detect unusual events in
multivariate time-series. MCRAAD consists of four parts:
generating feature matrices is introduced in section III-Cl1,
the convolutional encoder is displayed in section III-C2,
middle-layer ConvLSTM will be presented in section III-C3
and convolutional decoder is shown in section III-C4. The
framework of MCRAAD can be abstracted as shown in
Figure 2. Part (A) shows multilayer full convolutional
encoders extracting the features of the input feature matrix
sequence, (B) is the ConvLSTM layer to capture the current
temporal pattern, and (C) denotes multilayer convolutional
decoders that have the same size as the encoders. The output
of (C) is the reconstructed characteristic matrix, which is the
input of a linear structure predicting the self-feature matrix.
(S) demonstrates the multivariate time-series data, and Loss
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Function calculates the loss of real self-feature matrices and
predicted self-feature matrices.

1) GENERATE FEATURE MATRICES

It is significant to study the correlation of time-series when
researching multivariate time-series [36]. Hallac et al. [37]
suggested that the correlations between different pairs of
time-series are critical to characterize the system status. One
of the methods is to calculate the feature matrix of the over-
lapping subsequence in the sliding window to reflect the
correlation. We follow the method of calculating the feature
matrix proposed in [9] to amplify features and reduce noise.
To detect whether the observed value of time ¢ in sequence is
consistent with the current temporal trend, we need to calcu-
late two characteristic matrices at time ¢ in the time-series X .
One is the feature matrix, which is calculated with a subse-
quence of length w before the time step ¢ (including time ¢),
where w is the size of the sliding window. We denote this type
of matrix as M!, which reflects the correlation characteristics
of the subsequence of length w before time 7. Another feature
map M’ is only interested in the information of the observed
value at time ¢. The algorithm generating the feature matrix
sequence is shown as Algorithm 1. In this algorithm, we first
visit the data of the entire time-series sequentially. Then,
at each visit, the current data and a subsequence before the
current data are extracted to calculate the self-feature matrix
and feature matrix, respectively, according to Eq. 1. Finally,
we obtain the feature matrix sequence and self-feature matrix
sequence by saving the two kinds of feature matrices at each
visit in order.

The more detailed steps for calculating the two kinds of
feature matrices are as follows. When setting w = 1, the result
of this self-feature map only contains its own information.
When w > 1, we obtain the feature map that contains the
relationship of this time step 7 and the previous subsequence
of time ¢ with length w. We need subsequence Y!, =
{7 Al xfmw k2 o &'} with length w selected from time
t forward to generate the feature matrix at time ¢, where w
is the window size. Ys’ubx can be regarded as a matrix of
k x w, and the transposed matrix of Y, Y’Mhs is a matrix of
w x k. The feature matrix M’ at time ¢ can be calculated
by multiplying the matrix Y! , by the transpose matrix of
Y/, and dividing by the window size w. M" is formulated
as:

v, (vt )t
M = sub (Wsub) (1)

The value Mlgq at this position of the p-th row and the
g-th column of the feature matrix M’ at time ¢ is calculated

as follows:

—1 = _
ZW xl‘ o X.X; o

a=0"i
M = (2)
Pq W
where x; =[xl "L ITRR L Ky = {x;_”’“,
x;_w+2,--~ ,x; } w is the size of sliding window,

i =p,j=gq,and M’ is a matrix of k x k. When calculating
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FIGURE 2. Overall framework of model MCRAAD. Multiple full convolutional encoders in (A) extract features of input feature matrix sequence.
Input (A) is feature matrix subsequence, (B) is ConvLSTM layer, and number of convolutional decoders in (C) is equal to encoder. Output of

(C) is reconstructed characteristic matrix, (D) is one-layer linear structure predicting self-feature matrix, (S) is multivariate time-series data,
and loss function calculates loss of real self-feature matrices and predicted self-feature matrices.

Algorithm 1 Generate Feature Matrices Algorithm

Input: Multivariate time-series X, lenth of the time-series n,
dimension of the time-series k, window size w.

Output: feature matrix sequence M, seft-feature matrix
sequence M.

1: for intr =1tondo

2 if 7 < wthen M[t] < 0 € Rkxk

3: else

4 Seup < [x[t —w+ 1], x[t —w+2],---, x[t]]
Ssub X Sg,;b

5: M(t] < —

6: M(t] < x[t] x x[£]T
7. return M, M

its self-feature matrix at this step, we should set w = 1 and
then obtain a matrix Y/, = {x'} = (x{,x},x§, .-+, x]) of
k x 1. Similarly, we can calculate the self-feature matrix
M! that only contains the current time step information
by inputting Y/, into Eq. 1 and Eq. 2. Moving the same
window one step to the next time step, we will obtain the
subsequence Y ;;71 at the next step and obtain two kinds of
feature matrices at time ¢ 4 1. By repeating the above steps,
we can obtain the feature matrices of the entire sequence.
It should be noted that the subsequence of length w can-
not be fetched from time ¢ forward when ¢+ < w. Thus,
we directly use the zero matrices of k x k as the feature map at

time ¢.
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The characteristic matrix sequence generated by the entire
sequence is marked as M, and the self-feature matrix
sequence generated by the entire sequence containing only
its own information is marked as M. Figure 2 (S) is the data
at one time step. The feature matrix calculated using only the
information at this time step is the part indicated by the green
dashed arrow. The red box adjacent to the green box takes a
subsequence of the time-series data, and this subsequence can
be calculated into a feature matrix that contains the informa-
tion of the previous segment of the subsequence adjacent to
the green box. We also list an example of computing the two
kinds of feature matrices at time step 5 with the time-series
data listed in Table 1.

