
Received July 9, 2021, accepted July 26, 2021, date of publication July 30, 2021, date of current version August 10, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3101496

An Energy-Autonomous Chemical Oxygen
Demand Sensor Using a Microbial Fuel
Cell and Embedded Machine Learning
FARHAD SHABANI 1, HEMMA PHILAMORE2,
AND FUMITOSHI MATSUNO1, (Senior Member, IEEE)
1Department of Mechanical Engineering and Science, Kyoto University, Kyoto 606-8501, Japan
2Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TH, U.K.

Corresponding author: Farhad Shabani (shabani.farhad.33c@st.kyoto-u.ac.jp)

ABSTRACT The current methods of water quality monitoring tend to be costly, labor-intensive, and
off-site. Also, they are not energetically sustainable and often require environmentally damaging power
sources such as batteries. Microbial fuel cell (MFC) technology is a promising sustainable alternative to
combat these issues due to its low cost, eco-friendly energy generation, and bio-sensing features. Extensive
work has been done on using MFCs as bio-sensors or sources of power separately. However, little work
has been done toward using MFCs for both applications at the same time. Additionally, previous studies
using MFCs for water quality measurement have been mostly limited to laboratory conditions due to the
biochemical complexity of the real-world. Another limitation of MFCs is how little power they can generate,
requiring theMFC-based systems to haveminimal power consumption. This work addresses these challenges
and presents an energy-autonomous water quality sensing unit that uses a single MFC both as its sensory
input and the sole source of power for computing the chemical oxygen demand (COD). In the proposed
unit, geometric features of the voltage profile of the MFC (e.g., peak heights) are used as the inputs to a
machine learning algorithm (support vector regression (SVR)). The electrical power generated by the MFC
is used to drive a low-power microcontroller which logs the MFC voltage and runs the machine learning
algorithm. Experimental evaluation showed that the device is capable of detecting the COD of natural pond
water samples accurately (coefficient of determination (R2) = 0.94). This work is the first demonstration of
energy autonomy in an MFC-based sensing unit for measuring water quality and represents a step forward
in the development of energy-autonomous sensors for environmental monitoring applications.

INDEX TERMS Microbial fuel cells, bio-sensing, energy autonomy, machine learning.

I. INTRODUCTION
Providing clean and safe water in a sustainable way is an
ongoing global challenge. A recent report by UNICEF and
the World Health Organization (WHO) reported that one in
three people globally do not have access to safe drinking
water [1]. Water safety is also an issue in food production.
For example, water quality monitoring in aquaculture can be
difficult due to labor intensity, high cost (of equipment and
maintenance), and on-site application limitations [2]. Failure
to detect deterioration of water quality can result in severe
environmental changes, such as algal bloom, which can result
in the death of cultivated fish and consequential financial
loss [3].
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In addition, there is a critical need to decrease the use of
the existing environmentally damaging and non-sustainable
energy generating devices (e.g., batteries) by replacing them
with new, cost-effective, and easy to deploy renewable energy
systems.

To address the issue of water quality monitoring in an envi-
ronmentally friendly and sustainable manner, this research
aims to develop a self-powered, field-deployable, and bio-
compatible water quality sensing unit (Fig. 1). A key feature
of the system is that it uses amicrobial fuel cell (MFC) both as
a sensor and a source of electrical power and, therefore, can
monitor water quality over a longer period of time through
self-generation of energy from water.

An MFC is a two-electrode bio-electrical system (Fig. 2)
that operates by oxidizing organic matter (present in a
medium such as wastewater) at the anode via bacterial
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FIGURE 1. Block diagram of the sensing unit; A) MFC: used as a bio-sensor and source of
electrical power. B) Low power microcontroller unit (MCU): used to sample the MFC voltage
(VMFC ) and estimate the COD value using a machine learning algorithm. C) Energy harvesting
circuit: used to collect and store the energy generated by the MFC.

FIGURE 2. An exploded-view illustration of the MFC design [23] fabricated and used in this work.

respiration, which, coupled to reduction of oxygen at the
cathode, generates electrical power. This makes MFCs a
promising technology for self-powered amperometric sens-
ing in in-field, autonomous monitoring applications.

The electrical potential of an MFC is dependent, for one,
on the quantity of oxidizable bio-matter within the fuel cell
anode chamber. MFC voltage can therefore be related to
the chemical oxygen demand (COD), a widely used metric
for analyzing water quality which describes the amount of
oxygen necessary to completely oxidize all of the organic
carbon in a water sample [4].

Several researchers have proposed MFC based solutions
for measuring water quality [5]. However, most of these
solutions are not suitable for applications outside of con-
trolled laboratory conditions (e.g., [6], [7]). Most exist-
ing MFC-based bio-sensors consider a linear relationship
between a target parameter (such as COD) and the cur-
rent (voltage) generated by the MFC [5]. These simple linear

correlations are insufficient for in-field use because they do
not account for the effect of factors other than the target
variable (such as pH) on the output of the MFC. Even under
lab conditions, the output often shows low repeatability in
response to a given input due to variations that are very dif-
ficult to control, for example changes to the bacterial biofilm
within the MFC [8].

