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ABSTRACT This work presents an analytical method to design a stable loop filter for a noise shaper with
parasitic delays or poles in the loop. This method does not require an increase in the order of the loop or extra
feedback paths and keeps the original poles and zeros of the noise-transfer function at the same location. The
method has been applied to a low-pass loop filter with a parasitic unit delay and a band-pass loop filter with
either three unit delays or a high-frequency pole, obtaining stable loop filters in all three cases.

INDEX TERMS Excess loop delay (ELD), loop filter, noise shaping, sigma-delta analog-to-digital
converter (ADC).

I. INTRODUCTION
Excess delay in a feedback loop can cause instability when it
is not taken into account. Hence, solutions have been sought
to mitigate or overcome the effects of excess delay on loop
stability and system performance.

In the design of a noise-shaping loop, it is desirable to max-
imize the in-band performance for a given loop filter order
and oversampling ratio (OSR).Maximizing performance also
means that the stability margins are becoming small and that
any parasitic element in the loop, such as a delay, could
potentially make the system unstable.

In the research field of continuous-time 61-modulators,
techniques have been developed to compensate for excess
loop delay (ELD). To restore the desired noise shaping char-
acteristics of the delay-less system, a new set of coefficients
for the loop filter has to be determined. Also, depending
on the digital-to-analog converter (DAC) pulse shape and
the length of the delay, a direct path around the quan-
tizer may be required to restore the original noise transfer
function (NTF).
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FIGURE 1. 61 modulator with excess delay in the loop compensated
using the method in [1] using a local loop (red) and a direct path (blue).

A shortcoming is, that when the delay in the digital path
exceeds one clock cycle, it is not possible to apply clas-
sical ELD compensation. In that case, the NTF cannot be
restored to its desired shape. The addition of local feedback
as proposed in [1] as shown in Fig. 1 can further improve
the stability, but at the cost of requiring analog building
blocks.

We aim to make a 61 noise shaper in an existing piece
of existing digital hardware with tunable coefficients, with
no option to realize a direct path around the quantizer. Given
this constraint, the objective is to still realize a stable noise
shaper that can cope with excess delay and/or poles, at the
expense of little performance.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 108101

https://orcid.org/0000-0001-7940-1883
https://orcid.org/0000-0002-7886-3979
https://orcid.org/0000-0002-2806-6525
https://orcid.org/0000-0001-6790-5873
https://orcid.org/0000-0001-6498-5580


C. E. Lokin et al.: Compensating Processing Delay in Excess of One Clock Cycle in Noise Shaping Loops

The novelty of the presented technique is that it does not
require additional analog building blocks to mitigate excess
poles and can still gives a stability improvement. This does
however result in lower performance than applying classical
ELD compensation with a local feedback path. The applica-
tion area where such a technique can have merits are, e.g.,
61 ADCs with a successive approximation register (SAR)
quantizer, high-speed 61 ADCs where the quantizers have
to be pipelined, advanced dynamic element matching (DEM)
algorithms [2], and mixed-signal systems with ADCs in the
loop and digital processing delay.

An example of an implementation in existing hardware is
the pulse-width modulation (PWM) ripple reduction tech-
nique presented in [3]. There, a noise shaping loop was
designed using programmable digital filters in the hardware
of the AX5689 [4]. The programmable loop filter in that
system was originally designed to be used for signals in
the audio band, however, for the application of PWM ripple
reduction, higher frequency signals needed to be processed.
The processing delay in the system caused a frequency-
dependent phase shift which initially made the desired filter
unstable after closing the loop.

In this paper, a technique is proposed that accommodates
integer cycles of excess delay and excess high-frequency
poles in a digital loop filter by appending pole-zero pairs to
the desired NTF. The system is stabilized without requiring
additional hardware, such as direct paths or extra filter orders.

II. PRIOR ART
A common design procedure for 61 analog-to-digital con-
verters (ADCs) involves choosing the desired NTF and calcu-
lating the open-loop transfer function from the NTF [5], [6].
For this design method to work, it is assumed that the system
is free of excess delay. However, in an actual continuous-time
61 ADC as shown in Fig. 1, the quantizer and the feedback
DAC cannot give an instantaneous output. Consequently,
the integrator(s) will integrate a delayed version of the desired
feedback signal, which changes the desired closed-loop trans-
fer and furthermore compromises the stability of the loop.

A. ELD COMPENSATION
The open-loop transfer function of a system with ELD has
to be modified so that the desired, delay-less closed-loop
transfer and NTF are restored. To do this, the combination
of non-idealities, such as the settling, slewing and quantizer
delay can all be modeled together as a single delay term to
make compensation straightforward [7], [8].