For example, taking a subsequence of length w = 3 from

-2-11
Table 1 at time step t = 5 as Yssub = 5 3 =2/,
-3 -5-=-2
-2 5 -3
YT = | —1 3 —5|, the feature matrix of this stepis M> =
1 -2 -2
-2 -1 1 -2 5 =3
5 3 =2|x|-13 =5
—3-5-2 1 —2-2 2 =5 3
-5 12.7 —-8.7 |, and
3 3 87 127
the self-feature matrix of this step is M = [1 —2 —2]T X
1 -2-2
[1-2-2]=|-24 4
-2 4 4

VOLUME 9, 2021
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2) CONVOLUTIONAL ENCODER
We use a convolution encoder [38] to filter the noise in the
data and encode the spatial patterns of feeding feature matrix
sequence M. Four layers of fully convolution encoders are
applied in our model to extract the features of the input
feature matrix. Part (A) in Figure 2 is a four-layer convo-
lutional encoding layer whose input is a sequence of fea-
ture matrices. We call the input of the first layer 0" at
this time ¢ for convenience. To capture the tendency of the
temporal sequence more accurately, we can take the fea-
ture matrix subsequence with more long-term information
as the input of our model. At the time step #, the input is a
length of w’ feature matrix subsequences. The input 0" =
M= =D)xs=1 ppi=(w=2)xs=1 ., ’Mt—l} is a matrix of
w x k x k, where s is the stride to obtain the characteristic
matrix and w' is the number of feature matrices. The output
of [-th layer is given by:

O =fWi, « 0" +bl) 3)

where W/, denotes the filter kernel of layer /, b.,, is the bias,
* denotes the convolutional operation, O™ is the output of
layer /, 0!~ is the output of the / — 1 layer and meanwhile
it is the input of layer /, and f(-) is an activation function.

3) CONVLSTM

The features extracted by the convolution encoder can only
be obtained according to the input feature matrices. To obtain
accurately predicted results, it is also necessary to obtain
the temporal characteristics. The traditional LSTM is skilled
in extracting important features of the sequence over time.
Shi et al. [39] improved the LSTM model to the ConvLSTM
model which has been developed to capture the temporal
information in a video sequence. The output of each layer of
the encoder is used as the input of ConvLSTM. As mentioned
earlier, there are four convolutional layers of four ConvLSTM
blocks, and each layer contains a ConvLSTM structure. The
information of ConvLSM is shown in Figure 2 (B). At time
step 1, the output O calculated by Eq. 3 in layer / of
the convolutional encoder is used as one input of the /-th
layer ConvLSTM, and the other input is the previous time
t — 1 hidden state H*~" in the hidden layer of layer /. The
ConvLSTM cell [39] is formulated as:

1" = o (W 0"+ Wi B 4 who €7 4 )

o (Wi 0"+ Wi s '™ 4 Wl o €M b))

cl =Ftloc M 41t o tanh(WéC x O 4 W;llc oH!™M
+b;)

P = o (Wi, O+ Wi s M 4 Wi o €M 4 b))

H = P o anh (") @)

where I"! represents the output of the input gate, o is the
sigmoid function, Wéi is the filter kernel of the input gate,
0" is the input of layer /, W}lu. is the filter kernel of the input
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gate to process the input of the hidden layer at the previous
time step, H'~"/ is the output of the hidden layer at the
previous time step and it is also the input of the hidden layer
at this time step, WCli is the filter kernel of the cell state at the
previous time step in the input gate, C'~ !/ is the cell state
at the previous time step, bﬁ is the bias of the input gate, *
denotes the convolution operation, o represents the Hadamard
product, F-! shows the output of the forget gate, C*/ is the
updated state of the cell at time ¢, P I denotes the output
at time ¢, H'! ! is the state of the hidden layer at time ¢, and
tanh is another activation function. When ¢ = 1, there is no
hidden layer state and cell state at time ¢+ = 0, and we set
H%! and C% to zero matrices of the same size as the input.
These parameters I/, F-/C! Pb HD! and 0" have the
same size.

4) CONVOLUTIONAL DECODER
The opposite of coding layer is decoded one. We can recon-
struct the input data into the extracted feature output. The
decoding layer reconstructs a sub-feature matrix sequence
from the input O"* into a sub-feature matrix sequence O"-°
of the same size as the input, and then we can predict the
self-feature matrix M’ that only contains its own information
according to the decoded characteristic matrix subsequence
0"0 at the time . We follow the idea mentioned in [34]
and reversely decode the deconvolution from layer [ = 4 to
layer [ = 1 to reconstruct the matrix of each layer. If in the
last layer | = 4, we directly deconvolve the output P-4 of
the ConvLSTM at the last layer [ = 4 and reconstruct the
matrix of the previous layer O"3.If it is not in the last layer
0 < [ < 4, the step is to combine the output P! of the
CovnLSTM in layer [/ calculated by Eq. 4 with the output
0" of the deconvolution layer [ + 1 calculated by Eq. 5.
Then the deconvolution operation is performed in the result
of concatenation to reconstruct the feature matrix sequence
of the I — 1-th layer. The concatenation and deconvolution
operations are shown in Figure 2 (C), and the output of (C) is
a reconstructed feature matrix. The convolutional decoder
which is formulated as:

