IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received June 18, 2021, accepted July 25, 2021, date of publication July 30, 2021, date of current version August 11, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3101578

An Entropy-Based Approach: Compressing
Names for NDN Lookup

TIANYUAN NIU“"2 AND FAN YANG ~'1:2:3.4

IState Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

2Beijing Key Laboratory of Network System Architecture and Convergence, Beijing University of Posts and Telecommunications, Beijing 100876, China
3Purple Mountain Laboratories, Nanjing 211111, China

4Peng Cheng Laboratory, Shenzhen 518055, China

Corresponding author: Fan Yang (yfan@bupt.edu.cn)
This work was supported in part by the National Key Research and Development Program of China under Grant 2018 YFB 1800602, and in

part by Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory Research
Project under Grant SKX192010028.

ABSTRACT NDN (Named Data Networking) is one of the most popular future network architecture,
a “clean slate” design for replacing the traditional TCP/IP network. However, the lookup algorithm of
FIB entry in NDN is the bottleneck of the current NDN. Owing to the unique identifier of content name,
whose length is variable, the size of FIB entries is proliferating, and the effectiveness of lookup algorithms is
low. This paper proposed an entropy-oriented name processing mechanism, compressing the content names
effectively by bringing in an encoding scheme. This mechanism can be split into two parts: name compression
and lookup. The first part compressed the content names and converted them into a kind of code with a smaller
size by considering the information redundancies of content names; the second part built a compact structure
to minimize the memory footprint of FIB entries with keeping the high lookup performance. This mechanism
outperformed many traditional name lookup algorithms, had better flexibility and cost less memory footprint.

INDEX TERMS Named Data Networking, lookup algorithms.

I. INTRODUCTION

Name Data Networking (NDN) [1] is one of the most valuable
future network technologies, which is a clean-slate archi-
tecture for replacing the traditional one based on TCP/IP,
concentrating on the content itself rather than the location.
In NDN, the content name, the equivalent to IP address in tra-
ditional TCP/IP network architecture, identifies the content
uniquely through all data transmission. However, the number
of content names is countless whose lengths are also bound-
less [1], [2], thereby confronting two critical problems: the
low efficiency of the packet forwarding and the high memory
footprint of FIB entries.

Current lookup algorithms are designed for conventional
IP forwarding, and the precedent hardware optimizations are
only applied to the fixed-length IP addresses whose lengths
are fixed. In contrast, content names consist of numerous
variable-length components, indicating that many IP-based
lookup algorithms [3]—[5] cannot be utilized in name-based
lookup algorithms. Furthermore, there are many naming

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Merlino

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

conventions [2] and various kinds of them have various
features. Because of this phenomenon, it is impossible to
customize quantities of optimized algorithms to fit those
various features completely. However, such a problem has
been ignored: the designers concentrate on the significance
of content rather than a fundamental use of a network—
data transmission. From this aspect, content names carry far
more information than an identifier of a data packet needs.
Given that, the best way to solve this problem is to compress
the content names according to Shannon Information theo-
ries [6], keeping both the singularity and compactness for an
identifier.

In this paper, we combat the challenges mentioned above
and design a super-effective NDN name encoding algorithm
and a relative lookup algorithm. In this system, we develop
the Paradigm Huffman Trie (PHT) to compress content names
and CompactTrie to adapt the characteristics of PHT and
accelerate the lookup operation. PHT, based on Paradigm
Huffman Encoding [7], can eliminate the redundancy of
content names from the perspective of information theory
to compress the names composed by various-length com-
ponents effectively and convert them into uniform codes.

109833

https://orcid.org/0000-0002-6615-0453
https://orcid.org/0000-0002-0732-2462
https://orcid.org/0000-0002-1469-7860

IEEE Access

T. Niu, F. Yang: Entropy-Based Approach: Compressing Names for NDN Lookup

CompactTrie is designed for constructing an efficient struc-
ture to accelerate the lookup operation, which adopts the
features of PHT codes. Meanwhile, our design also includes
insertion and deletion operations to provide scalability and
flexibility for the lookup algorithm. The experiment shows
that the lookup delay of our design is around 10 millisec-
onds with different size datasets, and the memory footprint
is approximately 2 to 3 Megabytes, both lower than other
lookup algorithms we tested. The evaluation results reveal the
high efficiency, flexibility, and scalability of our work.

The rest of this paper is structured as follows: Section II
describes related work, such as trie-based and hash-based
lookup algorithms. Then, Section III analyzes the character-
istics of the current content name and the necessity of com-
pressing them, motivates our design principle, and introduces
a special kind of Huffman Encoding Algorithm. What is
more, Section IV, V and VI presents our specific method for
name compression, an efficient data structure to adapt com-
pressed names and accelerate the lookup operation of FIB
entries, and the update policy for our methods. Section VII
contains a detailed performance evaluation for name com-
pression and compares our design with other name lookup
algorithms from the perspective of lookup delay and memory
footprint. In the end, Section VIII concludes our proposed
methods, analyzes the advantages and disadvantages of our
work, and illustrates the future work for our next step.

Il. RELATED WORK

The lookup algorithm of NDN can be divided into two
categories in [8]: trie-based [9]-[14], hash-based [15]-[21],
bloom filter-based [22]-[24] and other kind of lookup algo-
rithm [25]-[28]. Considering the demand of Longest Prefix
Match (LPM) in different lookup methods, trie-based algo-
rithms, such as NPT [9], NCE [10], MATA [11], BPT [12],
can collaborate with the LPM method effectively owing to
the feature of trie structure. In contrast, hash-based algo-
rithms need to construct an effective data structure to fit
LPM method [15], [16]. Trie-based lookup algorithm is apt
to operate insertion, deletion and update, alongside with its
low memory footprint [10]. However, the time complexity of
trie-based lookup operation usually relies on the depth of the
trie structure and the length of a name.

Trie-based method is a common category in NDN
name lookup, and specifically, it can be separated as four
sub-categories [8], [28]: component-based [9], encoded
component-based [10], [14], [29], character-based [11], [13]
and bit-based [12]. Their data structures are all based on
trie structure, and the difference is only the granularity when
inserting a name into a trie. Trie structure is widely adopted
by FIB lookup in NDN because it can store the logic relation
of names and support the LPM naturally. In addition, trie-
based methods often consume less memory but take more
time to search the trie, thus impelling researchers to propose
optimized structures to overcome the defections of the trie.
Two optimized trie-based algorithms are introduced below to

109834

comprehend what measures can be taken for better lookup
performance.

The first Trie-based that our method compares with is
bitmap-based pNPT [29]. This method uses priority Name
Prefix Trie and separates on-chip processing from off-chip
processing, while most of the LPM procedures are performed
with on-chip memories. Priority trie replaces empty nodes
with leaf nodes, which contain the longest prefix names,
hence reducing the LPM lookup process. pNPT consumes
less memory than NPT because there are no empty nodes in
the priority trie structure. In the meantime, the lookup process
is more efficient on account of the priority trie structure.
Compared with classic Trie-based schemes, pNPT employs
an encoded bitmap and an edge table structure to store Trie
node and edge information, both of which are on on-chip
memory for efficient name lookup.

The second Trie-based method is NameTrie [13]. Name-
Trie introduces an encoding mechanism, called minASCII,
utilizing the unused bit in ASCII codes to represent much
valuable information. NameTrie structure is a bit-level trie
structure and exploits two tables to store node and edge infor-
mation, respectively. Each of them makes a great effort to
optimize the structure for efficient lookup. The first structure
is NameNodes, and it stores the node information of Name-
Trie with a minASCII encoding mechanism. This mechanism
utilizes unused codes to replace common symbols in NDN
names, such as delimiter and End Of Piece (EOP) marker,
and Most Significant Bit of all characters to store pointer
information, which is unused as well. Since the implemen-
tation and search procedures of pointers between two nodes
in Trie structures are complicated and inefficient, the second
structure EdgeHT is employed to store edge information.
EdgeHT is a hash table and can provide high-speed lookup
for the location of the next name piece.