To account for factors other than the target variable,
Feng et al. [9] propose to use machine learning (ML) for
analyzing the COD of the contents of anMFC using the MFC
voltage. The use of ML as a tool for analyzing complex data
is rapidly growing due to the capability of ML algorithms for
identifying patterns and relationships in noisy data. As such,
many examples exist of ML algorithms capable of operating
robustly under highly stochastic environmental conditions.
In [9], features (e.g.,maximum voltage value) extracted from
the output voltage of an MFC (fed with water samples col-
lected from a natural in-field source) are used as inputs for a
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supervised, feed-forward Artificial Neural Network (ANN)
with one-way connections to estimate the COD values of
the samples with high accuracy (coefficient of determination
(R2) = 0.99).
Complex ML algorithms such as neural networks can be

more accurate, but the computational power needed to run
them requires more energy. Thus, using these computation-
ally expensive algorithms is not practical when a low-power
energy source such as an MFC is used. Therefore, one major
objective of this research is to use a less complex ML algo-
rithm with comparable accuracy to more complex algorithms
used in previous works [9]–[11].

Existing studies on MFCs for COD measurement investi-
gate a limited range of values (COD of up to 500 mg/L [12]),
which does not reflect the higher range of values needed
for wastewater treatment applications [13], [14]. To address
this, in this study, COD concentrations of 70-900 mg/L are
investigated.

In addition to bio-sensing, the capability of MFCs to
extract energy from organic matter and convert it into elec-
trical power has been widely investigated as a promising
renewable energy technology [15]. However, the technol-
ogy suffers from key limitations of low power density and
energy conversion efficiency [16], [17]. A single MFC has
a theoretical electro-chemical open-circuit voltage limitation
of 1.1 V [18], whereas most MFCs produce voltages sig-
nificantly lower than this under electrical loads required to
generate power. As a result, multiple MFCs are often coupled
together in series configuration to increase the total output
voltage. However, this results in increased size and complex-
ity of the device and the need to isolate the anodes of different
MFCs to avoid unwanted parallel coupling via the contacting
liquid sample [19].

By devising innovative ways to harvest and use energy
generated by MFCs, such as alternating periods of storage
and use [20], a few existing works have demonstrated MFC
installations, in some cases comprising only one fuel cell,
used to power small electronic devices such as environmental
monitoring buoys [7], wearable sensors [21], and mobile
robots [22].

Despite their potential as bio-sensors and power sources
for low-power electronic devices, little has been done
to explore this combined functionality. Most previous
examples of MFC bio-sensors employ externally-powered
peripheral instrumentation such as data-loggers and power
sources [4], [12]. Pasternak et al. [7] reported the only pre-
vious example of an energy-autonomous MFC bio-sensor
for online monitoring of biological oxygen demand (BOD).
However, in contrast to the work presented here, their sensor
is only able to detect whether the water sample is above or
below a single threshold value and is not able to measure,
process, and record data.

MFC systems integrating power generation and bio-
sensingwill provide simplified and potentiallyminiaturizable
designs, suitable for applications in low-cost remote monitor-
ing and Internet of Things (IoT) applications.

FIGURE 3. The resistance was measured for all MFCs in the experiment
by placing the probes of an ohmmeter at the top and bottom ends (on the
long axis) of the cathode (red circles).

This works uses anMFC both as the bio-sensor and the sole
source of power for a microcontroller which records theMFC
voltage and applies a computationally efficient ML algorithm
to themeasured values to estimate the CODof awater sample.

The rest of this article is organized as follows. Section II
describes fabrication, integration, and operation of the differ-
ent parts of the unit (both hardware and software). Section III
describes and discusses the results of the steps taken in
Section II. It also provides a general discussion and suggests
future steps. Finally, Section IV concludes this article.

II. MATERIALS AND METHODS
A. MFC FABRICATION
Four, two-chamber analytical style MFCs, as used in [23],
were fabricated and used in this research (Fig. 2). The anode
chamber of these cuboid MFCs holds a 25 mL water sample;
it is open on one side, where a CMI-7000 Proton Exchange
Membrane (PEM; Membranes International Inc., Ringwood,
USA), with an area of 20 cm2 is attached. An open-to-air
cathode, with an area of 20 cm2, made from conductive latex,
was used to maintain a continuous redox reaction without the
need to hydrate the cathode. A polyurethane-based rubber
coating (Plasti-Dip, UK) was mixed with white spirit and
micronized graphite powder at a mass ratio of 2:3:1 and
painted onto the air side of the membrane.

The MFCs were fabricated identical to achieve similarity
in the output of individual MFCs. This was done with the
aim of using a data set collected from all MFCs to train the
ML algorithm that would then perform with high accuracy
when used with test data from any single MFC in the study
population. This is important since training the algorithm on
each MFC would become infeasible as the number of MFC
sensors increases, for example in a large-scale application.

To achieve a uniform electrode thickness of approximately
100 µm, a K Hand coater (RK PrintCoat Instruments Ltd,
UK) was used to paint the conductive latex onto the mem-
brane. The uniformity of the quantity of conductive latex used
for each cathode across all MFCs in the study population was
tested by measuring the resistance of the painted conductive
latex cathode layer between two points at either end of the
long axis of the rectangular cathode (Fig. 3).