In a first order modulator this can be achieved by using,
for instance, return-to-zero (RZ) coding in the DAC, mak-
ing the system resilient to delays up to 1

2Ts [9]. For larger
delays or when non-return-to-zero (NRZ) coding is used,
part of the DAC pulse will exceed the sampling window and
give an incorrect result after sampling the integrated signal.
To restore the NTF in that case, it is required to add a direct
feedback path around the quantizer with a gain dependent
on the delay in the loop. In addition to that, the loop filter

coefficients have to be tuned. Together, these measures com-
pensate for the apparent error made by integrating the delayed
DAC pulse [7], [9]–[13].

A different implementation uses a predictive comparator
which estimates the delay of the output from the DAC pulse
to change the comparison threshold [13] to obtain the same
functional result as a direct path around the quantizer. Besides
the analog solutions, it is also possible to compensate for
the delay in the digital domain by adding a local digital
feedback loop after the quantizer [12], [14]. However, this
implementation does require a multi-bit DAC and sufficient
precision in the digital registers to implement the coefficient
that is conventionally used in the analog direct path.

A shortcoming of these classical ELD compensation solu-
tions that has to be addressed is the compensation of delays
in excess of one clock cycle.

B. DIFFICULTIES FOR ELD COMPENSATION
The ELD compensation technique cannot be applied to any
system, e.g. when the quantizer delay exceeds one or more
clock cycles it is not possible to fully restore the desired
NTF. In that case, the quantizer can be bypassed by using
a sample and hold circuit with the feedback coefficient of
the conventional direct path to achieve a similar stabilizing
effect [1], [15], [16]. Focusing on the method in [1], the result
of the compensation is essentially a lead-lag filter in front
of the quantizer (Fig. 1). Other examples of techniques in
ADCs that complicate the implementation of ELD are DEM
algorithms in the DAC or pipeline delay in high-speed noise-
shaping algorithms. However, a direct path can be taken
before the DEM algorithm to provide at least a less precise,
fast feedback path [15]. In another more recent work, a time-
interleaved quantizer based on a dual-slope ADC is utilized to
have quantized data available before the conversion finishes,
removing the conventional requirement of an extra delay after
the quantizer and compensating for 2 cycles of unit delay [2].

The ‘delsig’ MATLAB toolbox by Schreier [17] provides
a vast amount of functions to design loop filters for 61

ADCs. It will be used here to implement the method in [1] to
determine the compensated loop filter coefficients to compare
the solution to the presented work.

In this paper, we want to present an alternative delay miti-
gation technique and highlight the differences and similarities
between it and the ELD compensation technique from [1]
in noise-shaping loops. The proposed method will allow
the synthesis of a digital loop filter of equal order as the
delay-free loop filter and can mitigate the effect of multiple
unit delays and/or high-frequency poles without adding extra
hardware. Furthermore, the original poles and zeros of the
NTF do not change with respect to the system without para-
sitic poles or delay. The practical value of our approach is the
usage in digital loop filters with tunable coefficients that have
processing delay without changing the loop topology itself.
Therefore the same hardware can be used.

The paper is organized as follows. Section III presents
the filter design procedure, section IV explains the
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mitigation method for a single parasitic pole, section V
presents simulated results, conclusions are drawn in
section VI and Appendix A provides mitigation methods for
multiple parasitic poles.

III. FILTER DESIGN AND DELAY
In this section, the calculation of a loop filter from the NTF
will be explained. Then, the effect of an added unit delay and
a pole to a loop and the resulting NTF is shown.

A. LOOP FILTER FROM NTF
The loop filter with transfer H (z) can be determined starting
from the NTF of a closed loop system,

H (z) =
1

NTF(z)
− 1. (1)

To obtain a strictly causal loop filter, there are two con-
straints to the NTF, namely, equal order of numerator and
denominator, as well as a unity factorized gain (the first
sample of the impulse response is 1). The reason for these
constraints is further explained in [5] section 4.4.1.

B. PARASITIC ELEMENT IN A LOOP
When a loop filter is derived from the NTF without taking
parasitic effects, such as delay, in the feedback path into
account, the actual system does not behave like the ideal
design and might become unstable.