Compared to trie-based algorithms, hash-based lookup
algorithms are quite the opposite in many aspects. Unlike trie-
based methods, hash-based algorithms usually utilize extra
data structure to satisfy the demand of LPM, which con-
tains different hash elements to distinguish name prefixes
by length. The time complexity of the hash table lookup
operation is O(1), so the time complexity of a whole lookup
operation depends on the extra data structure destined to
perform LPM. However, hash-based lookup algorithms have
some flaws, such as high memory footprint, lack of flexibility,
and hash collision. Regardless of these defects, many NDN
name lookup algorithms still employ the hash-based method
as their first choice because the time complexity is quite
essential. Two typical hash-based name lookup algorithms
will be introduced briefly below to know about the current
work on this research.

The first hash-based algorithm adopts a two-phase LPM
method, uses a virtual prefix to improve the performance, and
can resist DOS attack [15]. It scatters the original name set
into some sub-sets, differentiated by the number of compo-
nents in each name, and each sub-set is stored as a hash table
whose index is the original name. The lookup operation first

VOLUME 9, 2021

T. Niy, F. Yang: Entropy-Based Approach: Compressing Names for NDN Lookup

IEEE Access

picks a sub-set with a short length name, whose number of
components is specified as M, to initiate the lookup process.
For the prefix longer than M, a virtual prefix that is the same
as the previous M components of the current name is added to
the routing table. The number of original name components
is denoted as MD. In the first phase of the LPM, it will start
from the sub-set with M components. If this fails, the lookup
operation will continue to other subsets with shorter name
components until it succeeds. If there is no match in the first
phase, then the entire lookup operation fails. When the first
phase is successful, the second phase begins and proceeds
the lookup operation at the sub-set with MD components.
Choosing an appropriate factor M will reduce the number
of lookup operations, and the only phase one of LPM will
be needed in most cases. However, the virtual prefix brought
by this algorithm expands the size of FIB entries, which is
enormous for the first time, and this leads to a high memory
footprint.

The second one is based on the binary search tree, inside
whose node is composed by hash table [16]. Like the first
hash-based algorithm, this algorithm also scatters the original
name set by the number of components but organizes the
sub-sets as a binary search tree. A binary search runs on the
node of this tree structure during each lookup operation to
locate the LPM result. On each node, if there is a matching
prefix in the corresponding hash table, then the right sub-
tree is recursively traversed to find a longer prefix; if it does
not match, the longest prefix must appear in the left sub-
tree; hence it is necessary to traverse the left sub-tree recur-
sively. The time complexity of the lookup operation is linearly
related to log(k), where k is the number of components in
a name. However, this algorithm also needs to bring in the
virtual prefix to solve the missing lookup because of the non-
sequential traversal of the binary search tree, which means
this algorithm also results in a high memory footprint.

The time complexity of the hash table lookup is O(1),
but an extra structure or mechanism is needed to effectively
guarantee the LPM and aggregate name entries. Therefore,
the algorithms which are discussed above construct the global
data structure according to the length of name components
with a local hash table. Although both algorithms maintain
good performance on the time scale, they consume much
more memory than other name lookup algorithms. In addi-
tion to the high memory footprint, some critical problems in
hash-based algorithms are hash collision and poor scalability.
In order to solve these problems, a hash table structure needs
to occupy more space, and memory usage is wasteful from a
certain view.

Ill. AN ENTROPY-BASED APPROACH

The existing lookup algorithms confront the following prob-
lems: 1) the strategy of exchanging space for time leads to
the high memory footprint, and the FIB of NDN is exponen-
tially expanded; 2) content names, which are the identifiers
of packets in data transmission, include the pragmatic level
information. However, only the grammatical level is needed;

VOLUME 9, 2021

3) There are many naming conventions, which means the
characteristics of NDN FIB entries are not unique. The first
point has been described in I, and the following two issues
will be analyzed below.

The content name belongs to the application layer in the
traditional TCP/IP architecture and contains human-readable
pragmatic information. However, when NDN uses the content
name as the unique identifier for data transmission, pragmatic
information is redundant, from the perspective of Shannon
theories [6]. Even for IP FIB entries, the data structure has
a redundant part [3]. Data transmission requires only simple
grammatical information to complete the forwarding behav-
ior, which is the ultimate problem of NDN FIB entries being
much larger than IP. In addition, for the sake of data trans-
mission, the identifier of transmitted data only needs to be
globally or locally unique.

In summary, the NDN architecture requires a name pro-
cessing mechanism, i.e., the capability to compress names
into grammatical information, thus more appropriate for data
transmission. Lossless data compression in communication
systems is adequate to address such needs. After using the
lossless data compression, we will have the following advan-
tages in NDN:

1) The capability to compress the original name to make

it appropriate for data transmission;

2) A translatable encoding algorithm to assure the
local or global uniqueness of a name;

3) After encoding or compression, the content name has a
unified form, and it is easy to design the general lookup
algorithm of FIB entries.

Therefore, the design proposed in this paper proposes an
encoding mechanism and maps the name to a binary code by
some rules. The encoded name, or code, has a unified form,
which is the new identifier of content in place of the original
name. In the meantime, no matter what naming convention
is, names in the data packet are displayed as a binary string
consisting of 0 and 1. Furthermore, we design a compact
structure and an efficient name lookup algorithm according
to the characteristics of encoded names.

As described above, the unique identifier of the current
NDN packet, the content name, contains abundant pragmatic
information, which is unnecessary for data transmission.
Specifically, as for English, a name is generally composed
of 26 letters, but a valid name only needs part and arranges
them in a fixed order. Compared to invalid names in which
letters are arranged randomly, the valid names constitute a
tiny percentage in the set where each name is composed of
random order letters. Hence, the valid names constitute a
finite rule set. For an NDN name, the length and number of
name components are infinite, meaning that both the name
component set and the name set are infinite sets. However,
according to the characteristics of content names, the name
component should be a finite set, and the length of a name
component should also be limited. It is necessary to encode
and compress names or components for better performance in
data transmission. Therefore, the algorithm presented in this

109835

IEEE Access

T. Niu, F. Yang: Entropy-Based Approach: Compressing Names for NDN Lookup

paper introduces an encoding mechanism to ensure proper
and efficient compression of names and local or global
uniqueness.

To operate the longest prefix match, the level of compres-
sion is the component level instead of the name level. Many
names in a namespace share the same prefix, so hierarchical
names can be aggregated in FIB. At the same time, the exist-
ing URL database, which is generally considered to be the
representation of content names, has the following rules:
1) a name component appears in the same level of multiple
names, and there are frequency differences between them;
2) Some name component only appears following a specific
name prefix; 3) For a specific name prefix, components in
the next level constitute a finite set. Considering that the IP
addresses can be compressed into a dictionary tree [30], also
known as the trie, name sets in the namespace can also be
aggregated into a trie at the granularity of component, where
each node in the trie represents a name component. According
to the characteristics of URL databases, if the name set in the
namespace is constructed as a trie, the child nodes of each
node can form a finite set, and the frequency of these child
nodes is different.

According to the above analysis, a simple encoding algo-
rithm can be obtained. Since the frequency of each name
component following the same prefix is different, the entire
name component set in the namespace can be encoded using
the paradigm Huffman algorithm [31], an improved Huffman
algorithm [7] which is one of the most excellent encoding
algorithms. However, there are some problems with that
encoding algorithm. For example, since the name component
sets in the namespace is huge, the length of a code with low
frequency is longer than the original name before encoding,
and some name component only appears after a specific
prefix. Therefore, it is not appropriate to perform global name
component encoding.

