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ABSTRACT The aim of the article is to conceptualise a more compact and efficient version of algorithms
for artificial intelligence (AI). The core objective is to construct the design for a self-optimising and self-
adapting autonomous artificial intelligence (AutoAI) that can be applied for edge analytics using real-time
data. The methodology is based on synthesising existing knowledge on AI (i.e., knowledge modelling,
symbolic reasoning, modal logic), with novel concepts from neuromorphic engineering in combination with
deep learning algorithms (i.e., reinforcement learning, neural networks, evolutionary algorithms) and data
science (i.e., statistics, linear regression, Bayesian methods). Far-reaching implications are expected from
the unique integration of approaches in neuromorphic engineering and edge analytics.

INDEX TERMS Artificial intelligence, algorithms, conceptual design, edge analytics, low memory AI,
neuromorphic engineering.

I. INTRODUCTION
The 17th-century philosopher René Descartes first compared
the human brain with a working machine, arguing that math-
ematics and mechanics can explain the complexities of the
human brain. Inspired by Descartes, in the 20th century Alan
Turing developed the idea of a Turing machine and become
known as the father of theoretical computer science and arti-
ficial intelligence. In fact, one of oldest and the most famous
methods for testing consciousness in artificial intelligence is
the Turing test. While many new AI applications can pass
the Turing test, today we consider the Turing test as a test of
behaviour, and not a test of consciousness. TheAI systemswe
are referring to in this study, require a possession of functional
intelligence. In other words, they function in the way they
are designed and programmed. To explain this differently,
the Turing test is measuring intelligence if a machine can
think humanly, while in present advancements of AI, we are
focused on machines that can act humanly to maximise out-
come of different processes.

This article conducts a state-of-the-art review of current
AI algorithms and shows that the fundamentals of our cur-
rent understanding of AI are over 34 years old. The aim of
this research is to commence with conceptual developments
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for rethinking the essence of AI algorithms and focus on
developing algorithms that are sparce, compact and efficient
and not based on ‘back-propagation’. The objective is to
conceptualise the development of AI neural networks based
on compact representations (and not on dense representa-
tions), that can operate with lower memory requirements,
compatible with edge devices.

The structure of the article includes a literature review in
chapter 2, chapter 3 discusses the differences between artifi-
cial and human intelligence, chapter 4 outlines the methodol-
ogy, chapter 5 presents the hypothesis and engages in a design
of a new ordered pipeline approach, and chapter 6 presents the
conclusions and limitations of this study.

II. LITERATURE REVIEW
We conducted a Web of Science search on the topic of
Artificial Intelligence which resulted with 75.808 research
data records (search conducted on the 18th of July 2021).
We analysed these results with a Bar graph (Figure 1) of
the last 25 years, and the increase in data records is visibly
increased since 2016.

The origins of Artificial Intelligence (AI) can be traced
back 200 years agowith the discovery of linear regression [1].
Linear regression endures some similarity with the first idea
considered as a method that can make machines learn - the
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FIGURE 1. Bar graph of research data records on artificial intelligence in
the last 25 years.

‘Frank Rosenblatt’s Perceptron’, which resembled a math-
ematical model of how the neurons in human brains oper-
ate [2]. The ‘Perceptron’ was built upon an earlier design of
a ‘non-linear function’ by ‘Mcculoch-Pitts’ [3] founded on
biological inspiration. The ‘Mcculoch-Pitts’ work designed
a logical calculus of the nervous activity and produced the
output of the artificial neuron based on an ‘activation func-
tion’. Although the ‘Mcculoch-Pitts’ model didn’t include a
mechanism for AI learning, the ‘Perceptron’ presented the
first idea on how to make artificial neurons learn. In ear-
lier terminology the ‘Perceptron’ was commonly referred
to as neuron, while in today’s terminology it is referred to
as a ‘unit’ and multiple ‘units’ are structured in a ‘layer’.
By organising multiple ‘units’ in a ‘layer’, the same ‘input’
can be used to produce multiple ‘outputs’, as a structure
that represents a form of AI neural nets, defined today as
‘Artificial Neural Networks’ (ANNs). Alternative design of
‘neural nets’ with artificial neurons defined as ‘ADALINE’
is to organise ‘adaptive linear neurons’ incorporated into
electrical circuits as chemical ‘memistors’ i.e., resistors with
memory [4]. Although these early developments in the field
of AI can be described as different forms of linear regression,
they inspired the idea of ‘connectionism’ i.e., networks of
‘units’ solving difficult AI problems. The real hopes of that
time can be seen in a quote from Dr. Frank Rosenblatt from
1958, claiming that ‘the embryo of an electronic computer
. . .will be able to walk, talk, see, write, reproduce itself and
be conscious of its existence’.1 It has been over 60 years
since this quote, and the developments of the ‘Perceptron’
and ‘ADALINE’, but such AI does not exist yet. This article
uses the current knowledge to revisit, review and advance the
idea of designing AI based on how neurons in human brains
operate.