Let us look at the system by examining the resulting NTF
of the system when a unit delay is added into the loop.
By cascading z−1 with H (z) and calculating the NTF using
the inverse of (1) to obtain the actually realized NTFr,

NTFr(z) =
1

H (z) · z−1 + 1
. (2)

Since a unit delay is a pole at the origin, this equation can
be written in a more general form to also take any known
parasitic pole ppar into account,

NTFr(z) =
1

H (z) · K
z−ppar

+ 1
, (3)

where K = 1 − ppar to preserve unity gain at DC. Since the
poles of the open-loop transfer function are the zeros of the
NTF, it is apparent that the parasitic pole ppar will appear as
an extra zero in the NTF. The poles of the NTFwill move with
respect to their original locations in the desired NTF, which
could push them close to, or out of the unit circle, indicating
a marginally stable or unstable system. In the next section,
we will address this further with a technique to mitigate this
effect.

IV. MITIGATION TECHNIQUE
The goal is to design loop filters that are stable with parasitic
elements in the loop without increasing the loop-filter order
as this would require changing the hardware. This work
proposes a method that includes the parasitic(s) in the NTF
design and keeps the original poles and zeros of the NTF at

their original location. With this method, a new open-loop
gain can be designed that consists of a cascade of a new
loop filter and the parasitic(s) we are trying to compensate
for, moreover, the filter can be stable in a closed loop. Since
the parasitics are already present in the system, just realizing
the new loop filter results in a stable system. The following
sections explain this in more detail.

A. DESIGN GOAL
In section III we described the procedure to obtain a loop filter
from an NTF and have shown the effect of a parasitic unit
delay on the NTF which potentially makes the system unsta-
ble. This procedure is also shown schematically in Fig. 2.
Starting from the original NTF the loop filterHorg is obtained,
subsequently a parasitic pole, ppar, is added. By transforming
this open-loop transfer with parasitic back to the resulting
NTF, NTFr is obtained. NTFr will contain an extra zero and
an extra pole with respect to NTForg. This zero is at the same
location as ppar because the zeros of the NTF are equal to the
poles of the open-loop transfer function.

FIGURE 2. Flowchart describing the compensation method.

With this in mind we take the original NTF as a starting
point and add ppar as a zero (zpar) to it as well as a pole pc of
which the valuewill be determined later. By doing this we aim
to obtain a compensated NTF (NTFc) that after applying (1),
yields a filter Hnew of the same order as Horg.

B. FEWER OPEN LOOP ZEROS
We previously described how to obtain a strictly causal loop
filter by setting constraints for the NTF. For the proposed
mitigation technique it is required to have even fewer open-
loop zeros. This is required to be able to separate the parasitic
pole ppar from the loop filter Hnew in the final step of Fig. 2
after transforming the NTF. In this way, the filter Hnew that
has to be implemented is obtained.

To reduce the order of the numerator from N − 1 to N − 2,
where N is the order of the filter, the second-highest numera-
tor polynomial coefficient aN−1 of the loop filter should also
be nullified. This coefficient is a summation of all poles and
zeros, which becomes apparent when the numerator term of
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the open-loop filter H (z) is simplified to a polynomial,

H (z) =
PNTF(z)− ZNTF(z)

ZNTF(z)
, (4)

with,

ZNTF(z) = (z− zN )(z− zN−1) . . . (z− z1), (5)

PNTF(z) = (z− pN )(z− pN−1) . . . (z− p1). (6)

The aN−1 coefficient is then calculated as follows,

aN−1 = −p1 − p2 − . . .− pN + z1 + z2 + . . .+ zN ,

=

N∑
n=1

zn −
N∑
n=1

pn. (7)

However, a degree of freedom is required to be able to
nullify aN−1. This degree of freedom can be found in the
value of the pole pc.

C. MODIFYING THE NTF
To compensate for the parasitic pole ppar in the open-loop
transfer, it was added as zero zpar to NTForg. Consequently,
a pole pc was added to the NTF to satisfy the strict causality
requirement. Since this pole location can be chosen freely,
we would like to choose it such that we obtain a loop filter
with a lower numerator order. This is accomplished by adding
zpar and pc to the zeros and poles in (7) respectively. Equating
the result to zero and solving for pc gives,

pc = zpar +
N∑
n=1

zn −
N∑
n=1

pn. (8)

The compensated NTF is now defined as,

NTFc(z) = NTForg(z) ·
z− zpar
z− pc

. (9)

From this equation, we also see that the compensated NTF
contains all the poles and zeros of the original NTF, which is
a key feature of this method.