A (Wil @ P+ 0), I=4

Ot,l—l — R 5)
f(wile[prteo]+ol), 0<i<4

where ® denotes the deconvolution operation, @ is the
concatenation operation, f (-) is the activation unit (same
as the encoder), and W;’el and b;*el are the filter ker-
nel and bias parameter of [-th deconvolutional layer. The
output 0" of the final convolutional decoder (with the
same size of the input matrices) denotes the representa-
tions of reconstructed feature matrices. The output 00 =
{M[—(w’—l)xs—l’ Mt—(w’—Z)xs—l’ . Mt—s—lﬁ M1l can
be regared as a matrix with a size of W’ x k x k. The decoder
is able to incorporate feature maps at different deconvolu-
tion and ConvLSTM layers, which is effective in improving
anomaly detection performance.
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A linear structure is added after the last [ = 1 layer of
decoding to predict the self-feature map M at time ¢. The
output 0"0 of the decoder at the [ = 1 layer is taken as the
input of this linear structure, and the output M of this linear
structure is the predicted self-featrue matrix with the same
size as M of k x k. As shown in Figure 2, the input of (D) is
the reconstructed feature matrix sequence decoded from the
output of (C), and the output of (D) is its predicted self-feature
matrix predicted conforming to the current temporal trend.
We set the formulation of the linear structure in the last layer
as:

M =W x 00 + ! ©6)

5) LOSS FUNCTION

There are three kinds of the commonly used loss functions
in regression tasks: Mean Squared Loss (MSE), Root Mean
Squared Loss (RMSE), and Mean Absolute Loss (MAE),
where RMSE is the square root of MSE. Willmott and Mat-
suura [40] introduced the respective advantages of MAE and
RMSE loss functions. When the error is very large, the result
calculated by MSE will be much larger than the result of
MAE, and the gradient of MSE will also change with the size
of the error due to the square relationship of MSE. Therefore,
MSE loss is a loss function that is more suitable to the field
of anomaly detection. Our loss function is formulated as
follows:

k k t it 2
Z,LL:I Zv:l (Mﬂv - My,v)
k xk
where M is the self-feature matrix at time step f, M s
the predicted the self-feature matrix at time step #, uv is the

position of the w-th row and v-th column in the matrix, and
the size of both kinds of matrices is k x k.

LossFunc =

)

D. THRESHOLD-SETTING STRATEGY

According to the definition in section III-B2, there is a certain
value that indicates the extent to which the current value
deviates from the historical data. The anomaly score calcu-
lated by the proposed method represents a certain mapping
value in the definition. Thus, we also need to set a threshold
of anomaly scores to judge whether there is an abnormal
event. The setting of the threshold is a key task in anomaly
detection [41]. In our work, the data used in the training model
are normal data, and the abnormal scores calculated with
these training data also belong in the normal range. In this
paper, we propose a method to set the threshold according
to the training set. This can provide a valuable reference
for setting the abnormal boundary. Considering that noise
and individual extreme data in the training set can affect the
threshold setting, instead of directly using the maximum of
the training set’s anomaly score as the result of the threshold
setting, the anomaly scores of the training set are analyzed
again. Algorithm 2 displays the strategy of threshold setting.
The threshold-setting algorithm first calculates the difference
matrix sequence S according to the real self-feature matrix
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sequence M and the predicted self-feature matrix sequence
M computed by Eq. 6. Then, the upper quartile of the set S’
consisting of the maximum value of each difference matrix
is calculated to obtain the threshold value 6 that can con-
tribute to the abnormal score. According to this threshold
0, the number of the difference matrix sequences S at each
time step of training set exceeding threshold 6 is recorded
as the anomaly score Sunomaty- Then, we calculate the upper
quartile of the abnormal score Sunomary Of the training set
and record it as the temporary threshold §’. Finally, through
the relationship between the abnormal score Sgnomary and the
temporary threshold 8, the threshold § of the abnormal score
is obtained according to the situation of the score. If there is
no abnormal score greater than the temporary threshold &,
the threshold § takes the maximum value of the abnormal
score. If there is a value in Syuomary greater than the temporary
threshold, the value of § is the upper quartile of the part where
the abnormal score is greater than the threshold 8’. This
threshold setting strategy takes both the noise of the data and
the extreme data into account and makes a secondary analysis
of anomaly scores of normal datasets, so the threshold value
obtained is also relatively reasonable.

The detailed process of the threshold setting strategy is as
follows. First, we calculate the difference matrix S according
to the self-feature matrix M and the predicted self-feature
matrix M at every time step. S” with size k x k is the result of
squaring the value of subtracting M’ from M". Our formula
for S* is as follows:

2

S' = ”M vt ®)

According to Eq. 8 we can calculate the difference matrices
at all time steps and obtain a series of difference matrices
named S with the same length as the training data, where
S* is the t-th matrix in S. The calculation of the anomaly
score at the time 7 needs the elements in S, so we set another
threshold 6 to determine whether the elements in S’ can
contribute to the anomaly score. The setting of 6 is also an
essential operation. The maximum value max {S ! } is taken
from the difference matrix at each time step to form a set S’
whose size equals to the length of training data. The value
of 0 is set according to the statistics-based method presented
in [42], where the abnormal part of the data is detected by the
interquartile distance (IQR). IQR is defined as follows:

IOR = Q3 — Q) 9

where Q3 is upper quartile and Qg is lower quartile. Then,
the normal range of data is calculated as:

upper — bound = Q3 + IQR X factor (10)
lower — bound = Q1 — IQR X factor (11
where factor is usually set to 1.5 or can be set to the appro-
priate value as needed. We only need to calculate the upper

limitation of date because anything below the lower limitation
calculated by Eq. 11 is a more normal value. We set factor
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to 1.5 as usual, and according to Eq. 9 and Eq. 10 the 6 is
calculated as follows:

0=15x(0:(S)—0i(5)+0:(8) (12

where S’ is the maximum set of matrices in the difference
matrix S of the training set, O3 (S ! ) is the upper quartile of
S’, and O (S/) is the lower quartile of S’.