Since the invention of the ‘Perceptron’, AI algorithms have
been advanced into completing more complicated learning,
with mathematical neurons designed to send an input to
arbitrarily many neurons, defined as ‘hidden layers’. The
‘hidden layers’ are used to find ‘features’ from the data and
enable the next layer to be more efficient in processing raw
data. The advancements of multiple layers or ‘multilayer
neural nets’ created real challenges for applying the rules

1https://www.nytimes.com/1958/07/08/archives/new-navy-device-
learns-by-doing-psychologist-shows-embryo-of.html

of the ‘Perceptron’. To resolve the multilayer issue, neural
net neurons were seen not as ‘Perceptrons’, instead calculus
(the chain rule) and optimisation (stochastic gradient descent)
were used to ‘backpropagate’ the errors. The first implemen-
tation of ‘backpropagation’ on computers [5] for designing
neural nets [6] was also inspired by the human brain. This
work didn’t attract much attention back then, but every AI
algorithm used from 1986 until present-day is based on ‘back-
propagation’ [7].

It has been it proven mathematically that neural nets based
on ‘backpropagation’ with multiple layers can (theoretically)
implement any function [8], but would require endless mem-
ory and computation power. The very first real-world applica-
tion of ‘backpropagation’ on large data [9], resulted with the
conclusion that key modifications are needed for neural nets
to advance towards deep learning. The present-day neural
nets operate with a hidden convolutional layer, where neurons
can ignore some features by subsampling from a pooling
layer. The convolutional and pooling layers resulted with
the emergence of the Convolutional Neural Nets (CNNs) as
a distinguished from of artificial neural nets, although the
actual term used at the time was ‘weight sharing’ [10]. The
inspiration for this new design emerged again from studies on
the human brain, which is clear from earlier models, such as
the ‘Neocognitron’ [11] a self-organising neural network for
pattern recognition. The advancements towards unsupervised
automation emerged from the ‘autoencoder’ [12] neural net,
which represents unsupervised learning [13] and is used for
finding hidden patterns and structures in unlabelled data [14]
e.g., clustering or inference of latent variables. Unsuper-
vised applications of neural networks has been applied in
real-world practical scenarios for self-organised formation of
mapping topologies [15] and self-organising adaptive pattern
recognition [16]. Unfortunately, pattern recognition is also
one of the best achievements in Machine Learning (ML)
until present time. Alternative approach that operates as a
neural net and contains ‘units’ that resemble the ‘Perceptron’
are the ‘Boltzmann Machines’ [17], inspired from thermo-
dynamics. In ‘Boltzmann Machines’ the probability distri-
bution is used to allocate energy to states of particles and
learning is conducted by reducing the energy of the sys-
tem. Such neural net can probabilistically learn the hidden
structure in raw data – as a generative model. In ‘Boltzmann
Machines’ there are no layers, everything is connected lead-
ing to a ‘domain independent learning algorithm that modi-
fies the connection strengths between units’. The approach
is based on maximum-likelihood algorithms, using Gibbs
Sampling to get units of values. Despite its promising char-
acteristics this algorithm was too slow for practical appli-
cations, but it inspired the ideas for similar approaches
called a ‘belief net’ [18], ‘wake-sleep’ algorithm [19], ‘The
Helmholtz Machine’ [20] and ‘The Elman Network’ [21].
While none of these approaches was considered practical,
they represent a different set of ideas on how unsupervised
and supervised learning can be applied to train machines -
Figure 2.
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FIGURE 2. ‘The Boltzmann Machine’ (top), ‘The Helmholtz Machine’
(middle) and The Elman network (bottom).