D. CALCULATING THE REQUIRED LOOP FILTER
To calculate the open loop transfer the modified NTF (9) is
substituted in (1),

Hc(z) =
1

NTFc(z)
− 1. (10)

This Hc(z) contains 2 fewer zeros than poles and because
the parasitic pole was introduced as a zero in the NTF it will
show as a pole inHc, soHc can be written as the combination
of a strictly causal filter Hnew(z) and the parasitic pole,

Hc(z) = Hnew(z) ·
K

z− ppar
. (11)

Since the pole was already present in the system, the filter
Hnew has to be implemented to get the noise shaping as
described by NTFc. The filter Hnew(z) is defined as,

Hnew(z) = Hc(z) ·
z− ppar
K

, (12)

and is of the same order as the original loop filter.

This method can be extended to compensate any number of
poles, which is shown inAppendixA, althoughmost practical
parasitic problems are solvable with the single-pole method
described in this section or possibly the 2-pole method.

V. RESULTS
In this section, themitigationmethodwill be applied to a filter
prototype to showwhat effect it has on the resulting loop filter
and NTF. First, a low-pass loop filter with delay in the loop
is designed to illustrate the approach on a familiar filter. It is
compared with the result from compensating the loop filter
like in [1] by using the toolbox [17], because it has in common
that the NTF is modified as a result of the ELD compensation.
It is also shown that a similar result can be achieved by man-
ually relaxing the cut-off frequency or stopband attenuation.

After that, the method is used to design a band-pass loop
filter with three unit delays in the loop, which is not straight-
forward to do manually. Finally, the method is applied to
compensate for a low-pass pole to show the generality of the
method.

FIGURE 3. 61 modulator with delay in the loop and a loop filter
generated using this work.

A. SIMULATION SETUP
First, the systems that are used to perform the simulations
are discussed. The system to show the effect of the proposed
method in this work is shown in Fig. 3, and implements a loop
that consists of a loop filter Hnew(z) and a quantizer modeled
as an additive noise source and a unit delay element.

We examine the limiting case where exactly one unit delay
is present in the quantizer, for which in a continuous-time
sigma-delta ADC, compensation with a local loop around the
quantizer is no longer possible. Hence, a local loop before the
quantizer is used for comparison to our proposed technique.

FIGURE 4. 61 modulator with delay in the loop and a loop filter
compensated using the local loop from [1].

A comparison will be done to the system in Fig. 4, which
implements a similar system using the loop filter Hs(z) and
an extra local feedback loop as in [1]. The digital Hs(z) filter
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coefficients are obtained as follows using the toolbox [17] to
implement the method from Singh et al. [1]:
• Realize a CT loop filter from the NTF with 1 cycle of
delay:
realizeNTF_ct(NTF_org, 'FF',[1 2])

• Obtain the coefficient for the direct path from the state-
space D matrix: a = −D(3).

• Calculate the actual NTF for the implementation
in Fig. 4:
NTFs = NTForg · (1− az−1).

• Obtain the open loop transfer from the NTF and remove
the unit delay and the local feedback, 1/(1+az−1), from
the obtained result to obtain the tuned filter Hs(z):
Hs = (1/NTFs − 1) · z · (1+ az−1).

B. UNIT DELAY IN A LOW-PASS LOOP FILTER
To design a low-pass loop filter, we start with a high-pass
NTF because we want to shape the noise away from the
passband of our system. A 4th order filter is designed from
a Butterworth high-pass NTF with a corner at fs/20. This
NTF is quite aggressive with an out-of-band gain of 3.5 dB.
All responses are normalized with fs = 1 Hz. The original
NTF (NTForg) is shown in Fig. 5 together with the resultant
NTF (NTFr) after adding a unit delay to the loop and the
compensated NTFs: NTFc and NTFs. Adding a delay to the
aggressive loop filter makes the resulting system unstable
which is illustrated by the strong peaking in NTFr. The
compensated NTFs do not have this strong peaking, however,
they do have an increased gain in the stopband up to the cut-
off frequency and a roll-off in the passband. Comparing the
proposed solution to the one provided by the method in [1],
a weaker stopband attenuation is achieved, as well as a flatter
response in the passband at the expense of an extra first-order
filter section.

FIGURE 5. High-pass noise transfer with and without an added unit delay
and with compensation.

The resultant open-loop transfers are shown in Fig. 6.
Observe that the phase margin of the compensated filter has

FIGURE 6. Low-pass open loop transfer with and without an added unit
delay and with compensation.

FIGURE 7. High-pass noise transfer with an added unit delay with
compensation by the method versus manual tuning and the method in [1].

increased with respect to the loop filter with delay. Looking
at the compensated transfer, we notice that both the loop gain
and cut-off frequency have decreased.