We have obtained the threshold 6 from Eq. 12 to deter-
mine whether the elements in the difference matrix S’ can
contribute to the abnormal score at any time ¢. Then, we can
calculate the abnormal score at this step. The number of S’
that is greater than threshold 8 at time ¢ is counted as the
abnormal score at this time, and the abnormal score at ¢ is
calculated as follows:

2
) (13)

F () is the function to count the number of elements in the
difference matrix S’ greater than 6, and M" and M' denote
the predicted self-feature matrix and real self-feature matrix,
respectively, at time . We can calculate the abnormal score at
any time in the dataset according to Eq. 13, and the abnormal
score in the training set is recorded as STrain. In this case,
we need to calculate the boundary of the abnormal score § to
judge whether this score of time ¢ can determine the observed
value as anormaly.

Since all the data in the training set contain noise, we do
not apply the maximum abnormal score in the training set
as the value of the abnormal boundary § in order to avoid
the setting of the threshold being influenced by individ-
ual data with significant noise. Instead, we first use STrain
to calculate a temporary upper bound §’ according to the
abnormal situation in the training set. Eq. 9 and Eq. 10
are still used to calculate the temporary upper-boundary,
8 = 1.5x(Q3 (STrain) — Q1 (STrain))+ Q3 (STrain), where
Q3 (STrain) , Q1 (STrain) are the upper and lower quartiles
of STrain, respectively. The setting of of value § is divided
into two cases. If all of the anomaly scores of the training set
are less than the temporary upper bound &, then the anomaly
boundary § takes the maximum of STrain. If the anomaly
score of the training set has a value greater than the temporary
boundary, then the boundary § takes the upper quartile of the
portion of STrain that exceeds the temporary upper limitation.
We calculate § by the following formula:

S(tmomaly =F (HMI - M

(14)

max {STrain} , VB € Sanomaty < &'
03 ({BISTrain > §'}),  others

After the threshold is set, the testing set can be inputted
into the trained model, and the abnormal score of ¢ at a
certain time step is obtained. If the abnormal score is greater
than §, then this time step is considered to be abnormal and
far from the expected behavior. Significantly, the method of
setting the threshold is only a reference to the data, and the
specific threshold setting needs to be adjusted according to
the different scenarios.
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Algorithm 2 Threshold Setting Algorithm

Input: real self-feature matrix sequence M of training set,
real self-feature matrix sequence M of training set, length of
matrix sequence n

Output: threshold of statistical anomaly score 6 and thresh-
old of determining anomaly &

1: for intr = 1tondo 5
2 Sl < | Min - M|
difference matrix
S'[t] <0
forinti=1tok do
forintj = 1to k do
if $'[r] < S[¢1[i][j] then
S'[r] < S[t1[{1[j1 > Select the maximum value in
t-th the difference matrix
7: 0 < upper — bound(S") > Apply upper-bound to the
maximum set in the difference matrix Eq. 10
8: forintt = 1tondo

> Calculate the ¢-th

AN

9: Sanomaly[t] <0

10: forinti=1tok do

11: forintj = 1tok do

12: if S[7][7][j] > O then

13: Sunomaly[t] <~ Sanumaly[t] +1

14: 8" < upper — bound (Sanomaly) > Apply upper-bound to
the anomaly score set of training set Eq. 10

15: if VB € Sanomaty < 5’ then

16: 8 = max {Sam,ma[y}

17: else

18: 8 = O3(Sanomaty > 8") > Apply the upper quartile to
the anomaly score set of all Sanomaly greater than 8’

19: return 6, §

IV. EXPERIMENT AND DISCUSSION

In this section, we use synthetic data and real data respec-
tively to test the detection effect of our proposed model
MCRAAD and test the influence of some other factors on our
model with several groups of synthetic datasets. In the exper-
iments with the artificial data, we first introduce a method
of generating the simulated data, and then design a group
of comparison experiments between these basic models and
the MCRAAD model on the anomaly detection effect with
the synthetic data. To test the robustness of the proposed
model, we set up a group of comparison experiments with
different noise sizes. The influence of input data setting and
network structure on MCRAAD is also shown in this section.
Finally, we compare the detection performance of several
basic models and our model on real dataset monitoring home
information.

In our experiments, we compare MCRAAD with seven
baseline methods, i.e., One-Class SVM (OCSVM), Isola-
tion Forest (iForest), History Average (HA), Auto Regres-
sion Moving Average (ARMA) [43], Long Short-Term
Memory (LSTM), Autoencoder, and LSTM encoder-decoder
(LSTM-ED). OCSVM and iForest output the anomaly label
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directly, and other models used for comparison directly use
the mean square error loss as the anomaly score. We follow
the method of training data used in OCSVM, which only
trains one kind of data. The input of the proposed model is
normal data without labels and the labels of the dataset are
used only to evaluate the performance of the model.

Several metrics need to be set to evaluate the results of the
experiments. In unbalanced data, to evaluate the detection
performance of these models more reasonably, four metrics,
i.e., Precision, Recall, F1 Score, and Gmean, are used to
evaluate the anomaly detection performance of each method.
The geometric mean is also an extensively used metric in
imbalanced data scenarios [44]. It is the geometric mean
between recall and specificity, and is computed as Eq. 15:

TP TN
Gmean = \/ X (15)
TP+ FN TN + FP

These metrics are calculated from a confusion matrix,
which displays the crossing correct and wrong predictions
between pairs of categories. It represents True Positives (TP),
False Positives (FP), True Negatives (TN), and False Nega-
tives (FN) undertaken by the system.