Reconsidering the characteristics of names in the URL
database, if a name prefix can guarantee global uniqueness,
the remaining name components can surmount the globally
unique restriction and vice versa. According to this feature,
in the dictionary tree constructed by name sets in the names-
pace, child nodes under each node constitute a finite set and
are independent of other sets. If this feature is true, the finite
set of name components represented by child nodes under
each node in the dictionary tree can be independently encoded
without encoding the entire set of name components in the
complete namespace. Therefore, the problem that code is too
long after encoding is solved. A rigorous proof of the above
conclusions will be given below.

Suppose a name N can be expressed in the following form:
N = C1/Cy/---/Cy, where C; represents the i-th name
component and belongs to a finite set, and m represents the
number of current components a name has. The information
contained in N can be expressed by Equation (1):

H(N)=H(C,C2--- Cp) ey

where H (-) represents the information entropy function [6].

109836

From Equation (1), the information entropy of a name
can be represented by the joint information entropy of name
components. At the same time, the name components at all
levels are not independent. Therefore, H(C| C; - - - Cp,) can
be expressed in another form, as shown in Equation (2):

H(C\Cy -+ Cyp) = H(C) + H(G|Cy) + - -
+H(Cm|cm—l T CZCI) (2)

Equation (2) can be obtained from the additivity of entropy.
In Equation (2), the right side of this equation is the con-
ditional entropy except for the first term, which means that
except for the first-level name component, the information
quantity of all other name components is the amount of infor-
mation in a prefix. When the prefix provides enough informa-
tion, the information in the prefix is needed exclusively.

Suppose there are two names consisting of two compo-
nents, Ny = A; A>, No = By By, and it is known that
these names are independent of each other, thus, they satisfy
Equation (3):

H(N1N2) = H(Ny) + H(N>) 3)

If the names are represented by name components,
Equation (3) can be expressed as Equation (4):

H(A1A2B1By) = H(A1A2) + H(B1By) @

According to the additivity of entropy, Equation (4) can be
expressed as Equation (5):

H(A1B1) + H(A2B2|A1B1) = H(A1) + H(A2]Ay)
+H(B1) + H(B:2|B1) (5)

The prefixes obtained by known conditions are indepen-
dent of each other, and Equation (6) is available:

H(A1B1) = H(A1) + H(B1) (6)

Comparing two equations above, Equation (7) can be
derived:

H(A2B3|A1B1) = H(A2|A1) + H(B2|B1) @)

Equation (7) shows that if two names with two components
are independent, the name components with the different
prefix are also independent of each other, and this conclusion
can also be extended to the case where the number of name
component is M, so the original proposition is proved. From
this, we can get Theorem 1:

Theorem 1: The finite sets are independent if the prefix is
different.

After the rigorous proof, Theorem 1 can be applied to
the design of the actual encoding algorithm. Our goal is to
compress content names into Huffman codes and use them
to replace names in FIB entries, thus acquiring a better
performance in memory footprint. The specific design and
implementation of this encoding algorithm will be described
thoroughly in the next section. Before that, we will introduce
the paradigm Huffman algorithm briefly for the sake of a deep
comprehension of the encoding mechanism that we design.

VOLUME 9, 2021

T. Niy, F. Yang: Entropy-Based Approach: Compressing Names for NDN Lookup

IEEE Access

A. PARADIGM HUFFMAN ALGORITHM

Paradigm Huffman Algorithm [7] is a mutant of Huffman
Encoding Algorithm [31], which is a kind of ideal encoding
algorithm and approaches the information entropy. Paradigm
Huffman Algorithm does not need a code tree to acquire the
code, but the length of codes, which facilitates calculating
Huffman codes and reduces the size of them.

Q
o

FIGURE 1. A diagram for paradigm Huffman tree.

The Paradigm Huffman Algorithm is obtained by adjusting
the original Huffman code tree [32]. In the paradigm Huffman
code tree, as shown in Fig.1, all the symbols at the same level
are adjusted to the left side and the adjacent. After adjusting,
the paradigm Huffman tree has some significant features [32]:

1) Codes with the same length are adjacent and conse-

quent, between which the difference is 1;

2) The first code C; with length i can be obtained by the

last code C;_ with length i — 1, which is:

Ci=2x(Ci1+1) (8)

According to the features presented above, we can restore
the whole structure of the paradigm Huffman tree by the
lengths of all codes [33], which renders the encoding and
decoding algorithm effective and straightforward.

1) PARADIGM HUFFMAN ENCODING ALGORITHM

The paradigm Huffman code is obtained by the length of
symbols and can be calculated by the frequencies of each
symbol. First, the number of symbols with the same length
should be obtained by the length of each code, denoted as
N;, where i represents the code length. Encoding algorithm
needs two set: B = {base; | i = 1,2,...,L} and O =
{offset; | i = 1,2,...,L}, where L represents the largest
length of all codes. Set B is a collection of codes where each

VOLUME 9, 2021

code is the smallest and first one with its length; set O is a
collection of positions corresponding to the first code with its
length. Set O can be directly determined, while set B can be
calculated by equation 9, which is derived by the features of
paradigm Huffman codes [7]:

base; = 2 x (base;_1 + N;), i=2,3,...,L

base; =0 (9)

Considering the first feature of the paradigm Huffman
algorithm, the code at the current position can be calculated
by the first code with the same length, and distance between
them. With set B and O, the final code of each symbol can be
easily calculated [33] as shown in Equation 10:

code; = index; — offset; + base; (10

Index; represents the original position of symbol i among
all symbols. In Equation 10, index; — offset; means the dis-
tance between current symbol and the first one with the same
length.

2) PARADIGM HUFFMAN DECODING ALGORITHM

The code is important for the paradigm Huffman decoding
algorithm as well. With lengths of original codes, the index
of each symbol can be calculated, thus acquiring the original
symbols [33]. Like the encoding algorithm, set B and O can
be calculated by the lengths of codes. Assuming the current
code is Cj, the corresponding index of this code index; can be
calculated [33] by equation 11:

(11)

The original symbol can be searched in the decoding table
by the index i.

index; = code; — base; + offset;

IV. PARADIGM HUFFMAN TRIE DESIGN

According to the name encoding theory based on entropy in
Section III, we design the Paradigm Huffman Trie structure
called PHT, in which a trie node represents a name compo-
nent, to compress names into paradigm Huffman codes. The
data structure of PHT node is shown in Fig. 2. The PHT node
consists of four fields, which are component name, children,
count and code, and the meanings of these four fields are
shown in Fig. 2 too. In PHT, a route from the root to the leaf
node represents a name. Then, each node will be assigned a
code, and each root-leaf route will be traversed to obtain the
encoded names. This section contains the construction, code
allocation, and code transition algorithms, and the specific
details will be narrated below.

A. CONSTRUCTION

The Construction operation is shown in Algorithm 1 and
Fig. 3. Names should be inserted one by one to construct
a PHT, and the construction is completed when all names
have been inserted. There are two situations when inserting
a name into the PHT: full insertion and partial insertion. Full
insertion means no prefix of the inserting name exists in PHT,

109837

IEEE Access

T. Niu, F. Yang: Entropy-Based Approach: Compressing Names for NDN Lookup

Component
name
Attribute Fields
Children
Paradigm
Huffman
Trie
Node
Count
Auxiliary Fields
Code

FIGURE 2. Trie node diagram.