C. LESS AGGRESSIVE FILTER
After the conclusion of the previous section, the reader might
think that when the cut-off frequency and loop gain decrease
by applying the proposed method, this could also be done
upfront by choosing a less aggressive filter. Indeed, tuning
the loop gain or cut-off frequency down by hand can also
result in a more stable filter. To show this, a Butterworth filter
prototype NTFm that has an equal low-frequency stopband
characteristic as the compensated NTF (NTFc) is taken to
perform a comparison. The result of this comparison is shown
in Fig. 7.

VOLUME 9, 2021 108105



C. E. Lokin et al.: Compensating Processing Delay in Excess of One Clock Cycle in Noise Shaping Loops

FIGURE 8. Pole zero plot of the prototype NTF, the added pole-zero pairs
from the presented method and the method in [1] and the resultant NTF
from the manually tuned filter.

The difference in the plot is minimal, however, there is a
difference, which can be shown by comparing the poles and
zeros of both systems. Fig. 8 shows the poles and zeros of
the original and both compensated NTFs. The compensated
NTF is a combination of the original NTF (NTForg) with the
pole (pc) added by the compensation method and the zero
zpar that originates from the unit delay pole ppar in the loop
filter. The same holds for the pole-zero pair introduced by
the method adapted from [1]. The other set of poles and zeros
is the resultant NTF (NTFm) of adding a unit delay to the loop
filter that was derived from the manually tuned NTF.

D. SIMULATED RESULTS
Discrete-time simulations are performed for the proposed
solution, the solution based on [1] and the manually tuned
solution, all three with a unit delay in the loop and a 2-bit
quantizer. The original system without delay is also simu-
lated for reference. The results for the in-band noise (IBN),
maximum stable amplitude (MSA), and maximum signal-to-
noise ratio (SNR) are tabulated in Table 1. A bandwidth of
0 Hz – 0.02 Hz was used with a stimulus at 0.01 Hz.

TABLE 1. Simulated in-band performance: low-pass.

The proposed method, the Singh method, and the manu-
ally tuned filter perform comparably, except for the MSA,
which is higher for the manually tuned filter, and the max-
imum SNR, which is 7 dB higher for the Singh method.

Compared to the original filter without delay, all three see a
large reduction in IBN and maximum SNR while allowing a
unit delay in the loop.

E. SIMILARITIES WITH PRIOR ART
An interesting observation from Fig. 8, is that the distance
between the added pole and zero is the same for both the
presented work and the method in [1]. The poles and zeros
for both solutions adhere to nullifying (7) with the result that
the open loop transfer function has 2 fewer zeros than poles.
The solutions are dual in how this requirement is met: in the
method in [1] the extra NTF pole gets placed at z = 0 and the
location of the extra zero is derived from (7). In this work,
the extra NTF zero is placed at z = 0, and the extra pole
follows from (8) instead. In equation form both NTFs are
related to NTForg as follows,

NTFc = NTForg ·
z

z− pc
,

NTFs = NTForg ·
(
1+ az−1

)
,

with: pc = a = 0.8 (13)

The modifications required on the open-loop transfers are
quite different between the two solutions: In [1], an additional
compensation filter (the local feedback before the quantizer)
was added to compensate the unit delay (pole at z = 0) with a
zero at z = 0 which effectively moves the open-loop pole to a
new location at z = −a. In this work, only the coefficients of
the noise-shaping filter have to be updated, as the additional
NTF zero at z = 0 represents the unit-delay that is already
in the loop and no additional compensation filter has to be
added.

The poles and zeros of both the compensated NTFs still
have the Butterworth alignment and are at the same location
as in the original NTF apart from the extra compensation
pole and zero, while the poles and zeros resulting from the
manually tuned NTF do not. This is a key feature of both the
proposed method and the method in [1].

F. LIMITS OF THE COMPENSATION METHOD
The presented method to obtain the NTF that results in a
stable loop filter will not work for filters with a too high
order or too high cut-off frequency. Recall that the compen-
sation pole pc was calculated using (8) by subtracting the
positions of all zeros by the positions of all poles in the
filter. If we increase the cut-off frequency, the original poles
will move further into the unit circle. As a result of this,
the compensation pole pc moves towards the unit circle and
eventually escapes it, resulting in an unstable NTF. This limit
does not occur for the method in [1], because the NTFwill not
become unstable when the zero at z = −a moves out of the
unit circle, however, the system does become non-minimum
phase in that case.