‘The Elman Network’ [21] represents the third branch
of algorithms, based on reinforcement learning and called
recurrent neural nets (RNNs), to discuss in the current state-
of-the-art. This algorithm is slightly challenging to describe,
but to summarise in one sentence reinforcement learning
is based on an agent deciding on action, based on current
state and receiving a reward for making good decisions that
maximise the utility. Since its early invention, it has proven
a strong performance in controlling dynamical systems [22],
especially in robotics [23]. The time-delay neural networks
(TDNN) [24] is one reinforcement learning algorithm that
operates comparable to normal neural networks and CNNs.
The TDNN has been exceeded by recurrent neural nets

(RNNs), which is quite different from other neural networks.
Other neural networks can be described as ‘feedforward’,
because the output of neurons in one layer is used as input
to neurons in the next layer. The RNNs operate differently,
by looping the output back into the network, similarly to
the ‘Boltzmann Machines’. In other words, the output of
the last layer is looped as input to the first layer, or the
output of a neuron is looped back to the neuron, giving the
neural network memory of past inputs. The challenge with
this approach is that errors will also be ‘propagating’ in the
loop, but that was resolvedwith the ‘backpropagation through
time’ i.e., limiting the number of loops/times. This approach
to RNNs has proven effective for speech recognition [25],
the issue is the emphasis on ‘short term dependencies and
not long term dependencies’ [26], because ‘learning long-
term dependencies with gradient descent is difficult’ [27],
and require alternative optimisation methods [28]. The Long
Short Term Memory (LSTM) [29] method was proposed as
a solution, but the general scientific perception at that time
was that neural nets could not be made to work fast and effi-
ciently on computers. This triggered a rebranding of neural
nets into ‘deep learning’ [30] and new solutions emerged
based on training a Restricted Boltzmann Machine (RBM)
efficiently [31]. These solutions are defined as deep belief
networks (DBNs) and remain the state-of-the-art in semi-
supervised learning (i.e., combinations of unsupervised and
supervised learning). DBNs show that deep machine learning
methods are more efficient [32] for difficult problems, than
two-layer ANNs or support vector machines. These algo-
rithmic advancements require training data and efforts have
been made to create such datasets e.g., Caltech 101,2 Caltech
256,3 ImageNet,4 in combination with high computational
power [33]. The combination of the two enables the brute
force approach for fast computations with big training sets.
However, this is a different approach to what this research is
proposing i.e., algorithmic solutions.

This study targets the fundamental problems with ‘back-
propagation’, such as the difficulty of training deep feed-
forward neural networks [34]. Deep learning operates and
learns best from big datasets, which creates major limitations
for resolving many AI problems. By conceptualising the
design of novel algorithms that can operate on low-memory,
low-computation devices, this article attempts to resolve
the major limitation of deep-learning algorithms. Although
there are some limited solutions developed in a form of
very simple functions e.g., best activation function [35], how
these solutions work is still unknown. The methodology in
this article builds upon ensemble learning approach called
‘Dropout’ [36] based on randomly ignoring some neurons in
the training datasets, similar to how the random forest method
operates.

2http://www.vision.caltech.edu/Image_Datasets/Caltech101/
3http://www.vision.caltech.edu/Image_Datasets/Caltech256/
4http://image-net.org/
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III. ARTIFICIAL INTELLIGENCE VS HUMAN INTELLIGENCE
The motivation for this article was the significant differ-
ences in how artificial and human intelligence operate. When
we compare the differences between AI algorithms and a
human nervous system, we find that even the most advanced
deep learning algorithms represent very simple mathematical
approaches in comparison to a complex nervous system.
In other words, the complexities of a human cognitive process
are far greater than the current AI algorithms. The problem
with current algorithms is that edge devices have very low
memory and AI cannot run on those devices. This article
conceptualises the design for faster and more efficient pro-
cessing that will make running AI on edge devices possible.
Current state-of-the-art assumes that for better, faster and
more efficient processing, we need a better hardware. The
new design can construct algorithmic solution to this, based
on the knowledge that human brain operates at 20 Watts,
while a single GPU operates at 300 Watts. This means that
probably there are more efficient versions of the AI algo-
rithms that we are using. Looking at this problem from a
different perspective, the current state-of-the-art assumes that
to deploy AI in edge devices, we need more memory in
edge devices. While the design proposed in this research is
to construct algorithmic solution that are more compact and
efficient. The solution is founded on the human brain and
the knowledge that current AI neural networks are based on
dense representations, such as dense multidimensional met-
rics called ‘tensor’. While human brain is extremely sparce,
compact and efficient. Therefore, the solution is to develop
AI algorithms that are more compact and efficient, so that can
be deployed on edge devices. Through synthesising existing
knowledge, this article develops the concept for a new form of
algorithm (A) that can build upon other algorithms to reach
a state of AI that is sparce, compact and efficient and can
be used on edge devices. The aim of developing the new
concept algorithm is to construct a newAI that operates closer
to a human nervous system, and to discover fundamentally
new AI approaches. The objective can be summarised as
research efforts to construct a self-evolving, self-procreating,
self-optimising and self-adapting autonomous AI (AutoAI),
that can operate with real-time data on low-memory edge
devices (Table 1).