A. EXPERIMENTS ON SYNTHETIC DATA

We use easily controlled periodic functions to generate sim-
ulated data. Each time-series is formulated as:

cl c2 c3

in | +b]l+ A 0

sin laxt €, Srand =
Data(t) =\ " o 3 a (16)

e
cos [axt+bl+ Ae,

Srand = 1

where c1 is a trigonometric function that can simulate tempo-
ral patterns. These two trigonometric functions are common
trigonometric functions with good periodicity and strong reg-
ularity, and their ranges are [—1, 1]. Part ¢2 can control the
periodicity and starting position of the trigonometric func-
tion. To make the data pattern of each dimension not identical,
a and b in 2 are set as random numbers. The larger the value
of a is, the smaller the period is. c3 simulates data noise as
well as various shapes. The value of € is a random number
that meets the standard normal distribution N (0, 1), and A
is a parameter to control the size of the noise; its range is
[0.1, 0.5]. S;qnq is a random number with values of 0 and 1 to
set the trigonometric function used to generate the data of the
current dimension. The sine function is used for 0, and the
cosine function is used for 1. In addition, we also need to
add abnormal waves as anomalies by randomly selecting the
frequency and phase of each time-series.

1) SYNTHETIC DATA

The synthetic time-series data can be generated by the Eq. 16.
We set the parameter of noise A to 0.15 and randomly generate
20 time-series, each including 12000 points. The first 5000 of
these points are used as the training set are normal data with
noise. The testing set including the last 7000 points con-
tains four randomly added anomalies with different sizes and
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lengths (4 is a random integer between 2 and 5). The method
of adding abnormal fluctuations is to add a random number
[0, 1] to the starting position of the abnormal fluctuation
after standardizing the dataset and set the successive length
to the same value as the starting position of the anomaly.
We normalize the multivariate time series data by the z-score
normalization method with a mean of zero and a standard
deviation of one.

When using Algorithm 1 to calculate the feature matrix
at each time step, the window size w is set as 10. When
taking the training set and the testing set from the feature
matrix sequence, we set the step size s to 5. We input
10 feature matrices (W' = 10) to the model at one time.
These parameters are relatively better parameters found by
network search algorithm. We follow the network structure
and parameters in [34] as the initial setting of our network
architecture and parameters and make some changes to adapt
to our experiments. The four-layer convolution kernels in
these convolutional encoders are set to 32 kernels of size
10 x 3 x 3 with 1 stride, 64 kernels of size 32 x 3 x 3
with 2 strides, 128 kernels of size 64 x 2 x 2 of with 2
strides, 256 kernels of size 128 x 2 x 2 with 2 strides. The
kernel setting of ConvLSTM is related to the encoding layer.
We maintain the same size of convolutional kernel as the
convolutional encoder at each layer and the stride is set to 1.
In addition, the padding is set to an appropriate value to keep
the size of the input and output of ConvLSTM consistent.
The settings of the convolutional decoder from the fourth
layer to the first layer are 128 kernels of size 256 x 2 x 2
with 2 strides, 64 kernels of size 256 x 2 x 2 with 2 strides,
32 kernels of size 128 x 3 x 3 with 2 strides, 10 kernels of
size 64 x 3 x 3 with 1 stride. It is worth noting that the output
of each layer of the decoder must have the same size as the
input size of the encoder. We use the Scaled Exponential
Linear Unit (SELU) [45] as the activation function of four
encoders and decoders. The activation function SELU has a
self-normalization feature that can converge to a mean of 0,
a variance of 1, or a variance with upper and lower bounds
even when noise is added. The parameters of the activation
function used in the experiments are the default parameters.
We also take the advantage of the Adam optimizer [46] in
training. The loss function can be found in Eq. 7. In the
experiments, we take advantage of the grid search algorithm
to select the hyperparameters for these models in advance.
The three deep learning models, Autoencoder, LSTM, and
LSTM-ED adopt the uniform distribution initialization model
and their activation functions are ReLU and the optimizer
are Adam. The proposed model adopts the standard normal
distribution initialization mode. In the training process, if the
performance of network structure is not improved after two
epochs, the batch size would be halved until the batch size
was equal to 32, and the learning rate would be reduced to half
of the original. If the network still cannot be improved after
the learning rate and batch size were reduced, the training
operation would be stopped. When training our model with
the synthetic time-series, we let epoch equal to 15 and the
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TABLE 2. Anomaly detection results of eight models on synthetic data.

Model Precision  Recall FI1 Score  Gmean
OCSVM 0.386 0.309 0.343 0.552
iForest 0.330 0.377 0.352 0.608
HA 0.670 0.337 0.449 0.624
ARMA 0.723 0.380 0.498 0.615
LSTM 0.462 0.380 0.417 0.613
Autoencoder 0.639 0.475 0.545 0.687
LSTM-ED 0.929 0.726 0.815 0.852
MCRAAD 0.986 0.806 0.887 0.897

* The best values in each metric are highlighted in bold.

batch equal to 64. After training, we use the trained model
to test the training set and obtain the threshold of anomaly
score based on the predicted training set and the real training
set according to Algorithm 2. When calculating the feature
matrix, we set the feature matrix of the data that does not meet
the conditions to matrix zero. Thus, this part of the data does
not participate in the training and testing process. In addition,
In order that the feature matrices input to the model do not
contain zero matrices, we start training and predicting from
the 55th iteration, and the data used in calculating the loss
and anomaly score and evaluating the model do not include
the first 55 datasets.