B. MFC INOCULATION AND OPERATION
First, external loads of 1 k� were connected to the MFCs
(Fig. 2). The load remained connected throughout the whole
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TABLE 1. The average concentration of each chemical used to reach the
desired COD values. σ shows the standard deviation. Mass percent (mass
%) is used to show tryptone and yeast concentrations. Millimolar (mM) is
used to show the concentration of sodium acetate.

experiment. Next, the MFCs were filled with water sampled
from a natural pond (Niibayashiike Park, Kyoto, Japan) to
inoculate themwith a bacterial community. The entire content
of the MFCs was manually replaced with fresh pond water
using a syringe (batch feeding) once per week, for three
weeks. This feeding method was chosen due its simplicity
and suitability for the application (compared with continuous
feeding). After that, the MFCs were batch-fed weekly with
water sampled from the pond (the water samples were taken
from different parts of the pond and at different dates (i.e.,
weeks) to introduce real world natural/biological uncertain-
ties to the experiment) and synthetically modified by varying
concentrations of tryptone, yeast, and sodium acetate (Sigma-
Aldrich, Missouri, USA) to control the COD value of the
water sample. Table 1 shows the average concentrations of
the mentioned chemicals added to the pond water samples to
reach the desired COD values of 70, 300, 500, and 900 mg/L.
The COD values were measured using a spectrophotometer
(photoLab 7600, Xylem, Germany). TheMFCswere fed with
3 batches of water for each of the 4 COD values, 12 batches
(weeks) in total. The weekly time interval for feeding was
selected as this is a common time interval in aquaculture
for monitoring water quality [24]. A temperature of between
24◦C and 25◦C was maintained throughout the entire exper-
iment. The output voltage of the MFCs was recorded using
a 34972A LXI data acquisition unit (Keysight, USA) with a
sampling interval of 2 minutes.

C. MACHINE LEARNING
AnML algorithm (support vector regression (SVR)) was used
to find the relationship between the output voltage of the
MFCs with a targeted water quality value (in our case, COD).
The following steps were followed in order to select, train,
test, and implement the algorithm.

First, a data set containing 48 data points was collected
(4 MFCs, 4 COD values, 3 repetitions for each COD value).
Each repetition represented a batch of water fed to an MFC
and resulted in a peak in the output voltage (Fig. 4). As pro-
posed by Feng et al. [9], five features were extracted from
each peak: maximum peak height (PH), peak area (PA), peak
duration time (PD), acceleration rate (AR), and subsidence
rate (SR). In [9], for each COD concentration, batch feeding

FIGURE 4. Definition of features used for COD estimation. Hatched area
shows PA. AR is the slope of the line passing through the start of the
peak (�) and PH (�). Similarly, SR is the slope of the line passing through
the end of the peak (◦) and PH. PD is the time between the start and end
of the peak. The features are extracted from the filtered voltage
reading (red) instead of the raw one (blue).

continued until three consecutive current (voltage) response
profiles with the same peak height (within 5% error) were
observed, which were then used to train the ML algorithm.
This resulted in a high correlation between the inputs (fea-
tures) and output (COD value), however this method may be
less practical in real world applications since they disregard
the possibility for a single COD concentration to produce
voltage profiles with different peak heights. In contrast, in the
work presented here, three peaks were obtained per COD
value, and these were included in the data set regardless of
whether the peak heights were the same or not.

PD was found as the time period between the start and end
point of the peak. The start of a voltage peak was detected
where the voltage increased to, and remained consistently
above, 0.005 V for at least one day. Similarly, the end of
a peak was detected as soon as the voltage subsequently
fell below 0.005 V. These voltages and time thresholds were
selected based on preliminary observations of the MFC out-
puts. PH was determined as the maximum value of the output
voltage. PA was calculated by numerically integrating the
voltage value between the start and end points of the peak
with respect to time. AR and SRwere determined by calculat-
ing the slope of the line between the maximum voltage point
and the start or end point, respectively (Fig. 4).

Prior to feature extraction, a median filter with a window
size of N=10 was applied for smoothing and negative values
were capped to zero.

Secondly, the dimensionality of the dataset was mini-
mized by removing less correlated features, based on the
Pearson correlation coefficient (PCC) between the features
and the COD values (Table 3), reducing the number of fea-
tures considered from five to three (PH, PA, PD). Removing
less correlated features can reduce the computational load
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(and consequently the energy consumed) without reducing
the accuracy of the prediction algorithm.

Thirdly, an ML algorithm was selected. While increased
accuracy is often achieved through increased complexity,
the increased energy consumption associated with increased
complexity has particular significance when designing a low-
power energy-autonomous system. To determine a suitable
algorithm for this application, five different off-the-shelf
algorithms from the Python 3, SciKit package [25] were con-
sidered: simple linear regression, ridge regression, SVR, ran-
dom forest regression, and artificial neural network (ANN).
The hyper-parameters of the algorithms were tuned using
the exhaustive grid search method with R2 as the evaluation
metric. Tuning, training, and the evaluation of the algorithms
were done on a desktop computer running Python 3. SVR
with radial basis function (RBF) kernel was selected for
a good balance between high accuracy and low execution
time, which will be discussed further in Section III-A. SVR
is widely used in the field of remote sensing for continu-
ous estimation of different parameters [26], [27] due to its
robustness to dimensionality, nonlinearity, and generalization
performance [28].