The conceptual design assumes that an iterative progress
will enable individual stages to be used as a stepping-
stone for developing a novel AI based on compact rep-
resentations, similar to the human brain. The iterative
methodology is best suited for this concept AI design,
because all of the steps will benefit from the differ-
ent phases in individual cycles. For example, the self-
evolving algorithm will enhance our understanding of the
requirements for a self-evolving and self-procreating AI.
The design combines conventional e.g., ‘The Boltzmann
Machine’, ‘The HelmholtzMachine’ and The Elman network
with novel research approaches e.g., autonomous feature
selection and feature extraction, automated hyperparameter

TABLE 1. Summary map of the concept for a new form of algorithm (A).

optimisation, and automated model selection for pipeline
optimisation.

IV. METHODOLOGY–CONCEPTUAL DESIGN
The primary scientific challenge and contribution of this
conceptual design is the advancement of a more compact
and efficient AI algorithms based on the human nervous
system. Secondary scientific challenges and contributions
emerge from the scenarios constructed for teaching, training
and improving the algorithm.

This design is investigating the ability to use new and
emerging forms of data (NEFD) to make AI decisions on low-
memory devices. AI is effectively a machine that can learn
from structured, semi-structured or unstructured data to build
intelligent systems. AI can be classified based on capabilities
(e.g., narrowAI, general AI, and super AI) and functionalities
(e.g., reactive machine, limited memory, theory of mind, and
self-awareness). The current state-of-the-art in AI capabilities
is narrowAI (e.g., Apple Siri, Google Translate, IBMWatson,
image recognition software), strong AI has not been achieved
and requires a full set of cognitive abilities, while super AI is
still hypothetical. The methodology initiates with research on
narrow AI and advances into strong AI while touching upon
conceptual concepts from super AI. The state-of-the-art in AI
based on functionalities is more diverse, a reactive machine
cannot learn with practice, but it uses the present moment to
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make predictions e.g., IBM Deep Blue. Limited memory AI
can learn from past data to make decision, but their memory
is short-lived e.g., autonomous vehicles. Theory of mind
should be able to understand emotions but only exists only
as a concept and in limited lab-based models e.g., Sophia.
The last AI based on functionalities is self-aware AI will
be smarter than the human mind, but the concept is still far
away from becoming a reality. The methodology is based on
limited memory AI and engages with theory of mind, while
contemplating the functionalities of self-aware AI.

V. CONCEPTUAL DESIGN OF A SELF-EVOLVING AI
A. HYPOTHESIS:IT IS POSSIBLE TO CONSTRUCT AI
ALGORITHMS BASED ON COMPACT REPRESENTATIONS,
SIMILAR TO OUR COMPLEX NERVOUS SYSTEM
1) PHASE 1: IoT-BASED AI
Although AI has made some significant advancements,
at present it requires strong computing power and a lot of
data, because neural networks are ‘over-parametrized’ cre-
ating significant redundancies [37]. There are many pro-
posed methods for reducing the parameters, but the solutions
are not necessarily faster in practical applications. The first
method applied in the conceptual design is the ‘Adaptive Fast-
food’ for transforming and ‘reparametising’ convolutional
networks, which results with ‘deep fried convnets’ [38].
This approach enables parameter reduction without affecting
the accuracy. Second method to be applied is the ‘Baseline
Caffemodel’ [39] enhanced with use of ‘sparsity-inducing
regularizers’ [40], because of its ease of use i.e., C++
library with Python and MATLAB bindings for training and
deploying general purpose deep models. The methods will
be tested in combination with manipulating the linear struc-
ture in the convolutional filters to derive approximations
and reduce the required computation [41]. The conceptual
design will build upon previous related research and will
place network parameters into buckets and store only the
values of the buckets. One such approach to use is ‘Hashed-
Nets’ [42] to reduce model sizes. Another is to compress
deep convnets using vector quantization [43], and to replace
layers with global average pooling e.g., ‘GoogLenet’ [44].
However, these models have limitations in transferring learn-
ing from one dataset to another e.g., reusing features for
solving a new problem remains a challenge. To continue
to evolve, AI needs to advance into a transferable low-
memory / low-power technology. Constantly building algo-
rithms for specific problems is not cost effects and large
storage requirements prevent the deployment of deep neural
networks in mobile apps and IoT devices. There is also
the problem with large energy consumption, disabling AI
deployment in battery constrained devices. The Phase 1 of
the conceptual design sees this evolution operating through
a pipeline of methods applied in ordered structure, similar to
the ‘deep compression’ method [45]. This method creates a
pipeline of three different approaches, starting with ‘pruning’
reaching same accuracy with 9x-13x reduction, followed by