Similarly, with a higher-order filter, more poles will be
placed on the half-circle of the Butterworth formation which
increases the sum of the pole locations. This also eventually
pushes the compensation pole out of the unit circle.
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When compensating for multiple poles, it is less intuitive
to see what happens to the compensation poles as the filter
becomes more aggressive. The resulting compensation poles
are calculated by solving a system of equations as is explained
in Appendix A. The roots of these equations can yield com-
plex compensation pole pairs. To obtain a stable compensa-
tion, all poles should satisfy the condition abs(pc) ≤ 1, stating
that they reside inside the unit circle.

G. DELAY IN A BAND-PASS LOOP FILTER
A band-pass loop filter is designed by taking a 3rd order
(6-pole) inverse Chebyshev band-reject NTF with a stopband
attenuation of 55 dB in a bandwidth of .015 Hz centered
around 1/8 Hz at a normalized sample rate of 1 Hz. Three
unit delays are added into the loop, like in the system in Fig. 3
with z−3 substituted for z−1, and their effect is mitigated using
the presented method. The realization of the compensation
obtained from the method in [1] is shown in Fig. 9, which
now contains extra local feedback paths before the quantizer
with coefficients corresponding to the direct path coefficients.

FIGURE 9. Noise shaper with delay in the loop and a loop filter
compensated using the toolbox [17] and the method in [1].

FIGURE 10. Band-reject noise transfer with and without three added unit
delays and with compensation.

The desired NTF is shown in Fig. 10, together with the
resulting NTFs after adding three unit delays in the loop.
The corresponding open-loop transfers are shown in Fig. 11.

FIGURE 11. Band-pass open loop transfer with and without three added
unit delays and with compensation.

Hd is used to denote the three unit delays and Hf is the
transfer of the local feedback combined with the delays:
1/
(
z3 + az2 + bz+ c

)
. Adding delay to the loop filter ren-

ders the closed-loop system unstable. However, both compen-
sation methods realize a stable system by matching the phase
of the compensated loop gains to the phase of the original
filter.

FIGURE 12. Pole zero plot of the prototype NTF, the added compensation
poles and zeros and the resultant NTF from adding three unit delays.

From Fig. 12 it can be observed that the compensated
NTFs have the desired poles at the exact same location as
the prototype NTF, with the addition of the three compen-
sation poles and zeros for the three unit delays. It is worth
mentioning that both methods produce an NTF that satisfies
the conditions that the second (7), third (17) and fourth (25)
numerator coefficient of the open-loop transfer are nullified.
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This shows that both solutions share a common solution space
where the proposed solution has a minimal realization and the
prior art gives better noise shaping performance. Intermediate
solutions where both the extra poles and zeros in the NTF are
not in the origin have been investigated but did not yield better
results than the two presented methods.

The filters have been simulated using a discrete-time Mat-
lab Simulink model resembling Fig. 9 with a single bit quan-
tizer to show the effect of the added non-ideality on the
performance of the modulator. Table 2 lists the IBN without
any input, the MSA with a stimulus at 1/8 Hz, and the
maximum SNR. Both the presented work and the method
in [1] see a more than 10 dB drop in IBN compared to the
ideal modulator, with the presented work performing only
2.6 dB worse than the prior art. The SNR shows a similar
trend with a 5.4 dB drop compared to the prior art and the
MSA is .06 lower than the prior art.

TABLE 2. Simulated in-band performance: band pass.

Just like in the low-pass example from the previous section,
manual tuning of the gain of the original NTF can be tried
to design a stable closed-loop filter. For this case, the man-
ually tuned NTF was designed by using a lower stopband
attenuation factor which is equal to the attenuation in the
compensated NTF. However, this manual tuning method does
not yield stable results for band-pass filters.

The reason for this can be observed in the pole-zero plot
in Fig. 12, which shows the pole and zero locations of the
resulting NTFs when a delay is added to the loop. In the
uncompensated filter, one complex pole pair is still outside
the unit circle, showing that it is unstable. Themanually tuned
filter will also have a complex pole pair outside of the unit
circle.

H. LOW-PASS POLE IN A BAND-PASS LOOP FILTER
Amore generic case is to compensate a pole rather than a unit
delay. In this section, an example is given to compensate a
parasitic pole in the loop. Such a pole could originate from
analog bandwidth limitations. The characterization of this
pole in a system is outside of the scope of this theoretical
analysis, hence this section will solely focus on the compen-
sation of the pole.