Algorithm 1 PHT Construction
Input: Name set S
Output: Root node R

Initialize root node R, component queue Q
Initialize pointer p pointing to R
for all name components ¢ € S do
Enqueue c into Q
end for
while O # @ do
Dequeue a name component n from Q
if Search(p.children, n) then
Increment p.count and p — p.children
else
Insert n into p.children and p — p.children
end if
end while

————» Search a node

———=p Insert a node

Search

C) Insert

FIGURE 3. Construction diagram.

so all name components need to be inserted. However, partial
insertion is quite the opposite. A prefix of the inserting name
exists in PHT, so only the remaining components of the name

109838

need to be inserted. A pointer is needed to mark the position
to be inserted. At initialization, the pointer points to the root
node of PHT. Depending on whether it exists, the insertion
can be split into two steps: search and create. The first step is
to determine whether there is a prefix of the inserting name
in PHT, and the second step is to create a new trie node when
the search fails. The granularity of each search and creation
is on the component level.

Each search first accesses the child nodes of the current
node to distinguish whether the inserting name component
already exists in the child nodes. If it does, the count field of
the current name component will be incremented, the pointer
points to the matching child node, and the insertion operation
of the next component level continues.

When the creation begins, a new PHT node will be ini-
tialized, whose fields will be initialized too. The component
name is set as the current name component, and other fields
are set as default values. Then, this new node will be added
to the child nodes of the current node and make the pointer
points to the new node. After that, the creation operation
completes.

B. CALCULATION AND ASSIGNMENT OF NAME CODE
According to the theory in Section III, the code set should
be limited to a finite name set where all components have
a common prefix. Therefore, when calculating the code of a
specific component, it should be calculated at its parent node,
and then the codes are assigned to each child node. Since all
the nodes need encoding in PHT, the entire PHT needs to
be traversed. The traversal method adopted by this algorithm
is Breadth-First Search (BFS), and the encoding method is
paradigm Huffman coding presented in Section III. The spe-
cific calculation and allocation are shown in Algorithm 2.

Algorithm 2 Calculation and Assignment

Input: Root node R
QOutput: None

Initialize component queue Q
Initialize pointer p pointing to R
Enqueue R into Q
while O # @ do
Dequeue a node n from Q
for all child node ch € n.children do
Put ch.count into a set freqSet
end for
lenSet = LengthCalculation(freqSet)
codeSet = ParadigmHuffmanEncoding(lenSet)
for all code ¢ € codeSet do
Assign ¢ to child node correspondingly
end for
for all child node ch € n.children do
Enqueue ch into Q
end for
end while

VOLUME 9, 2021

T. Niy, F. Yang: Entropy-Based Approach: Compressing Names for NDN Lookup

IEEE Access

For a traversal process, it is firstly distinguished whether
the node is a leaf node. If it is not, traverse will continue;
if it is, all child nodes of the current node are traversed to
obtain the count field in each child node and store them
as frequency set. The frequency set, length set, and codes
correspond to the child nodes through the subscript. The
length of a code can be calculated according to the frequency
set and stored in the length set. In the meantime, codes can
be calculated according to the length set. Finally, the codes
are sequentially assigned to the code field for all child nodes
according to the subscript. After traversing all the nodes in
PHT, each node corresponding to a name component has its
code, whose length is much shorter than that of the original
name component.

C. CODE TRANSITION

Because the codes of name components store at PHT nodes,
we need to traverse and record every root-leaf route to acquire
the intact encoded names, transitioning from original name
to code. The traversal method adopted by this algorithm is
Depth First Search (DFS) for accessing the leaf node as soon
as possible. In the meantime, we choose the stack to record
each root-leaf route to ensure the integrity of each encoded
name with a common prefix.

Algorithm 3 Code Transition
Input: Root node R
Output: Name code N
Initialize stack K
Push R into K
while K # @ do
Pop a node n from K
for all child node ¢ € n.children do
CodeTransition(c)
end for
end while
Print route

The code transition process is shown in Algorithm 3. The
algorithm runs a DFS operation on the entire PHT, where the
DFS operation is implemented recursively. A node is pushed
into the stack in a code transition process, which records each
root-leaf route, and the route of its child nodes is recursively
output. The recursive terminal condition is that a leaf node
is addressed. The top element of the stack, which is the leaf
node that has been output, is deleted when the recursion
terminates. When addressing the leaf node, the route is output
according to the stack. All elements in the stack are popped
and saved to an array, but the first item in the array is the
original top of the stack, which is the last name component,
so the array needs to be inverted to ensure the order of a
name. Finally, each item in the array is concatenated into a
string, thus composing an encoded name. After completing
one transition, the algorithm will proceed to the next recursive
operation.

VOLUME 9, 2021

V. COMPACTTRIE DESIGN AND LOOKUP ALGORITHM
According to the encoding algorithm in IV, the name com-
ponents are encoded by the paradigm Huffman algorithm,
and each name component also satisfies the characteris-
tics of paradigm Huffman codes. Therefore, the features of
paradigm Huffman codes can be considered when design-
ing the lookup algorithm for better performance on memory
footprint.

A. COMPACTTRIE DATA STRUCTURE

The data structure of the lookup algorithm is based on the dic-
tionary tree. Fig. 4 shows the data structure inside a Compact-
Trie node. The base and offset fields store the encoding and
decoding information of the paradigm Huffman algorithm;
the output_flag field represents the forwarding information
corresponding to a prefix, and if it does not exist, the default
value of this field is O; the children field represents the set of
child nodes in current node; the len_max and child_max fields
represent the maximum range of the base/offset fields and the
children field, respectively. There is no need for storing the
encoded name component because combining the base, offset
and children fields by some rules can acquire the original
name component. The function and usage of each field will
be elaborated in the following part.

Base
Auxiliary Offset
Data Fields
Len_max
Compact Child_max

Trie
Node

Children

Field

FIGURE 4. Compacttrie node diagram.

Base, offset: The base field represents the smallest code
in the set of codes of different lengths, and the offset field
represents the relative position of the smallest code in the
entire code set, both of which are accessed by the code length.
At the same time, these two fields store the information of
child nodes, so matching a component at a certain level means
finding the position of a node at the next level. With base and
offset field, the original position of a child node correspond-
ing to the next name component can be calculated based on
the principles in Section III. In other words, decoding the code
of a name component means a search on FIB entries in lookup
algorithms.

Len_max, child_max: Considering that the fields in Com-
pactTrie nodes need to be adjusted dynamically and updated
frequently, the base, offset, and children fields are all

109839

IEEE Access

T. Niu, F. Yang: Entropy-Based Approach: Compressing Names for NDN Lookup

constructed as dynamic lists. When added or deleted, the list
is expanded or compressed, so two parameters are needed to
represent the size of dynamic lists for adjustment and update.
As can be seen from Section III, the size of base and offset
field are the same, so the len_max field can be used by them
together. The child_max field represents the size of children
field. The fields presented above are called auxiliary data
fields.

B. INSERTION

The insertion operation can be split into two parts: the inser-
tion of CompactTrie nodes and the update of fields inside
the nodes. The insertion of a node is relatively simple and
similar to the construction operation in Section IV, as shown
in Algorithm 4. When inserting a name, there are two types
of insertion: full insertion and partial insertion. Full insertion
means no prefix of the inserting name exists in CompactTrie.
Thus, a list of new CompactTrie nodes will be created, and
each component will be inserted; partial insertion means a
prefix of the inserting name already exists in CompactTrie.
At this point, the action is to update the fields of nodes in the
prefix and insert the suffix of that name, specifically, create
a list of new CompactTrie nodes corresponding to the name
components in that suffix. When all name components have
been inserted, this insertion operation ends.

Algorithm 4 Insertion
Input: Name N = {c;|li = 1,2, ..., L}, root node R
Output: None

Initialize a node pointer p pointing to R
for all name component ¢ € N do
Calculate the length [of ¢: | = CalculateLength(c)
Calculate the subscript i of c:
i = CalculateSubscript(l)
Adjust the auxiliary and children fields of current node:
Adjust(p)
if p.children; = & then
Initialize a new node p.children;
end if
p = p.children;
end for

Since each node in CompactTrie contains the information
of its child nodes, when a certain level of components is
inserted, the information of the corresponding parent node
will be updated. The update of fields inside a node only
involves four auxiliary data fields and children field which
represents the set of child nodes. The update of auxiliary data
fields and children field will be presented below.