FIGURE 3. IoT-based ML technique with efficient neural architecture and
lightweight inference engine (up) and biological neuron explained in a
mathematical model (down).

Quantization reaching same accuracy with 27x-31x reduc-
tion, and Huffman Encoding reaching same accuracy with
35x-49x reduction. The origins of this method are motivated
by how ‘the mammalian brain, operates by learning which
connections are important’ [46].

The ordered pipeline approach will continue with applying
an energy efficient inference engine on the compressed deep
neural network [47], in combination with a small CNN archi-
tecture e.g., SqueezeNet [48] and enable real-time batching
to be employed and to improve re-use in layers that are mem-
ory limited. To improve the efficiency, the ordered pipeline
approach will be applied to reduce the energy needed to fetch
their parameters. The ordered pipeline approach adapts and
builds upon the recent IoT based learning technique referred
to as microcontroller units MCUNet framework (Machine
learning on tiny IoT devices based on microcontroller units
- MCU), that designs efficient neural architecture (Tiny-
NAS - a two-stage neural architecture search method that
first optimises the search space to fit the tiny and diverse
resource constraints, and then performs neural architecture
search within the optimized space.) and lightweight inference
engine (called TinyEngine) [49]. As seen in Figure 3 there is a
striking resemblance in the looping approach seen in the ‘The
Boltzmann Machine’, ‘The Helmholtz Machine’ and ‘The
Elman network’ (Figure 2). The IoT based machine learning
technique will be adapted to automatically handle various
unpredictable constraints (e.g., different IoT device types,
data latency, different energy andmemory) while maintaining
efficient low energy search. With the new ordered pipeline
approach (see Table 2) the IoT based ML technique will be
advanced into IoT based AI technique, that adapts to the
overall network topology for memory scheduling instead of
layer-wise optimisation, to reduce further the memory usage.

2) PHASE 2: NEUROMORPHIC ENGINEERING
Reducing and compacting deep learning algorithm with the
new ordered pipeline approach in Table 2 will inevitably
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TABLE 2. New ordered pipeline approach.

result with improved neural nets, but the human brain is
probably running on a completely different mechanism (see
Figure 3). In Phase 2, the conceptual design will advance
the theory of looping with neuromorphic computing [50] to
design AI based on the human brain, with the capacity to store
and process the information inside individual units, neurons,
and their synapses. Current AI requires a lot of training and a
lot of data to classify patterns that can fail with a small change
in the data, which is very different to how human brains
operate. Neural nets are also not very good at generalising
what they have learned from one situation to the next and
the success generally depends on the success of defining the
correct loss function. But neural nets have some advantages
over human brains, such as classifying images or predicting
trends from noisy data. This article integrates methods related
to neural nets and neuromorphic computing; two approaches
that have been studied mostly in isolation. The Phase 1 of the
conceptual design is building upon work on neural nets. The
Phase 2 is using asynchronous spiking neural network (SNN)
to design a novel self-adaptive and self-modifying event-
driven algorithm. To design a cognitive computer, AI needs
algorithms to reproduce the behaviour of a human brain [51]
and neuromorphic processors (chips). Built a novel AI algo-
rithm that can operate on existing neuromorphic chips (e.g.,

TrueNorth, Loihi, SpiNNaker). The starting approach will
be to combine unsupervised learning with adaptive pruning
to design a novel energy-efficient neuromorphic algorithm,
operating as an energy-efficient neuromorphic system [52].
The conceptual design proposes the stages for AI evolving
into a new autonomous form of compact and efficient intelli-
gence, capable of self-procreation.