A band-pass loop filter is designed by taking a 3rd order
inverse Chebyshev band-reject NTF with a stopband attenu-
ation of 55 dB in a bandwidth of 0.005 Hz centered around
1/16 Hz at a sample rate of 1 Hz. The added parasitic low-
pass pole in the feedback path is located at 0.11 Hz. The
original, uncompensated, and compensated NTFs are shown
in Fig 13.

FIGURE 13. Band-reject noise transfer with and without an added pole
and with compensation.

FIGURE 14. Pole zero plot of the prototype NTF, the added compensation
poles and zeros and the resultant NTF with the parasitic.

The NTF resulting from the parasitic pole (NTFr) shows
peaking, while the NTFwith the mitigation technique applied
has a 7 dB increased passband gain at frequencies below the
stopband. Looking at the pole-zero plot in Fig. 14, it is seen
that NTFr with the parasitic pole is unstable, just like the
filter with the three delays from the previous section. It is
also apparent that the NTF zero (zpar) originating from the
pole (ppar) in the loop is not in the center of the unit circle
as was the case for the delay. Hence, compensation of a pole
becomes increasingly difficult as the NTF pole location pc
calculated by (8) will be offset towards 1. This amount is
set by the NTF zero that originates from the parasitic pole in
the loop. The lower the parasitic pole frequency, the further
the compensation NTF pole is pushed towards 1, eventually
making compensation impossible.
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I. SPREAD OF THE LOW-PASS POLE
In an actual system, the parasitic pole can be in the analog
domain. This means that the component that causes this pole
can be affected by process spread. In this section, we investi-
gate if the compensation method is robust against the result-
ing spread in the parasitic pole location.

The NTF prototype of the previous section is taken again
and the same pole is compensated for. However, for the
actual implementation we keep the designed filter Hnew, but
take a different pole in the feedback path that has a ±20%
deviation with respect to the original pole ppar. From that
open-loop transfer function, the resulting NTF is calculated.
The resulting pole-zero plot is shown in Fig. 15. Observe that
the Chebyshev poles have shifted from their original location,
but that the NTFs have not become unstable. Furthermore,
it can be seen that when the zero (zpar) at the location of the
parasitic pole moves towards 1, then pc also moves towards 1.
The closer the frequency of the parasitic pole is to the desired
filter, the smaller the headroom for spread becomes before the
filter becomes unstable.

FIGURE 15. Pole zero plot of the compensated NTF and the resultant
NTFs from having a deviation of the actual parasitic.

FIGURE 16. 61 modulator with delay in the loop and a loop filter
generated using this work.

The effect of the spread in the parasitic pole on modula-
tor performance has been evaluated through simulation of

TABLE 3. Simulated in-band performance of the band-pass modulator
with mismatch between the actual and compensated parasitic low-pass
filter.

the schematic in Fig. 16 with a 2-bit quantizer and K as
1− ppar to have a unity-gain at DC for the feedback pole ppar.
A sinusoidal stimulus at the center of the band was used
like in the previous simulation to obtain the results shown
in Table 3. Stable operation is obtained in the nominal case
and the ±20% cases with very minor differences in the IBN,
MSA, and maximum SNR. Compared to the original filter,
themaximumSNR is reduced by at least 4 dB, theMSAdrops
by 9%, and the IBN increases by 15 dB.

VI. CONCLUSION
In this paper, an analytical technique to design stable loop
filters with parasitic poles in their feedback paths was pre-
sented. A step-by-step method has been given to get from
the desired NTF and a parasitic pole to an implementable
stable loop filter. The method does not require any additional
feedback paths or additional filter orders. Instead, it adapts
the open-loop filter dynamics such that the closed-loop poles
and zeros remain at their original location in the presence
of the parasitic. Next to the original closed-loop poles and
zeros, the parasitic does introduce an additional pole-zero
pair in the NTF, which results in a performance penalty
compared to the desiredNTF.Moreover, the closed-loop filter
can still become unstable if the parasitic is too dominant for
the desired NTF. The method has been applied to both low-
pass and band-pass loop filter design methods to show its
versatility.