We repeat these experiments on the same simulated
dataset with eight models, and the average results are
shown in Table 2. The F1 score below 0.4 for the two
machine-learning approaches illustrate that temporal predic-
tion models can better capture the developmental character-
istics of the data. The HA and ARMA models pay more
attention to precision but fail to find more true abnormal
positions, and the values of their precision are near twice
the recall values. Among these basic models, the LSTM-ED
model, which adapts to dealing with noise and can capture
time characteristics, performs better than the other six basic
models, and its indicators are only secondary to MCRAAD.
MCRAAD performs best on all models in terms of precision
and recall score from the detection results of the eight models.
The improvements over the best baseline range from 5%
to 11%. The results calculated by the seven basic models
have more false negatives and false positives than our method.
From the perspective of the comprehensive F1 score and
Gmean score, our model has the best anomaly detection
performance among these models.

To display the results of these models more directly,
we draw a group of line charts with the abnormal scores
of these models. Since OCSVM and iForest directly give
the abnormal results without abnormal scores, we only plot
the anomaly scores of the six prediction models. The result
is shown in Figure 3. The abscissas in the figure are the
time marks of the time-series data with a length of 7000,
the ordinate denotes the abnormal score, and the dashed green
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FIGURE 3. Results of anomaly detection with synthetic data by six
prediction models. In each subgraph, abscissa denotes time steps, and
ordinate is abnormal score. Black line in graph is abnormal score line
chart drawn, and green dotted line is boundary dividing abnormal and
nonabnormal. Upper part of green line is abnormal, and lower part is
normal. Title of the subgraph is name of prediction model used. (a)(b) are
results of statistics-based prediction approach, (c)(d)(e) are results of
basic deep-learning prediction model, and (f) is result of proposed
MCRAAD model.

line is the boundary dividing whether it is abnormal. The
upper part of this line is abnormal points, while the lower part
is normal. The magenta vertical lines mark the true abnormal
positions. The data have four abnormal fluctuations, and each
abnormal fluctuation contains a different number of abnormal
points. The four subgraphs (a)-(d) only determine a small
number of abnormal points in the abnormal fluctuations, and
the detected abnormal points contain more normal points.
Although more abnormal points can be accurately detected
in (e), only three abnormal fluctuations can be detected.
By contrast, MCRAAD in (f) can detect all abnormal fluctu-
ations and accurately identify more abnormal points in these
fluctuations.

2) NOISE

To check the robustness of the model MCRAAD, we use
Eq. 16 to generate five sets of simulated data with a length
of 10000 and a dimension of 10. The parameters A of
five sets of data are 0.1, 0.2, 0.3, 0.4, 0.5, respectively. The
first 4000 points are used as the training set and the last
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FIGURE 4. Performance pictures of eight models’ adaptability to noise. (a)(b)(c)(d) are precision, recall, F1 score, and Gmean of eight models,
respectively, whose value ranges are [0, 1]. Abscissa of each subgraph is severity of added noise. There are five levels of noise: 0.1, 0.2, 0.3, 0.4, and 0.5.
From left to right of abscissa, numbers represent increasingly severe noise, and each color of histogram represents a model.

6000 points with abnormal fluctuations of different sizes at
the same position are used as the testing set.

These eight models are used to detect the five sets of data
with different noises. We plot the results into four histograms,
as shown in the Figure 4. The ordinates of (a)(b)(c)(d) in
Figure 4 are the precision, recall, F1 score, and Gmean of
these models, and the abscissas of these figures from left
to right represent increasing noise. As the noise becomes
larger and larger, the comprehensive detection ability of these
models shows a downward trend. When the noise level is 0.1,
our model does not perform well with regard to precision;
this result is close to that of other models. The detection
performance of OCSVM and iForest when the noise is equal
to 0.1 is slightly better than that of the common prediction
models HA and ARMA. However, the detection performance
of these two machine learning models decreases sharply due
to the more serious noise, and they can only focus on preci-
sion and not recall. As noise becomes increasingly serious,
models that can capture historical temporal information are
becoming increasingly prominent. In particular, the precision
of MCRAAD is no less than 0.1 to 0.3 higher than that of the
other models. From the perspective of recall, our model has
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been in the best state. From the perspective of comprehensive
analysis, MCRAAD is more adaptive to noise and has better
robustness.

3) IMPACT OF THE INPUT DATA

The detection performance of MCRAAD is also affected by
the input data in multivariate time series. If the input data
contains little historical data, the model is more suscepti-
ble to noise. while longer-term data contains more obsolete
patterns, which also degrades the detection performance of
the multidimensional time series anomaly detection model.
In the proposed framework, the input of the model is jointly
controlled by the window size, step size, and the number of
feature matrices input to the model. The three aspects are
evaluated by the control variable method, and the results are
shown in Figure 5. Figure 5 (a) shows that the window size
has little effect on the accuracy of MCRAAD, but a signif-
icant impact on the recall capability. When the minimum
window is set to 4, the recall index of the model is only 0.4.
As the window size increases, so does the performance of
the model. However, when the size of the window exceeds
the appropriate value, the detection performance of the model
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tends to decline. When the window is small, a feature matrix
contains little information and is more susceptible to noise.
When the window is too large, a feature matrix contains
longer-term information that can mislead the model. It can
be seen from the above that window size can affect the
detection performance of the model, and the improper size
of the window can reduce the performance of the model.
Figure 5 (b) and (C) show the effect of step size and the
number of feature matrices input into the model at one time
on the detection performance of the proposed framework
respectively. The experimental results of both are similar to
Figure (a). Similarly, values that are too large or too small
can reduce the performance score of the model. If these three
parameters can get the most appropriate value, it will greatly
improve the detection performance of the model. Therefore,
in the experiments, we set several groups of values for each
parameter respectively, and use the network search algorithm
to extract relatively appropriate values to achieve better detec-
tion results.