1) AUKXILIARY DATA FIELDS

When updating the auxiliary data fields, two values will
be calculated: the length of an encoded component and the
position of a child node according to Equation (11). First,
the update condition of the len_max field is that the length
of an encoded component is larger than the len_max field of

109840

the current node, and if the condition is met, the len_max field
will be replaced by this value.

Updates of base and offset depend on the length of an
encoded component which is defined as len, and its unit is
bit. On account of dynamic updates for auxiliary data fields,
there will be four states:

1) The base and offset fields of current len do not exist,

so the base and offset fields need to be updated;

2) The current encoded component is smaller than the
base value with same len, so the base and offset fields
need to be updated;

3) The current encoded component is larger than every
value with same len, so the offset field needs to be
updated;

4) The base and offset fields do not need to be updated;

Considering the circumstances presented above, we define
a variable len_offset to record the distance that data in offset
and children fields need to be moved. The initial value of
len_offset is zero, and its value are determined when adjusting
the base and offset fields. For the first three cases, the core
issue is the adjustment of base and offset fields, and len_offset
represents the scale of the expansion when the children field
needs to expand. Since the original children field is compact
between codes with different lengths, adjusting the base field
and the offset field is necessary when a new child node is
inserted.

Under the first circumstance, as shown in Fig. 5, the base
and offset fields in a node of specific length are null, so the
base of that specific length will be set as the code value.
As for the update of offset, owing to the characteristics of
paradigm Huffman encoding algorithm [32], the offset of that
specific length is set to the position of the first code in the next
bunch of offset values with longer length. In the meantime,
len_offset will be set as 1, because the distance of adjacent
code with different lengths is 1.

Under the second circumstance, as shown in Fig. 5b,
the code of the current component is the first and smallest
in the bunch of values with the same length, so the original
base of specific length will be replaced by the current code.
Besides, the offset does not need to be updated because the
position of the first code of the specific length does not
change. Then the len_offset is set to the original base with
specific length minus code of current component.

Under the third circumstance, as shown in Fig. 5c, the code
is the biggest among base of specific length, so both the base
and offset fields do not need to be updated. The only thing
to do is set the len_offset as the code of current component
minus the largest base value of specific length.

Because codes with the same length are sparse, given the
last circumstance, the current component can be inserted
directly without adjusting base and offset fields. In this case,
len_offset remains the same and children field do not need to
expand.

Owing to the movement of child nodes under the first three
circumstances, every offset value whose length is larger than
the current specific length needs to be added len_offset.

VOLUME 9, 2021

T. Niy, F. Yang: Entropy-Based Approach: Compressing Names for NDN Lookup

IEEE Access

base[len-1] base[len] base[lent1]

]

New node ‘ H

base[len-1]

=

base[len] base[len] ., base[lent+1]

Original

baseflen] baseflen]

New node

len_offset

(a) minimum insertion

FIGURE 5. Auxiliary fields adjustment in insertion.

Search

E—
Route

Node

Name
Component

Search
Process

FIGURE 6. Lookup process.

2) CHILDREN FIELD

Before adjusting the children field, the position of the child
node, which corresponds to the inserting name component,
has been calculated, and there are two results. The first one is
that the result of the calculation is larger than the child_max
field which is the maximum position of this node. When it
happens, the child_max field is set to the position of current
node and children field need to expand until its size equals
to child_max. Another situation is that the children field does
not need to expand. The variable len_offset is the distance
that all the nodes whose subscripts are larger than that of the
current node need to move. After this action, the current node
will be inserted to its position calculated above.

C. LOOKUP
The first input parameter of the lookup algorithm is the root
node of CompactTrie, which represents the entrance of it;
the second parameter is the name that needs to be searched.

First, the lookup algorithm declares a node pointer, respon-
sible for tracking the path of a lookup. The entire algo-
rithm maintains a loop and searches a matching component
cyclically. In each loop, the length of the current encoded
component is first obtained, facilitating the calculation of
the child node subscript in the next step. Then, according to
Equation (11), the calculation for the subscript of a child node
is performed, and then this child node is accessed. If the child
node exists, the node pointer moves to this child node and the
search for the next component will continue; if the child node
does not exist, according to the rule of LPM, the algorithm
will directly return the forwarding information in the current
node. Fig. 6 shows an example of lookup operation.

During each loop, the algorithm will calculate two param-
eters: the length of an encoded component and the subscript

VOLUME 9, 2021

(b) minimum update

Insert
Insert

len_offset

(c) maximum insertion

Algorithm 5 Lookup
Input: Name N = {c;j|li = 1,2, ..., L}, root node R
Output: Forwarding information Fw

Initialize a node pointer p pointing to R
for all name component ¢ € N do
Calculate the length [of ¢: [= CalculateLength(c)
Calculate the subscript i of c:
i = CalculateSubscript(l)
if p.children; = @ then
Output p.fwd as Fw
else
p = p.children;
end if
end for
Output p.fwd as Fw

of a child node. If these two parameters exceed their ranges,
the lookup fails. Meanwhile, if the loop ends at the root node,
the lookup fails too. From the procedure of Algorithm 5,
we can figure that: the computational complexity inside the
node is O(1), and outside the node depends on the height of
CompactTrie, which means the overall computational com-
plexity is O(h), where h represents the height of CompactTrie.

D. DELETION

Deletion also requires two levels of operation: the deletion of
nodes in the global CompactTrie and the update of auxiliary
data fields and children field inside the nodes. Since the
deletion of a name depends on the premise that the name
exists in the table, the recursive method is used to delete a
name in the CompactTrie. The current name component is
searched for each recursion, as described in Section V-C. The
recursive termination condition is that all name components
are found.

The deletion algorithm is shown in Algorithm 6. The global
deletion of a node is implemented by the recursive method,
and the position of the next name component is searched in
each recursion. If the position of the next name component
exists, the child node in this position is recursively deleted; if
it does not exist, this name does not exist in the table, and the
deletion operation fails.

109841

IEEE Access

. Niu, F. Yang: Entropy-Based Approach: Compressing Names for NDN Lookup

== base[len 1] base[len] base[len+1]

o

deote | H | -]

|
|
l Delete

len_offset

-
|
|
[

(a) solidarity deletion

f—

| } base[len] basn,[lcn] Deleted basc[lcn] x base[len+1]

!
Node to be ‘———\‘r———\r— _
deleted b w) H

Delete

len_offset

(c) maximum deletion

FIGURE 7. Auxiliary fields adjustment in deletion.

Algorithm 6 Deletion
Input: Name N = {c;li=1,2,...,
Output: None

L}, root node R

Initialize a node pointer p pointing to R
for all name component ¢ € N do
Calculate the length [of ¢: I = CalculateLength(c)
Calculate the subscript i of c:
i = CalculateSubscript(l)
if p.children; # & then
Recursively delete p.children;
Adjust the auxiliary and children fields of current
node: Adjust(p)
else
Deletion fails
end if
end for
Recursion returns

Each recursion will return a value that represents the num-
ber of child nodes of the current node. When deleting the
current node, the number of child nodes is acquired. If it is
not 1, it means that the prefix of the current name component
is also the prefix of other names, and these nodes cannot
be deleted. When processing the leaf node, the search is
successful, and the deletion can be started.