The algorithm was trained and verified on the desktop
computer by dividing the dataset randomly into test (25%)
and train (75%) datasets. Finally, the pre-trained algorithm
was implemented in C using the MikroE compiler on a low-
power PIC18LF46K22 microcontroller (Microchip, Arizona,
USA).

As shown in Fig. 5, the complete embedded algorithm
comprises three different modes: sampling, estimation, and
sleep. In the sampling mode, the voltage from the MFC is
recorded and calculations are performed including filtering,
detecting the start and end point of the peak, finding PD and
PH, and integrating the voltage in order to find PA. Between
each sampling event (every 32 minutes), the microcontroller
enters sleep mode, minimizing the energy consumption of the
microcontroller during this time. To further minimize energy
consumption, once the end of the peak has been detected,
the microcontroller enters and remains in sleep mode until
one week has passed since sampling began. At this point,
the features are extracted and the COD of the water sample is
estimated by the ML algorithm (estimation mode).

The sampling interval used to build the training data set
was 2 minutes. However, the deployed algorithm was tested
with two different sampling intervals: 2 minutes and 32 min-
utes as when the SVR algorithm was trained and tested on the
desktop computer. Different data sampling intervals from 2 to
64 minutes (step size of 2 minutes between each value) were
achieved by down-sampling. 32 minutes was determined to
be the optimal sampling interval for minimizing energy con-
sumption without significant loss in accuracy. Further details
on this are provided in Section III-A.

D. ENERGY HARVESTING
In order to power the microcontroller using a single MFC,
an energy harvesting and power management circuit was used

FIGURE 5. Flowchart of the embedded algorithm. Blue, yellow, and red
blocks represent sampling, sleep, and estimation modes, respectively.

to amplify and store the low output voltage of the MFC
(Fig. 6). The low voltage output of the MFC was amplified
using an inductor-based voltage booster (EH4295, Advanced
Linear Devices, California, USA). The voltage booster ampli-
fies the MFC voltage with a gain of 7 to 10 and has a lower
input voltage threshold of 60 mV and a nominal impedance
of 950�. The boosted AC voltage was then rectified to a
DC voltage using an energy harvester (EH300, Advanced
Linear Devices) and used to charge a storage super-capacitor
(0.66 F). The voltage booster and energy harvester combined
have a rated energy conversion efficiency of 48%, so the total
harvested energy can be estimated as: Eh = 0.48ET , where
the total energy generated by the MFC ET = 1

R

∫
V 2dt is

calculated using the MFC voltage, V , and the external load,
R, which is assumed to be constant.

E. ENERGY CONSUMPTION
The energy required for one COD analysis cycle was calcu-
lated as the sum of the energy consumed by each of the main
components and processes: voltage regulator (to supply the
microcontroller with a constant voltage of 1.8 V (Er )) and the
microcontroller in sleep (Esl), estimation (Ee), and sampling
(Esa) modes:

Eout = Er + Esl + Ee + nEsa (1)
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FIGURE 6. An overview of the energy harvesting hardware. The arrows show the related input (to the components on
arrowheads) and output (from the components on the tails of the arrows) voltages of the components. VMFC , VAC , VDC ,
Vcapacitor , Vregulator , and Venable are the output voltages of the MFC, voltage booster, energy harvester, capacitor, voltage
regulator, and comparator, respectively. The system that was implemented in hardware is shown in black. The simulated
system additionally included the grey component.

where n is the number of samples taken over the course of the
analysis cycle, which was set as 315 (giving a sampling inter-
val of 32 mins). It was assumed that the regulator and sleep
mode operated continuously for the whole one-week cycle.
The time period of single sampling and estimation events, and
the current consumed by all microcontroller operations were
measured empirically. As sampling and estimation processes
happened within a fraction of a second, this was achieved by
measuring the current and time taken for the microcontroller
to run each of these operations 100 times. The total time was
then divided by 100 to obtain the time for a single instance of
the process. The power consumption of the voltage regulator
varies with the voltage of the storage capacitor. However,
for simplicity, the current and voltage were assumed to be
constant values which were estimated from the rated value
on the component data sheet. The energy required for each
process was then calculated using E = V .I .t where V , I ,
and t are the voltage, current, and time for each process,
respectively.

F. POWER MANAGEMENT
To operate with energy autonomy, the sensing unit must
operate within the energy budget defined by the output of the
MFC.

1) SYSTEM IMPLEMENTED IN HARDWARE
The voltage regulator (TPS7A02, Texas Instruments, Texas,
USA) used to supply the microcontroller from the output of
the storage capacitor (see Section II-D) at a constant voltage,
1.8 V (the minimum rated voltage of the microcontroller)
required a minimum rated input voltage of Vmin = 2.3 V .
When the input voltage was less than 2.3 V, the output of
the voltage regulator was approximately 0 V. This had the
advantage of allowing the system to ’cold-start’ by allowing
the 0.6 F storage capacitor to charge up to 2.3 V before
being discharged to the microcontroller, which prevented the
supply voltage to the microcontroller from falling below its
minimum rated value. This cold start functionality also allows

the system to restart itself during operation if it loses power,
which is important, for example, while operating in the field
where harvested energy levels may fluctuate.