4) TIME PERFORMANCE

In this section, we will discuss the time performance of each
model. In our experiments, we use a 960M and an i7-4720HQ
CPU with 16G of memory. the training and testing times for
these models are shown in Table 3. From Table 3, we can
obtain that the statistical-based HA model without training
time uses the mean value of historical data as its predictive
value directly. In our experiments, the ARMA model trains
historical data once for each prediction, so the training time
of the ARMA model is much longer than the traditional
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TABLE 3. Time performance of the eight models.

Model Train time(s) Test time(s)

OCSVM 0.2 0.1
iForest 0.9 0.7
HA / 0.2
ARMA 124.5 13.3
LST™M 243.4 38.2
Autoencoder 131.2 9.7
LSTM-ED 354.8 42.1

MCRAAD 3829.3 205.7

* 7/ means that the model does not need to spend time
at this stage.

TABLE 4. Anomaly detection results of MCRAAD with different settings.

Model Precision Recall FI1 Score  Gmean
MCRAAD) 0.375 0.017 0.033 0.131
MCRAAD(1:2) 0.447 0.120 0.232 0.346
MCRAAD®) 0.820 0.417 0.553 0.645
MCRAAD:4) 0.978 0.766 0.859 0.875
MCRAAD 0.986 0.806 0.887 0.897

* The best values in each metric are highlighted in bold.

machine learning models and other statistical-based models
in the paper. The training time and testing time of both models
based on traditional machine learning are less than one sec-
ond. Deep learning-based anomaly detection models take
longer than other models. The training time of MCRAAD
is more than ten times that of the LSTM-ED model and
the testing time is nearly five times that of the LSTM-ED
model. Although MCRAAD takes much time in training and
testing, its detection performance has been superior to these
evaluated models in these experiments. With the development
of hardware devices, the impact of time-consuming problems
will become smaller and smaller.

5) SETTING OF THE FRAMEWORK

To demonstrate the influence of network structure and
parameters on detection performance, we conduct a group
of comparative experiments. The other four settings are
MCRAADY with only the first layer network struc-
ture, MCRAAD!? with the first two layers network,
MCRAAD® with only the fourth layer network, and
MCRAAD®# with the last two layers network. The experi-
mental results are shown in Table 4. MCRAAD" with only
one layer of models has the worst results with the recall
equals to 0.017. The recall of the MCRAAD(-?) is nearly ten
times higher than that of the MCRAAD(!D. The same trend is
also presentin MCRAAD® and MCRAAD®# . The number
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of convolution kernels with the same number of layers also
affects the detection results. The recall and F1 Score of
MCRAAD® with 256 kernels are much higher than that of
MCRAAD®Y with only 32 convolution cores. Its precision is
2.6 times that of MCRAAD™ |, and its Gmean is 6.7 times that
of MCRAADW, It can be concluded from the above results
that the number of layers and convolution cores of the model
can affect the feature extraction and detection performance of
the model. Without a sufficient number of layers and kernels,
the framework cannot extract more information that is more
useful for anomaly detection. The results of MCRAAD with
a four-layer network structure and multiple kernels are the
best among this group of experiments, which is also relatively
consistent with the fact.

B. EXPERIMENTS ON REAL DATA

MCRAAD can be used to detect anomalies in the real world;
for example, our work can establish a housing emergency
warning system that can raise alarms for emergencies such
as fires and reduce losses as much as possible. This alarm-
ing system is displayed in Figure 1. The sensor data for
monitoring house indicators can be regarded as multivariate
time-series data, as shown in (C). This box contains mul-
tiple sensors for monitoring house attributes and the data
generated by these sensors are multivariate time-series data
shown in (A). The distinctive colors represent different series.
To test the detection ability of our proposed MCRAAD
method in the real world, we use a time-series dataset that
records the temperature and humidity of different rooms in
a house in a real environment. The temperature and humid-
ity of the room are monitored through the ZigBee wire-
less sensor network. Each node of the sensor records the
transmitted temperature and humidity every 3.3 minutes, and
records the data on average every ten minutes. The weather
data in the dataset are downloaded from the nearest airport
weather station and merged with the recorded data. The
data contains a total of 29 attributes. We remove irrelevant
attributes and finally retain only 20 attributes such as tem-
perature and humidity. The total length of the data is 19735.
We randomly select a time step from the first 6000 points
as the starting step of intercepting the data, the data from
the selected point to the 12000th time step as the training
set, and all the data after 12000 as the testing set. We ran-
domly select dimensions and locations to add four abnormal
fluctuations as simulated emergencies (similar to what we
did in the synthetic data). The results of multiple experi-
ments with the eight models on the real dataset are shown in
Table 5.

Table 5 shows that the unpredictable noise in practical
works has a great influence on the detection effect of the
HA and ARMA models. All of these indicators of iForest
are the lowest compared with other models. Data in the real
world do not have a fixed probability distribution, and the
iForest model randomly selecting features to divide the range
and detecting anomalies has the worst performance among
all models in the real data. However, the F1 score of this
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TABLE 5. Anomaly detection results of eight models on real data.

Model Precision Recall F1Score Gmean
OCSVM 0.246 0.299 0.270 0.543
iForest 0.217 0.243 0.229 0.490
HA 0.344 0.288 0.314 0.535
ARMA 0.476 0.351 0.404 0.591
LSTM 0.652 0.405 0.501 0.636
Autoencoder 0.678 0.360 0.471 0.601
LSTM-ED 0.780 0.432 0.583 0.657
MCRAAD 0.880 0.825 0.852 0.908

* The best values in each metric are highlighted in bold.

classification model OCSVM is 0.270, slightly higher than
that of iForest, and this model can only make anomaly clas-
sification according to the characteristics of each dataset and
cannot use the relationship between time-series data to assist
the anomaly judgment, which also leads to its poor detection
performance in the real dataset. The autoencoder, which can
cope with noise but cannot capture the temporal characteris-
tics well, has a higher detection precision of 0.678 but a lower
ability to search for all anomalies.