Regarding running time (i.e., training time, execution time)
of the ordered pipeline approach, we suggest that for such
complex approach, we need to express the ‘time perfor-
mance’ of the method in terms of its time complexity regard-
ing of the input (i.e. using big O notation - a mathematical
notation that describes the limiting behaviour of a func-
tion when the argument tends towards a particular value or
infinity). In other words, a raw measurement of training or
classification time could be misleading, as it depends heavily
on the hardware platform (i.e., CPU, GPU, RAM), software
libraries used (i.e., optimised or not) and quality of the pro-
filer, essentially benchmarking the system used to test the
algorithm and reflecting a lot about secondary elements, not
on the algorithm itself.

Some examples of application prospects for AI algorithms
on IoT devices include intelligent robots in Industry 4.0 man-
ufacturing. Manufacturing is one of the main industries that
incorporated new technologies like IoT, artificial intelligence,
facial recognition, deep learning, robots and many more.
Other application examples include intelligent sensors on
self-driving cars, retail analytics and intelligent thermostat
solutions. Retail analytics is particularly relevant, because
high street shops rely on low cost to remain competitive, and
low cost intelligent IoT devices can create real impact in this
sector. Intelligent sensors on self-driving cars is also a very
relevant application example, considering that driving is a
risk to life activity. But the most contemporary application
example for AI on low memory devices is the healthcare
sector during Covid-19 and other Disease X pandemics. Con-
sidering that human contact is risk event on its own, the ability
to operate AI on mass produced low cost / low memory
devices, can reflex with numerous applications in healthcare
and medicine, e.g., smart temperature monitoring, vaccine
supply chain analytics, or remote patients monitoring.

VI. CONCLUSION
This article undertakes experimental developments in
research on how AI algorithms can operate on low mem-
ory / low computation IoT devices and how AI can be
designed and constructed to procreate and write its own
algorithms. The article presents a new ordered pipeline
approach, based on integrating a variety of existing meth-
ods in an ordered approach, to increase the efficiency of
algorithms in low memory / low computation IoT devices.
The new ordered pipeline approach builds upon the state-
of-the-art literature on AI and IoT devices (i.e., MCUNet,
TinyNAS, TinyEngine), existing datasets (e.g., Caltech 101,
Caltech 256, ImageNet) and integrates some of the concepts
from early literature on AI algorithms (i.e., The Boltzmann
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Machine, The Helmholtz Machine and The Elman Network).
The conceptual design is multidisciplinary as it integrates
knowledge and methods from statistics and mathemati-
cal sciences, engineering sciences, computer sciences and
healthcare disciplines. Each drawing on their disciplinary
knowledge. The conceptual design integrates people from
different disciplines, using a real synthesis of algorithmic,
mathematical, computational and engineering approaches.
For engineering science alone, the evolution from dense
multidimensional metrics to sparce, compact and efficient
AI algorithms, could produce breakthroughs in numerous
practical applications. The proposed iterative approach is
focused on the most fundamental understanding of AI and its
application in low-memory devices in a variety of domains
e.g., healthcare, smart industries, self-driving vehicles.

In addition, far-reaching implications are expected from
the development of new algorithms, and the new mathemati-
cal tools, creating implications in many situations and fields
of research.

A. LIMITATIONS AND CHALLENGES
The expected challenges in applying the conceptual design
in a practical scenario include addressing multiple objectives
at speed. The new concept of autonomous AI depends on
data training preparation for multiple AI challenges (self-
evolving, self-procreating, self-optimising and self-adaptive)
and might be difficult to obtain data at this scale and speed.
There could also be an incompatibility of the new and
emerging forms of data and the autonomous AI training
requirements. Alternatives to mitigate this risk include using
reinforcement learning to develop AutoAI that has the capac-
ity to understand or learn any intellectual tasks. If AI algo-
rithms are not trained to take risks and learning from its own
experience, then the algorithms are missing the training of
experimenting in uncertain environment. To address this chal-
lenge, we need to enable AI to learn by itself by exploration
and exploitation.
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