The size of the capacitor, C , was selected to satisfy equa-
tion 2. This inequality specifies that the capacitor must be
able to store at least enough energy for one COD analysis
cycle Eout , in addition to the energy stored at Vmin without
exceeding the maximum rated voltage of the circuit compo-
nents Vmax . In the implemented system, Vmax = 6 V

C >
2Eout

(V 2
max − V

2
min)

(2)

the value used, 0.66 F, satisfies equation 2 where n = 315 is
used to find Eout (equation 1).

2) SIMULATED SYSTEM WITH HYSTERESIS
The system can cold start providing that the start-up power
drawn by the electrical load, the microcontroller in this case,
does not exceed the rate of energy harvesting. If a large start-
up current is drawn, for example, this can cause the storage
capacitor voltage to immediately fall below the rated input
voltage, preventing cold start by cutting the supply voltage to
the microcontroller.

Tomitigate this, we propose an additional part of the power
management circuit to introduce a hysteresis between the
input voltage threshold above which the voltage regulator
outputs 1.8 V, and a lower input voltage threshold, below
which the voltage regulator outputs 0 V (Fig. 7).

In the proposed system, a comparator connects/disconnects
the storage capacitor from the voltage regulator and micro-
controller by switching an N-channel MOSFET, depending
on the voltage of the storage capacitor, Vcap. Vcap simultane-
ously powers the capacitor so that Vcc ≡ Vcap. Eout (equa-
tion 1) must be modified to include an extra term, the energy
consumed by the compactor (Eco) during each cycle (one
week):

E ′out = Eco + Er + Esl + Ee + nEsa (3)
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FIGURE 7. Circuit diagram of the simulated power management and energy harvesting systems. EH4295: voltage booster
EH300: energy harvester; TPS7A02: voltage regulator; LTC1540: comparator; PIC18LF46K22: microcontroller.

For the regulator (TPS7A02) to supply an output of 1.8 V,
the minimum rated input voltage is 2.3 V. Therefore the lower
threshold of the comparator (the ‘switch off’ voltage of the
microcontroller) was set as Vtl =2.3 V. The higher threshold,
Vth (the ’switch on’ voltage of the microcontroller), was
selected to prevent the power supply from being connected
to the microcontroller until sufficient energy to run at least
one COD analysis cycle, E ′out , was stored, in addition to the
energy remaining in the capacitor at the switch-off voltage
Vtl . The ’switch-on’ voltage, Vth, then be determined as the
voltage at which E ′out was stored in the capacitor in addition
to the energy stored in the capacitor at Vcap = Vtl :

Vth =

√
2E ′out
C
+ V 2

tl (4)

The comparator hysteresis was set using three resistors
(R1−3, Fig. 7). Once the threshold voltages, Vth and Vtl , have
been determined, the value of these resistors can be calculated
by using the built-in reference voltage of the comparator
and considering the two possible states of the comparator,
Vout = 0 and Vout = Vcc. The current through resistor R3 is
i3 =

|Vref−Vout |
R3

at the points when Vout switches between Vcc
and 0 V, which gives two possible values for R3 (equation 5):

R3 =


Vr
i3
, Vout = 0 (5a)

(Vcc − Vr )
i3

, Vout = Vcc (5b)

where Vcc ≡ Vcap = Vtl in equation 5b (where Vcap is
falling). A constant value for i3 was set, based on the approx-
imate current limitations of the comparator, and used to cal-
culate the value of R3 using equations 5a and 5b. The lower
of these two resistances was used in this case. Kirchhoff’s
current law was used to give equations for two states where
Vcap rises to Vth (equation 6a) and where Vcap falls to Vtl
(equation 6b). R1 was then calculated by equating 6a and 6b,

eliminating R2:

Vr
R2
=


(Vth − Vr )

R1
−
Vr
R3
, Vout = 0 (6a)

(Vtl − Vr )
R1

+
(Vcc − Vr )

R3
, Vout = Vcc (6b)

R1=
R3(Vth − Vtl)

Vcc
(7)

where Vcc ≡ Vcap = Vtl in equation 6b (where Vcap is falling)
and therefore also in equation 7. Lastly, R2 was calculated
using either 6a or 6b.

The cold start circuit described was simulated using Pro-
teus circuit simulation software (Labcenter Electronics, UK).
A comparator (LTC1540, Analog devices, Massachusetts,
USA) with a reference voltage Vr = 1.18 V was considered.
i3 was set as 0.2µA. Vtl was set as 2.3 V, and the higher
threshold used for the hysteresis, Vth, was set as 3.0 V. R1,
R2, and R3 were then calculated as 1.76 M�, 1.41 M�,
and 5.60 M�, respectively, using equations 5 to 7. In the
simulation, we replaced the capacitor with a sinusoidal power
source (0 6 V, 1 Hz) to simulate the rising and falling voltage
of the capacitor. The simulation was done with time steps
of 0.01 s.