The presented method has been compared to a modified
ELD compensation method based on the work in [1], referred
to as the ‘Singh method’. It was presented which conditions
the NTF has to adhere to such that the loop-filter derived
from it contains N +1 fewer zeros than poles, where N is the
number of unit delays. For a single unit delay, the constraint is
that the sum of the poles of the NTF should equal the sum of
the zeros. This implies that the distance between the pole and
zero that are added to the original NTF is constrained and irre-
spective of the chosen compensation method. And indeed this
distance was found to be the same for both methods, and that
it equals the coefficient for the direct path in classical ELD
compensation. In summary, both solutions share the same
solution space, where the presented method favors a minimal
realization using the existing hardware with no required extra
hardware and the prior art favors performance at the expense
of extra filter orders or direct paths.
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APPENDIX A
MITIGATION OF MULTIPLE POLES
Section III has shown the mitigation technique for a single
parasitic pole. The extension to mitigate two, three, and four
poles is shown in this appendix.

A. METHOD FOR TWO POLES
When two poles (ppar1, ppar2) are in the loop, two zeros
(zpar1, zpar2) are added to the NTF, resulting in the require-
ment of two extra poles (pc1, pc2) as well. These two poles can
be calculated as such that Hc(z) contains 3 fewer zeros than
poles. In order to do this the aN−2 coefficient in the numerator
polynomial of Hc(z) needs to be nullified in addition to the
aN−1 and aN coefficients. The coefficient aN−2 consists of a
summation of unique products of pole pairs and zero pairs,

aN−2 = p1p2 + . . .+ pN−1pN − (z1z2 + . . .+ zN−1zN ),

=

N−1∑
n=1

pn

 N∑
m=n+1

pm

− N−1∑
n=1

zn

 M∑
m=n+1

zm

 , (14)

which will be simplified to (15) for conciseness,

aN−2 =
∑

Ppairs −
∑

Zpairs. (15)

By equating the condition for one pole in (7) to 0 we can
derive the first condition that has to be satisfied,

pc1 + pc2 +
N∑
n=1

pn = zpar1 + zpar2 +
N∑
n=1

zn. (16)

The second condition is derived from (15),

pc1 · pc2+(pc1+pc2)
N∑
n=1

pn+
∑

Ppairs=
∑

Zpairs. (17)

The constraints in (16) and (17) have to be solved first for
pc1 + pc2 and then for pc1 · pc2. By taking pc1 + pc2 = a and
pc1 · pc2 = b we can solve for pc1,

pc1 = a− pc2 = a− b/pc1, (18)

p2c1 = apc1 − b, (19)

p2c1 − apc1 + b = 0. (20)

Now, a and b can be derived from (16) and (17),

a =
N∑
n=1

zn + zpar1 + zpar2 −
N∑
n=1

pn, (21)

b =
∑

Zpairs − a
N∑
n=1

pn −
∑

Ppairs. (22)

Solving (20) will yield two solutions for pc1, with the sec-
ond solution automatically being pc2. Now we can write
compensated NTF as follows,

NTFc(z) = NTF(z) ·
(z− zpar1)(z− zpar2)
(z− pc1)(z− pc2)

. (23)

After transforming NTFc to Hc(z) using (1), the filter that
has to be implemented can be calculated,

Hnew(z) = Hc(z) ·
K1

z− ppar1
·

K2

z− ppar2
, (24)

where K1 = 1− ppar1 and K2 = 1− ppar2.

B. METHOD FOR MORE POLES
Instead of showing the full derivation, we show the equations
that have to be solved. In the case of a system with three
parasitic poles, the following open loop numerator coefficient
should be nullified as well,

aN−3 =
∑

Ztriplets −
∑

Ptriplets. (25)

By adding this constraint to the prior constraints for two
poles, mitigating the effect of three open loop poles can be
achieved by using the solutions of (26) as extra poles in the
NTF,

p3c − a · p
2
c + b · pc − c = 0, (26)

with,

a =
N∑
n=1

zn +
M∑
m=1

zpar,m −
N∑
n=1

pn, (27)

b =
∑

Zpairs − a
N∑
n=1

pn −
∑

Ppairs, (28)

c =
∑

Ztriplets − b
N∑
n=1

pn − a
∑

Ppairs −
∑

Ptriplets.

(29)

whereM in (27) is the number of added zeros, which is three
in this case. The ‘triplets’ summation is the sum of products
of unique pole/zero triplets.

Likewise for four poles the equation that has to be
solved is,

p4c − a · p
3
c + b · p

2
c − c · pc + d = 0, (30)

with a, b and c as in (27), (28) and (29) respectively and,

d =
∑

Zquads − c
N∑
n=1

pn − b
∑

Ppairs

−a
∑

Ptriplets −
∑

Pquads. (31)

The ‘quads’ summation is the sum of products of unique
pole/zero quadruplets.

An extension to even more parasitic poles is possible by
extending the equations with quintuplets, sextuplets, etc.
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