After acquiring the number of child nodes, updating aux-
iliary data fields and the child node field will commence.
Deletion operation compresses children field, so we also

109842

[base[len-1] Deleted New

| 1 base[len] base[len]
L_ _l / / /

e - AT -]
deleted i [

len_offset

(b) minimum deletion

base[len] base[len]n.x base[len+1]

e

Delete

(d) normal deletion

define a variable to maintain the distance that data need to
move for children field, named as len_offset. The initial value
of len_offset is zero, and it is determined when adjusting base
and offset fields. The update of auxiliary data fields and child
node field will be presented below.

1) AUXILIARY DATA FIELDS

The first auxiliary data field that needs adjusting is len_max.
The conditions of adjusting the len_max field are harsh,
including: 1) the deleted name component has the maximum
length among all components at the same level; 2) the deleted
name component has the maximum subscript; 3) with the
maximum length, there is only one name component, and it is
the deleted one. The new len_max will be set as the maximum
length after deleting the current name component. As for the
base and offset fields, there are three circumstances when
updating them:

1) Delete the first component of a specific length, which is
the minimum code. The base, offset and children fields
need to be adjusted;

2) Delete the last component of a specific length, which
is the maximum code. The children field needs to be
adjusted;

3) All fields do not need to be updated;

Under the first circumstance, as shown in Fig. 7a, if the
deleted name component is the only one of specific length,
the base and offset fields of such length will be eliminated
and len_offset will be set as 1. Otherwise, as shown in Fig. 7b,
the base of specific length is set as the first value that is

VOLUME 9, 2021

T. Niy, F. Yang: Entropy-Based Approach: Compressing Names for NDN Lookup

IEEE Access

TABLE 1. Dataset specification.

Dataset/10% 1 2 3

4 5 6 7 8 9 10

Average length of names 68.42 29.79 47.55
Average length of components 13.81 5.37 10.14
Average number of components 4.82 471 4.94

48.85 58.73 55.11 51.18 49.23 50.74 69.69
8.92 16.68 12,54 11.75 1147 1222 2033
5.12 3.85 4.32 4.17 4.19 4.18 3.43

bigger than the deleted one, the offset keeps constant, and
the len_offset is set as the subtraction of new base value and
original base value of specific length.

Under the second circumstance, as shown in Fig. 7c,
the base and offset fields do not need to be updated, and the
len_offset will be set as the subtraction of deleted code and
the first code that is smaller than the deleted one.

For the last circumstance, as shown in Fig. 7d, all fields do
not need to be updated. After adjusting all the fields, all the
offset values whose lengths are larger than the current length
need to subtract the len_offset to keep the compactness of
CompactTrie structure.

2) CHIDREN FIELD

The movement of children field depends on whether the
len_offset is modified. If len_offset remains zero, there is
no operation of children field. Otherwise, all nodes after
the deleted node need to move forward by len_offset, and
child_max need to subtract the same value too.

VI. UPDATE POLICY

On account of frequent content updating, an update policy
is needed to guarantee the accuracy of name codes which is
calculated by the PHT encoding algorithm, as shown in Fig. 8.
When a Content Provider adds or deletes a content, all name
codes will be recalculated by the PHT encoding algorithm,
plus the added or minus the deleted content names. Consider-
ing the independence between different levels of name com-
ponents, adding or deleting a content name does not impact
other name codes, so the content can be updated by its own
Content Provider without notifying other Content Providers.
After updating the name codes, the Content Provider will
encapsulate the new name codes into an update message and
deliver it to adjacent nodes, in which the FIB entries will
be updated according to the new name codes. Meanwhile,
each node will deliver this update message to its adjacent
downstream nodes to renew their own FIB entries until they
finish updating. The update message will carry a timestamp
field to avoid duplicate updates.

Subscriber

Update
Message

Publisher

Switch

FIGURE 8. Update policy.

VOLUME 9, 2021

= original name
compressed name

Frequencies

0.2 1

0.0 = L .
10t
Length of a name

FIGURE 9. Comparison of original and compressed names.

VII. EVALUATION

A. EXPERIMENT SETUP

Dataset: we use a database provided by Sogou Labs [34],
including millions of Internet URLs, to test the performance
of our design. Moreover, in order to approach the format
of NDN names according to NDN naming conventions,
we exploit an NDN name generator called NameGen [35],
to convert the URLs into appropriate NDN names. NameGen
is a name generating tool by using a Markov model for learn-
ing real datasets, and it can generate a huge dataset having
the same characteristics of a given dataset. The names gen-
erated by NameGen are hierarchical names with a common
prefix, which satisfies our demands on the lookup algorithm.
We generated many datasets, including different number
of NDN names, to test the adaptability and flexibility of
algorithms. The specification of these datasets are shown
in Table 1.

Hardware: our test runs on a virtual machine with a
3.40 GHz Intel i5-7500 4-core CPU and 4 GB of RAM.
All 4 cores share 1 MB of L2 cache and 6 MB of L3 cache.
All algorithms are implemented by the C programming lan-
guage. The testing method counts the completion time with
different datasets and calculates the memory footprint of each
lookup algorithm.

B. COMPRESSION PERFORMANCE

The compression performance is mainly reflected on the ratio
of encoded name size to original name size. Specifically,
we focus on the Average Name Compression Rate, denoted
as ANCR, and the Distribution of Component Compression
Rate, denoted as DCCR. These two indicators are used to
illustrate how efficient our design is from a macro and micro
perspective, respectively. Fig. 9 shows the ANCR curves

109843

IEEE Access

T. Niu, F. Yang: Entropy-Based Approach: Compressing Names for NDN Lookup

with different databases, where the x-axis marks the number
of name components in different databases, and the y-axis
marks the ANCR. In Fig. 9, the Average Compression Rate
is derived from Equation (12):

ANCR = len(name) x 8 = len(code)

CCR = len(component) x 8 - len(code) 12)

The granularity of measuring the size of both original and
encoded names is bit level. For a character in an original NDN
name, it is typically 8-bit long encoded by ASCII and longer
by other code systems, which means the memory footprint of
an NDN name is at least 1 Bytes multiplied by the length of
this name; for an encoded name which is a code generated by
our design, the memory footprint of this code is its own size,
the bit level. Simultaneously, if the code is not 8-bit aligned,
it will be padded zeros before the Most Significant Bit (MSB)
to guarantee the efficiency of memories.

In Fig. 9, we randomly choose a dataset generated above
to find out the difference of original and compressed names,
thus evaluating the performance of PHT encoding algorithm.
From Fig. 9, the length of original names usually exceeds 10,
but that of compressed names belongs to around 5, which
shows that our design can compress a content name into a
code with a much smaller size efficiently. A conclusion can
also be speculated that the length of compressed names is
approximately equal to the number of components.

251

-

20 A

154

soso0000000 o

P2 124
P22 222 22
P2 224

oo
oo
|
1

Compression Rate

—
v 15
|—D]—| sooeee o

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k

Dataset

FIGURE 10. Distribution of component compression rate.

Fig. 10 shows the statistical features with all datasets by
box plot, where the x-axis marks the dataset size and the
y-axis marks the component compression rate. In Fig. 10,
the compression rate of each component is derived from PHT
structure, where both original and encoded names are stored,
and it is easy to calculate the component compression rate.

In Fig. 10, although the datasets are generated randomly,
and the sizes of them are distinct, the median compression
rates of different datasets are around 5, and the 25th percentile
is about 3, which means the majority of content name com-
ponents are compressed efficiently. Compared with Fig. 9,
this one shows the compression performance from a macro

109844

aspect to acquire the global perspective of the PHT encoding
algorithm. Consequently, Fig. 10 can show the stability and
flexibility of our PHT Encoding algorithm, no matter what
datasets are used.