G. INTEGRATED SYSTEM EVALUATION
The accuracy of COD prediction by the trained and testedML
algorithm and the ability of the sensing unit to operate energy-
autonomously was tested. As depicted in Fig. 1, a single
MFC was randomly selected and connected to the energy
harvesting hardware and the MCU. The MFC was batch-fed
with water which was sampled weekly from the natural pond
and modified synthetically by addition of tryptone and yeast
to achieve the target COD value (Table 1). The experiment
was conducted for five different COD values (70, 300, 500,
700, and 900 mg/L), in a random order, over five weeks. The
voltages of the MFC, the storage capacitor, and the supply
voltage of the microcontroller were recorded throughout the
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FIGURE 8. The raw and filtered output (with negative values capped to zero) of one MFC in the experiment. �: Beginning of the
peaks �: End of the peaks.

experiment using the data acquisition unit. The estimated
COD values were saved in EEROM of the microcontroller
(non-volatile memory). It should be noted that the current
setup requires an external system to display the COD esti-
mation, such as an externally-powered transceiver connected
to a serial port terminal application running on a PC.

Finally, to calculate the efficiency, η, of the system,
the total energy generated by the MFC (ET ), consumed
energy (Ec) during the experiment (Ec = 5Eout ), and the
energy stored in the capacitor (Es) at the end of the experiment
period (5 weeks) were used. ET was calculated as ET =
1
R

∫
V 2dt (as described in Section II-D). The energy stored

in the capacitor at the end of the experiment was calculated
as:

Es =
1
2
CV 2

f (8)

where Vf is the capacitor voltage at the end of the experiment.
It should be noted that the capacitor is assumed to be fully
discharged initially, (Vi = 0). The efficiency of the system
was determined as:

η =
(Es + Ec)

ET
(9)

III. RESULTS AND DISCUSSION
A. MFC DATASET GENERATION, ALGORITHM SELECTION,
AND TRAINING
Fig. 8 shows a peak in the output voltage of the MFC with
each batch feeding. While peak heights and peak durations
generally increase with COD value, this trend is inconsis-
tent. For example, peak height varies significantly for a sin-
gle COD value. As a result, relatively lower accuracy was
obtained when determining COD values using simple linear
regression methods than more complex machine learning
algorithms (Table 2).

Table 3 shows the Pearson correlation coefficient (PCC)
between the peak features and the COD values. Based on
the values, the acceleration and subsidence rates (AR and

TABLE 2. Accuracy (R2), mean square error (MSE), and execution time of
trained regression algorithms.

TABLE 3. The Pearson correlation coefficient (PCC) of features of the MFC
output voltage with the COD value.

SR) were determined to be less-correlated features since their
PCC is smaller compared to the other features and were
therefore removed from the deployed ML algorithm.

SVR was selected as the ML algorithm for implemen-
tation as an embedded system for a compromise between
accuracy (R2 value) and execution time (the longer the
time, the higher the required energy), based on the results
in Table 2. An important point in this study is the relatively
small size of the generated dataset (48 data points). While
the RBF kernel based SVR has a relatively high accuracy
of R2 = 0.94, the estimation accuracy may be improved by
training it using a larger dataset [29]. This can be achieved by
running the experiments for a longer period of time and with
moreMFCs.While the required accuracy of a sensor depends
on the application, the achieved accuracy (R2 = 0.94) is
considered acceptable for a wide range of applications such
as water testing in aquaponics and fish farms which require
less precise measurements (as compared to applications such
as drinking water quality monitoring). The accuracy (R2 =
0.94) is also comparable with the previous work which used
more complex algorithms such as ANN [9] (R2 = 0.99).
Furthermore, in the experiments, a wide range of COD has
been considered (70-900 mg/L). Training the algorithms for
a smaller range can be used to achieve a higher accuracy in
that range.
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FIGURE 9. The relationships between measured COD concentrations and COD concentrations estimated using the SVR algorithm for: (a) 36 train data
points (R2 = 0.98) and (b) 12 test data points (R2 = 0.94), implemented using Python 3 on the desktop computer.

Fig. 9 shows a similar performance of the SVR algorithm
during the training (R2 = 0.98) and testing (R2 = 0.94)
phases, which were run on the desktop computer. The min-
imal decrease in accuracy shown during the testing phase,
compared to the training phase, validates the success of the
algorithm training process.

The average electrical resistance of theMFC cathode, mea-
sured as described in Section II-A, was 250�with a standard
deviation (SD) of 5.62. The small value of SD in comparison
to the average indicates uniformity of the cathode thickness
among theMFCs. The high accuracy of the algorithm, despite
being trained on data frommultiple MFCs, may be accounted
for by this consistency in MFC fabrication.

Fig. 10 shows the effect of the sampling interval on the
accuracy of the algorithm. 32 minutes was the largest sam-
pling interval (lowest sampling frequency) that could be
used with no significant loss of accuracy in COD predic-
tion. Recording the continuous voltage signal with larger
sampling intervals resulted in the features being captured by
the discretized signal with lower accuracy and the profile of
the signal being lost. Using smaller intervals did not cause
a noticeable improvement in the accuracy. So, a sampling
interval of 32 minutes was determined as the optimum value
in this study.