The LSTM model with an F1 score of 0.501 and Gmean
score of 0.636, which can capture temporal features but is
easily affected by noise has better comprehensive detection
capabilities than these models, which cannot capture the time
pattern. Among the basic models, the LSTM-ED, which can
not only capture the time-series characteristics well but also
reduces the influence of noise, has the strongest detection
ability. Compared with other models, MCRAAD has the
highest value of all metrics among these eight models and the
best detection capability in these evaluated models. As shown
in Figure 6, we also plot the abnormal scores detected by
the six prediction models on the real data. (a)(b) are the
anomaly score line charts of model HA and model ARMA.
(c)(d)(e) are the results of three deep learning models. We find
that these basic models cannot detect anomalies in real data
accurately and comprehensively. Relatively speaking, our
model performs better in the anomaly detection of real data
from subfigure (f) marking the anomaly boundary and the
real abnormal points. Thus, in some real application scenar-
ios, the anomaly detection performance of the MCRAAD
model is slightly better than the comparison of several basic
models.

According to the results of the all the above comparative
experiments, our method is more suitable for the role of
abnormal detection in a home emergency alarm system as
shown in Figure 1. Based on historical house monitoring
data recorded by (C), MCRAAD simulates the relationship
between time-series data at every time step and its histor-
ical data as much as possible. MCRAAD can predict the
data at the next step in advance based on the historical
data input to the model. When the new data collected by
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FIGURE 6. Results of anomaly detection with real dataset by six
prediction models. In each subgraph, abscissa denotes time steps, and
ordinate is abnormal score. Black line in graph is abnormal score line
chart drawn, and green dotted line is boundary dividing abnormal and
nonabnormal. Upper part of green line is abnormal, and lower part is
normal. Title of the subgraph is name of prediction model used. (a)(b) are
results of statistics-based prediction approach, (c)(d)(e) are results of
basic deep-learning prediction model, and (f) is result of proposed
MCRAAD model.

the sensor arrive, we immediately compare the difference
between the real data and the predicted data to obtain the
anomaly score at this time step, and use the threshold that has
been set to determine whether the anomaly score reaches the
anomaly category. If the anomaly score exceeds the thresh-
old, the connected alarm issues an alarm immediately to
notify people that an emergency may have occurred in the
house.

C. DISCUSSION

In this part, we analyze and summarize the advantages of
MCRAAD. The performance of MCRAAD is influenced
by many factors, such as the window size, the number of
input feature matrices, the step size, the number of kernels,
etc. The results of the experiments show that the proposed
method on both synthetic datasets and real datasets is slightly
better than the other seven evaluated algorithms. The reasons
why MCRAAD is superior to the basic model of comparison
can be summarized as follows: First, when preprocessing
data, a feature matrix is calculated for each time step, which
contains the relationship between its own information and the
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information of a sub-sequence. In addition, the process of
calculating the feature matrix is also a process of amplifying
features and reducing noise. The feature matrix provides the
first guarantee for MCRAAD to extract the feature and deal
with the noise. Second, a stacked autoencoder structure with
ConvLSTM cells is applied to extract the features of multi-
variate time series. In the decoding phase, the information
of each hidden layer is used again to automatically extract
deeper and more representative features of the data, which is
also the process of reducing the impact of noise. Predictions
made from reconstructed data with important characteristics
are also data that corresponds relatively to data trends. Third,
only the normal dataset can be used as the training set when
training the model. Therefore, the trained model can be well
reconstructed and predict the normal data. The results recon-
structed for abnormal data models will differ greatly from
the real results. A strategy of threshold setting with normal
training sets is applied in this model. This strategy takes noise
and extreme data in normal datasets into account and makes
a secondary analysis of anomaly scores in normal datasets.
Therefore, the threshold value of the anomaly decision is also
relatively reasonable.

V. CONCLUSION AND FUTURE WORKS

In this paper, we defined a time-series point anomaly and pro-
posed an unsupervised time-series anomaly detection model,
MCRAAD, for the timely detection of emergencies. We cap-
tured the correlation between time series by calculating the
feature matrix of subsequences in a sliding window and made
our model more robust by taking advantage of an autoen-
coder. Then, we used a multilayer convolution encoder to
capture the characteristics of the feature matrix sequence
and obtain the temporal pattern through ConvLSTM net-
works. Finally, MCRAAD predicted the self-feature matrix
at every time step according to the reconstructed feature
matrix sequence decoded by the convolutional decoder. The
abnormal score of each time step was calculated to determine
whether this step is abnormal. We performed several experi-
ments with our model and seven basic models on synthetic
datasets and real housing monitoring datasets. The results
showed that MCRAAD performs better than these basic
models. Even with the increasing noise, the performance
of MCRAAD is always superior to the other seven basic
models.

Although our approach in both simulated data and real
datasets achieved good performance, due to the influence
of many unpredictable factors in reality, we cannot obtain
completely normal data as the training set. In this work, with
the increase of noise, the anomaly detection performance
of the proposed framework is always in a good state, but
the detection performance drops sharply. In our future work,
we will develop a threshold-setting strategy and design an
anomaly detection model that does not require a perfectly
normal training set. Another goal is to add attention mecha-
nism to the model to build a noise-insensitive framework for
multivariate time series anomaly detection.
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