C. LOOKUP PERFORMANCE

There are usually two indices to measure the lookup per-
formance: delay of one lookup operation and memory foot-
print of FIB entries. Both of them are quantified for time
and space complexity. In this part, we evaluate our Com-
pactTrie design, compared with the other two hash-based
lookup algorithms [15], [16] and two trie-based methods
[13], [29], to examine and analyze the performance of Com-
pactTrie. Fig.11 shows the comparison of lookup delay
between our design and the other four algorithms, where the
x-axis marks the number of test datasets and the y-axis marks
the average lookup delay whose unit is microsecond. We use
10,000 names selected randomly from the test datasets to
acquire multiple samples of time overhead for each lookup
operation and calculate the average value of those samples to
obtain the average delay. In Fig. 11, the average lookup delay
of CompactTrie lookup operation is lower than two hash-
based algorithms and pNPT method and close to NameTrie.
Meanwhile, the average delay of DosResistent proliferates
with the growth of dataset size, whereas the other four meth-
ods, including ours, grow more smoothly. In general, Our
design can keep the delay of one lookup operation relatively
low and vary gently as the size of the dataset grows.

~8- CompactTrie

=~ BinaryTree

~e— DosResistant
pNPT

4 == NameTrie

250 1

= = N
) I3 I}
S o S

Average lookup delay / ms

o
S
s

Different size databases / Number of names * 10

FIGURE 11. Comparison of lookup delay.

The same conclusion can be obtained by analyzing the
principle of each algorithm. The time complexity of our
design consists of two parts: global search of each name
component and local calculation of next name component’s
position, as shown in Table 2. Considering the time com-
plexity of the local calculation is O(o + ¢ — b) as described
in Section V thoroughly and all those three parameters are
constant, the full cost of our design is the global search, and
its time complexity is O(h). In other words, the frequency of
memory access relies on the number of name components.
At the same time, neither does our design involve comparing

VOLUME 9, 2021

T. Niy, F. Yang: Entropy-Based Approach: Compressing Names for NDN Lookup

IEEE Access

TABLE 2. Complexity analysis of compacttrie lookup.

Definition
b Base
o Offset
h Trie Depth
Time Complexity
Inner-node Calculation O(o+c—0)
Global Search O(h)
Overall O(h*(o+c—0))

characters, nor does it store the corresponding component in
the trie node, which will also reduce the lookup delay. For the
other two hash-based algorithms, although the time complex-
ity of hash table lookup is O(1), an extra structure is needed
to satisfy the demand of LPM, thus requiring the extra cost
for each lookup. Comparing characters is also performed in
these hash-based algorithms for each lookup operation, so the
total time complexity of hash-based algorithms is relatively
high. Meanwhile, the time complexity of the other two trie-
based algorithms relatively low because these two methods
take great effort to optimize the structure and minimize the in-
node calculation as our work did. For example, minASCII in
NameTrie exploits unused ASCII code to represent common
NDN symbols, and priority trie in p-NPT replaces blank
nodes with leaf nodes by some rules.

g 4 —#— CompactTrie
== BinaryTree

=~ DosResistant
71 PNPT
=&~ NameTrie

Memory footprint / MB

T T T T T
2 4 6 8 10
Different size databases / Number of names * 10*

FIGURE 12. Comparison of memory footprint.

Fig.12 shows the comparison of memory footprint among
CompactTrie and the other four algorithms. The memory
footprint of the DOS-resistant and Binary Tree methods is
bigger than the other three algorithms because the size of
the hash table needs to extend when a name is inserted to
the data structure or the size of datasets grows. Especially
for DOS-resistant lookup algorithm, when the component
number of an inserted name is larger than existing ones inside
the hash table, or a virtual prefix needs to be generated,
the size of the hash table dilates. In other words, the memory
is pre-allocated in hash-based algorithms, and it has to be

VOLUME 9, 2021

expanded when the existing memory is insufficient, which is
wasteful and not flexible. For our CompactTrie design and
other two trie-based methods, the size of memory footprint is
relatively low, due to the characteristics of the trie structure.
Specifically, NameTrie uses the minASCII encoding mecha-
nism, and pNPT uses the priority trie to reduce the memory
footprint. As for our CompactTrie design, the auxiliary data
fields and children field in CompactTrie nodes can also help
lower the memory footprint. In conclusion, trie-based algo-
rithms can provide a lower memory footprint, and our design
is efficient at this point.

Our design is better than the other two hash-based lookup
algorithms on both lookup delay and memory footprint and
other trie-based methods on memory footprint through two
comparisons. Therefore, our CompactTrie design accelerates
the forwarding of content and reduces the size of name FIB
entries. In summary, our design takes both time and space
complexity into account and guarantees them at a low level.

VIil. CONCLUSION

This paper mainly studies an NDN name encoding algorithm
and a relative optimized lookup method with low time and
space complexity. The traditional NDN lookup algorithm
focuses on the forwarding and lookup performance, which
sacrifices space in exchange for time. Still, our strategy can
improve the performance both on lookup delay and memory
usage. The size of NDN FIB entries is much larger than
that of IP, so the memory footprint problem will be more
severe. Considering the validity of data transmission, the PHT
and CompactTrie structure designed in this paper exploits
an encoding mechanism and fundamentally reduces the size
of FIB entries while still maintaining a high performance
relatively.

After introducing the encoding mechanism, not only the
size of FIB entries is reduced, but also the high scalability
and flexibility are kept. At the same time, the encoded content
names all have consistent characteristics, regardless of differ-
ent naming conventions. Given that the current bottleneck of
NDN is the soaring size of FIB entries, our design solves this
problem and provides high forwarding performance, which
allows the NDN architecture to evolve more rapidly. It is
also hopeful to replace the traditional TCP/IP networks by
providing a more flexible and efficient forwarding engine for
current network applications.

However, our design still needs to be improved from many
aspects and treat as our future work. First, CompactTrie still
exploits pointers as the connection between trie nodes and the
pointer is wasteful for memory and hard to be implemented.
Using another data structure to store edge information in the
trie is a good idea, and we would design and implement it
in the future. Second, our whole design still needs a better-
established update policy to adapt to the fast update of content
names. In this paper, we focus on the design of name encoding
and the relative lookup algorithm, so the update policy is quite
easy. Consequently, a perfect update policy will be regarded
as our future work.

109845

IEEE Access

T. Niu,

F. Yang: Entropy-Based Approach: Compressing Names for NDN Lookup

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]
[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. C. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 6673, Jul. 2014.
G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos,
X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, ““A survey of information-
centric networking research,” IEEE Commun. Surveys Tuts., vol. 16, no. 2,
pp. 1024-1049, May 2014.

G. Rétvgri, J. Tapolcai, A. Kérosi, A. Majdan, and Z. Heszberger, “Com-
pressing IP forwarding tables: Towards entropy bounds and beyond,” ACM
SIGCOMM Computer Commun. Rev., vol. 43, no. 4, pp. 111-122, 2013.
H. Zhian, M. Bayat, M. Amiri, and M. Sabaei, “Parallel processing priority
trie-based IP lookup approach,” in Proc. 7th Int. Symp. Telecommun. (IST),
Sep. 2014, pp. 635-640.

M. Zec, L. Rizzo, and M. Mikuc, “DXR: Towards a billion routing lookups
per second in software,” ACM SIGCOMM Comput. Commun. Rev., vol. 42,
no. 5, pp. 29-36, Sep. 2012.

C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, no. 3, pp. 379—423, Jul./Oct. 1948.

E. S. Schwartz and B. Kallick, “Generating a canonical prefix encoding,”
Commun. ACM, vol. 7, no. 3, pp. 166169, Mar. 1964.

Z.Li, Y. Xu, B. Zhang, L. Yan, and K. Liu, “Packet forwarding in named
data networking requirements and survey of solutions,” IEEE Commun.
Surveys Tuts., vol. 21, no. 2, pp. 1950-1987, 2nd Quart., 2019.