B. INTEGRATED SYSTEM DEPLOYMENT
Fig. 11 shows the voltage readings from different components
of the system over the 5 week period during which the MFC
was fed with water with different COD values in a random
order. The system was able to cold start from the capaci-
tor being fully discharged (approximately 0 V). When the
capacitor voltage reached the minimum rated input voltage
of the regulator (2.3 V), the microcontroller switched on,
as shown by the step increase of the supply voltage to the
microcontroller from 0 V to 1.8 V. The microcontroller then
remained on throughout the experiment as the voltage of
the capacitor never dropped below the minimum rated input
voltage of the regulator (2.3 V).

FIGURE 10. The relationship between accuracy of the trained algorithm
and the sampling interval.

A sudden dip can be observed in the capacitor volt-
age as the microcontroller switches on (Fig. 11). If this
dip were larger (i.e., if greater start-up power was drawn)
or the capacitor charging gradient was smaller, a situation
may be encountered in which the system never goes fully
into operation (i.e., performs one cycle of COD measure-
ment) because the start-up power drain causes the micro-
controller to switch off as soon as it switches on. This
demonstrates the potential need for a more sophisticated
power management system in future work, such as the
cold start system using comparator hysteresis, proposed in
Section II-F2.
Fig. 11 shows a net increase in the energy stored in the

capacitor as the amount of energy harvested from the MFC
exceeds the energy consumed by the system. This may even-
tually result in the capacitor voltage exceeding the maximum
rated volume of the system, which is 6 V in this study
(Section II-F1). Using a capacitor with a greater capacitance
would reduce the rate of voltage increase, but a consequence
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FIGURE 11. Voltage measurement of different energy harvesting components. The peaks in the MFC voltage are generated by feeding it
with COD = 500, 70, 300, 900, and 700 mg/L for the weeks 1 to 5.

FIGURE 12. The sensing result of the integrated system. The relationships
between measured and estimated COD concentrations is shown
(R2 = 0.94).

of this is that the system would need to harvest more energy
than is currently needed to reach the switch-on voltage Vth.
The surplus energy could instead be used within the system
for example to power a self-feeding mechanism or data dis-
play or transfer system, thereby demonstrating more com-
plete energy autonomy.

The experimental results of the implemented system (run-
ning C language on the microcontroller; Fig. 12) had similar
accuracy (R2 = 0.94) to the desktop algorithm implemen-
tation (running Python; Fig. 9 (b)), validating the sensing
performance of the unit and implementation of the algorithm.
The algorithm was further validated by its ability to correctly
predict a new value (COD = 700 mg/L) which was not
included in the training data, without negatively affecting
the accuracy of the system. Also, the comparable accuracy
between the algorithm run at 2 minutes on the desktop com-
puter versus 32 minutes on the MCU validates the choice of
the sampling interval.

Considering the required energy for each cycle (week)
shown in Table 4 (1.1789 J), the total consumed energy in

5 weeks (Ec) is measured as 5.8945 J. From Fig. 11, the final
voltage of the capacitor (Vf ) is 5.422 V so the final stored
energy in the capacitor is Es = 9.701 J. Also, the total
energy generated by the MFC (ET ) is measured as 150.342 J.
As a result, using equation 9, ηactual = 0.104. This value is
less than the previously mentioned rated energy conversion
efficiency of the energy harvester and voltage booster (0.48)
which may be explained by the non-ideal behavior of the
other circuit components, including the capacitor leakage
current, for example.

A disadvantage of the current ’cold-start’ behavior is that
the microcontroller is likely to switch on while the MFC
output voltage is part way into a peak, as shown in the case in
the first peak in Fig. 11. This is likely to reduce the accuracy
of the estimated COD value as smaller PD and PA will be
calculated. As the delay duration (i.e., the time required for
the storage capacitor to be charged to the voltage at which the
voltage regulator will supply power to the microcontroller)
increases, the accuracy is likely to decrease. The delay dura-
tion depends on the power output of the MFC, which in turn
depends on factors such as MFC size and structure, and the
energy density of the water samples (the higher the COD
value, the higher the density).

1) SIMULATED SYSTEM RESULTS
The power management system proposed in Section II-F2,
was simulated. The hysteresis can be observed in Fig. 13.
When the capacitor voltage is rising, the microcontroller sup-
ply voltage rises from 0 and reaches 1.8 V when the capacitor
voltage hits Vth = 3.022 V. However, when the capacitor
voltage is falling, the supply voltage of the microcontroller
decreases from 1.8 and reaches 0 V at the lower threshold
voltage Vtl = 2.3 V.
This demonstrates a more robust cold-start compared to the

system implemented in hardware and will be used in future
work.
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TABLE 4. Energy consumed by the microcontroller in different modes.

FIGURE 13. Voltage readings of the circuit simulated in Proteus. The storage capacitor is replaced with a sinusoidal power
source with a frequency of 1 Hz and magnitude of 6 V (with a vertical shift of +3).

C. GENERAL DISCUSSION AND FUTURE WORK
Future work on the power management circuit is needed to
address the delay resulting from the cold-start. For example,
when extracting features from a voltage peak in the software,
checks can be considered to make sure that the entire peak
has been recorded (and not only a part of it). For instance,
one simple check can be to ignore the peaks being recorded
after their maximum values by checking if the measured
voltage values are only decreasing, which means recording
has started after the maximum value of the peak.