Y. Wang, H. Dai, J. Jiang, K. He, W. Meng, and B. Liu, “Parallel name
lookup for named data networking,” in Proc. IEEE Global Telecommun.
Conf. (GLOBECOM), Dec. 2011, pp. 1-5.

Y. Wang, K. He, H. Dai, W. Meng, J. Jiang, B. Liu, and Y. Chen, ““Scalable
name lookup in NDN using effective name component encoding,” in Proc.
IEEE 32nd Int. Conf. Distrib. Comput. Syst., Jun. 2012, pp. 688—697.

Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu, W. Meng, H. Dai,
X. Tian, Z. Xu, and H. Wu, “Wire speed name lookup: A GPU-based
approach,” in Proc. 10th Symp. Netw. Syst. Design Implement. (NSDI),
2013, pp. 199-212.

T. Song, H. Yuan, P. Crowley, and B. Zhang, ““Scalable name-based packet
forwarding: From millions to billions,” in Proc. 2nd ACM Conf. Inf.-
Centric Netw., Sep. 2015, pp. 19-28.

C. Ghasemi, H. Yousefi, K. G. Shin, and B. Zhang, “A fast and memory-
efficient trie structure for name-based packet forwarding,” in Proc. IEEE
26th Int. Conf. Netw. Protocols (ICNP), Sep. 2018, pp. 302-312.

O. Karrakchou, N. Samaan, and A. Karmouch, “FCTrees: A front-coded
family of compressed tree-based FIB structures for NDN routers,” IEEE
Trans. Netw. Service Manage., vol. 17, no. 2, pp. 1167-1180, Jun. 2020.
W. So, A. Narayanan, and D. Oran, “Named data networking on a router:
Fast and DoS-resistant forwarding with hash tables,” in Proc. Archit. Netw.
Commun. Syst., Oct. 2013, pp. 215-226.

H. Yuan and P. Crowley, “Reliably scalable name prefix lookup,” in
Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS), May 2015,
pp. 111-121.

R. Shubbar and M. Ahmadi, “Efficient name matching based on a fast two-
dimensional filter in named data networking,” Int. J. Parallel, Emergent
Distrib. Syst., vol. 34, no. 2, pp. 203-221, Mar. 2019.

Y. Wang, Z. Qi, H. Dai, H. Wu, K. Lei, and B. Liu, “Statistical optimal
hash-based longest prefix match,” in Proc. ACM/IEEE Symp. Archit. Netw.
Commun. Syst. (ANCS), May 2017, pp. 153-164.

H. Khelifi, S. Luo, B. Nour, and H. Moungla, ‘A name-to-hash encoding
scheme for vehicular named data networks,” in Proc. 15th Int. Wireless
Commun. Mobile Comput. Conf. (IWCMC), Jun. 2019, pp. 603-608.

J. Hu and H. Li, “A composite structure for fast name prefix lookup,”
Frontiers ICT, vol. 6, p. 15, Aug. 2019.

S. Feng, M. Zhang, R. Zheng, and Q. Wu, “A fast name lookup method
in NDN based on hash coding,” in Proc. 3rd Int. Conf. Mechatronics Ind.
Inform. (ICMII). Atlantis Press, 2015, pp. 575-580.

D. Perino, M. Varvello, L. Linguaglossa, R. Laufer, and R. Boislaigue,
“Caesar: A content router for high-speed forwarding on content names,” in
Proc. 10th ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS), 2014,
pp. 137-148.

Z.Li,Y. Xu, K. Liu, X. Wang, and D. Liu, “5G with B-MaFIB based named
data networking,” IEEE Access, vol. 6, pp. 30501-30507, 2018.

H. Dai, J. Lu, Y. Wang, T. Pan, and B. Liu, “BFAST: High-speed and
memory-efficient approach for NDN forwarding engine,” IEEE/ACM
Trans. Netw., vol. 25, no. 2, pp. 1235-1248, Apr. 2016.

K. Chan, B. Ko, S. Mastorakis, A. Afanasyev, and L. Zhang, “Fuzzy inter-
est forwarding,” in Proc. Asian Internet Eng. Conf., Nov. 2017, pp. 31-37.

109846

(26]

(27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

o

J. Kim, M.-C. Ko, M. S. Shin, and J. Kim, “Scalable name lookup for
NDN using hierarchical hashing and patricia trie,”” Appl. Sci., vol. 10, no. 3,
p. 1023, Feb. 2020.

B. Nour, K. Sharif, F. Li, H. Moungla, and Y. Liu, “A unified hybrid
information-centric naming scheme for IoT applications,” Comput. Com-
mun., vol. 150, pp. 103-114, Jan. 2020.

T. Liang, J. Shi, and B. Zhang, “On the prefix granularity problem in ndn
adaptive forwarding,” in Proc. 7th ACM Conf. Inf.-Centric Netw., 2020,
pp. 41-51.

J. Seo and H. Lim, “Bitmap-based priority-NPT for packet forward-
ing at named data network,” Comput. Commun., vol. 130, pp. 101-112,
Oct. 2018.

P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at
memory access speeds,” in Proc. Conf. Comput. Commun., 17th Annu.
Joint Conf. IEEE Comput. Commun. Societies Gateway 21st Century
(IEEE INFOCOM), vol. 3, Mar. 1998, pp. 1240-1247.

D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proc. Inst. Radio Eng., vol. 40, no. 9, pp. 1098-1101, Sep. 1952.
A. Moffat and A. Turpin, “On the implementation of minimum redundancy
prefix codes,” IEEE Trans. Commun., vol. 45, no. 10, pp. 1200-1207,
Oct. 1997.

A. Moffat and J. Katajainen, “In-place calculation of minimum-
redundancy codes,” in Proc. Workshop Algorithms Data Struct. Springer,
1995, pp. 393-402.

Sogou T-Rank. Accessed: Oct. 9, 2019. [Online]. Available: http://www.
sogou.com/labs/resource/t-rank.php

C. Ghasemi, H. Yousefi, K. G. Shin, and B. Zhang, “On the granularity
of trie-based data structures for name lookups and updates,” IEEE/ACM
Trans. Netw., vol. 27, no. 2, pp. 777-789, Apr. 2019.

M. Fukushima, A. Tagami, and T. Hasegawa, “Efficiently looking up non-
aggregatable name prefixes by reducing prefix seeking,” in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Apr. 2013,
pp. 340-344.

H. Yuan, P. Crowley, and T. Song, “Enhancing scalable name-based for-
warding,” in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS),
May 2017, pp. 60-69.

TIANYUAN NIU received the B.S. degree in
information and communication engineering from
Beijing University of Posts and Telecommunica-
tions, Beijing, China, where he is currently pur-
suing the Ph.D. degree. His research interests
include future network architecture, Named Data
Networking, cache mechanism in future network
device, and P4.

FAN YANG received the Ph.D. degree from Bei-
jing University of Posts and Telecommunications.
He is currently a Lecturer with Beijing Univer-
sity of Posts and Telecommunications. He has
participated in the National 973 Planning Project
“Research on Service-Oriented Future Inter-
net Architecture and Mechanism,” the National
863 Project “Service-Oriented SDN Architec-
ture and Key Technology Research” and ““Future
Network System and Structural Research for

Service-Oriented Resource Intelligent Scheduling” funded by the National
Key Laboratory. He presides over German Telecom and Huawei’s next-
generation IP routing equipment research, Huawei ultra-high-speed network
processor search algorithm research, and other enterprise projects. He has
published more than 30 SCI/EI articles and national invention patents. His
research interests include software defined network and high-performance
routing and switching technologies. He has won the 2013 National Technol-
ogy Contribution Individual Award, the Huawei Golden Network Award, and
the China Communication Society Science and Technology First Prize.

VOLUME 9, 2021