Similar to other studies, such as [9], not all MFCs in the
experiment functioned properly. The experiment was started
with 6 MFCs but 2 of them stopped generating power after a
few days despite efforts to maintain the same principles for
fabricating all MFCs. This shows the need for more sophisti-
cated and standardized methods and materials for fabricating
the MFCs which may also increase the performance (both
power production and bio-sensing).

Currently, COD tests are mostly being done off-site. For
example, a common way to determine COD concentration of
water samples is using photometric methods (as we did to cre-
ate our data set). These laboratory tests are time consuming
and involve using expensive chemical reagents. The sensing

unit presented in this work shows the potential to overcome
these and provides a reliable way tomeasure COD in the field.

In this paper, only one water quality parameter (COD)
is discussed. However, the idea can be applied to multiple
water quality metrics such as pH, biological oxygen demand
(BOD), and dissolved oxygen (DO).

We showed the robustness of the sensor against the nat-
ural/biological uncertainties which resulted from natural
pond samples acquired at different times. As discussed in
Section II-B, we synthetically modified the water samples to
generate our data set. However, since the water samples were
taken at different dates and from different parts of the pond,
we could keep the biological uncertainties in our experiments.
It should be noted that Table 1 shows the average values for
the chemicals. In other words, to generate three samples with
a certain concentration, we had to use different concentrations
of the chemicals. This indicates that the water samples were
chemically different each time. For example, three samples
with COD = 300 mg/L had pH values of 7.2, 7.5, and
8.7 after the addition of the chemicals. So, it can be con-
cluded that using ML algorithms, we can measure a targeted
parameter independent of others. A potential next step is to
use natural water samples without synthetic modification to
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evaluate the accuracy of the system for predicting COD due
to mixed sources of biological carbon in the sample. Future
work may also include testing the resilience of the system to
environmental factors such as temperature variation, which
can significantly affect the voltage profile [31], and was not
considered in this study.

In this work the state-of-the-art commercially available
energy harvesting device was used. The energy harvester we
used has an impedance of 950� while the average internal
resistance (the internal load between the anode and the cath-
ode of each MFCmeasured after its fabrication) of our MFCs
is 2.7 k�±11%. However, for increased energy harvesting
efficiency, considering themaximum power transfer theorem,
it would be preferable to use an energy harvesting device with
an internal resistance closer to our power source (2.7 k�) in
future work.

An important point that needs to be considered in future
studies is the size of the MFC, as this impacts the energy
that can be harvested from a single batch as well as the
duration of the voltage peak. For example, larger MFCs can
be preferable for power production as a greater amount of
energy from bio-matter is fed to the MFC in a single batch,
which is especially important for energy-autonomous sys-
tems. However, the longer duration of the peak associated
with largerMFC volumes can be less desirable for the sensing
applications such as the one presented in this study as the
system takes longer to produce a measurement value. These
needs should be balanced when designing future systems.
A possible solution could be to use multiple smaller MFCs
connected in series, parallel, or some combination to provide
comparable power output to the single largeMFC used in this
study, but with a shorter peak duration.

Additionally, in Fig. 8, it can be observed that after feeding
the MFC with COD of 900 mg/L, the end points of the peaks
are very close to the start of the next peaks. This limited the
maximum measurements to 900 mg/L using the current sys-
tem since for higher COD concentrations, the next peak will
start before the current peak is finished. Therefore, for the cur-
rent system to predict higher COD values accurately, either
the measurement period for one peak should be increased,
or the ML algorithm should be retrained, potentially consid-
ering different features of the voltage profile. An alternative
solution could be to expand on the ML algorithm used to
predict the duration of the peak based on earlier sampled
voltages, as proposed in [32].

This study is the first to use an MFC for both power pro-
duction and robust bio-sensing with the ability to interpret the
data using anML algorithm and recording the measurements.
This will open a new avenue in the use of MFCs for energy-
autonomous applications such as remote sensing and environ-
mental monitoring. However, for complete energy autonomy,
a self-powered mechanism should be included to automate
the process of feeding (taking in/sending out the water sam-
ples). This is a natural next step as the system already gener-
ates more energy than is required for COD analysis and the
number of MFCs and/or MFC size could be adjusted if more

power is needed. A soft-robotic mouth, as used in our previ-
ous study ( [23]) on energy-autonomous robots using MFCs
is a potential solution. Such designs, with modifications,
can be used to achieve a fully energy-autonomous sensor.
Additionally, smart materials that respond to natural envi-
ronmental gradients such as light [33] and temperature [34]
could be used to build a self-poweredmechanismwith regular
actuation cycles.

IV. CONCLUSION
This paper proposed the design and development of the first
energy-autonomous MFC-based water quality sensing unit
which can estimate COD concentration of water samples
from a natural pond using an embeddedML algorithm. Using
this sensing unit, we investigated the practicality of using
a single MFC both as a sensor and a source of energy (to
power the electronic components of the unit) at the same time.
The unit was capable of continuous operation. COD values
of the water samples were estimated weekly, a common time
interval for applications such as aquaculture, with an accuracy
of R2 = 0.94. This promising result indicates the potential
of using MFCs in fully energy-autonomous and environment
friendly monitoring applications. In the future, we are plan-
ning to demonstrate a more complete energy-autonomous
sensing unit by including a self-feedingmechanism and a data
display/transfer system.
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