
Received July 2, 2021, accepted July 29, 2021, date of publication July 30, 2021, date of current version August 10, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3101638

Runtime Randomized Relocation of Crypto
Libraries for Mitigating Cache Attacks
YOUNGJOO SHIN 1 AND JOOBEOM YUN 2
1School of Cybersecurity, Korea University, Seoul 02841, Republic of Korea
2Department of Computer and Information Security, and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Republic of Korea

Corresponding author: Joobeom Yun (jbyun@sejong.ac.kr)

This research was supported by a National Research Foundation of Korea (NRF) grant, funded by the Korean government (MSIT) (No.
2020R1F1A1065539). This work was supported by an Institute of Information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korean government (MSIT) (No. 2019-0-00533, Research on CPU vulnerability detection and validation), and
was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support
program(IITP-2021-2018-0-01423) supervised by the IITP.

ABSTRACT Crypto libraries such as OpenSSL and Libgcrypt are essential building blocks for implementing
secure cloud services. Unfortunately, these libraries are subject to cache side-channel attacks, which are more
devastating in cloud environments where inevitable cache contention among different tenants occurs. Previ-
ous approaches for mitigating cache side-channel attacks have limitations in terms of the deployability and
security; these hinder utilization in cloud services. In this paper, we propose an R2-relocator, a novel library
protection technique based on moving target defence. When injected into a running process, the R2-relocator
performs randomized relocation of the library during runtime. By doing this, it transforms a vulnerable crypto
library into one that randomly changes its memory (cache) location, thereby preventing the delivery of cache
side-channel attacks against the library. The proposed technique achieves robust protection against cache
side-channel attacks for all crypto libraries, even those containing unpatched critical vulnerabilities, without
the need for reconfiguration of the library. Extensive evaluations of security, performance, and deployability
of the R2-relocator demonstrate its effectiveness for secure cloud services.

INDEX TERMS Cache side-channel attack, crypto library, moving target defence, attack mitigation, secure
cloud computing.

I. INTRODUCTION
Cloud computing brings financial benefits to customers but
at the cost of security, as data are outsourced from their
on-premise servers to the (untrusted) cloud [1]. Hence,
most cloud customers rely on cryptographic algorithms to
protect their outsourced data. Owing to the sophisticated
structure of cryptographic algorithms, developers commonly
use well-crafted crypto libraries such as OpenSSL [2] and
Libgcrypt [3] for cloud services, instead of implementing the
algorithm by themselves.

However, it is well-known that security flaws that can
result in a cache side-channel attack (CSA) have been discov-
ered in these libraries [4]–[7]. CSAs are a significant security
threat, especially in cloud computing environments where

The associate editor coordinating the review of this manuscript and

approving it for publication was Shadi Aljawarneh .

multiple tenants are co-located on a server that shares its
computing resources, such as a CPU cache [6], [7].

There have been notable efforts in previous works to mit-
igate CSAs against crypto libraries. Most mitigation strate-
gies include identifying and fixing security bugs in libraries
using the heuristic [8]–[10] or the automatic [4] approach.
However, these strategies have limitations that hinder their
adoption and deployment in cloud services. One limitation is
that these mitigations require reconfiguration of the library,
i.e., modification and recompilation of the library source
code. After reconfiguration, the newly patched library should
be redeployed in the cloud services, which usually have a
large number of hosts that need to be patched. Moreover,
such a patching-by-reconfiguration approach hinders instant
responses when new critical security flaws are found in the
library. Another limitation is that pinpoint bug-fixing of this
approach does not eliminate the possibility of security flaws
in the patched and reconfigured library; even a single hidden

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 108851

https://orcid.org/0000-0003-4831-7392
https://orcid.org/0000-0002-7264-2446
https://orcid.org/0000-0001-5748-4921

Y. Shin, J. Yun: Runtime Randomized Relocation of Crypto Libraries for Mitigating Cache Attacks

or undiscovered flaw is still highly likely to result in devas-
tating attacks.

In this paper, we propose R2-relocator,1 a robust and
easily deployable method for protecting crypto libraries
from CSAs. Instead of adopting the previous approach of
patching-by-reconfiguration, our method utilizes moving tar-
get defense (MTD), a novel paradigm for defending a system
from various security threats [11], [12]. That is, R2-relocator
is injected into a running process of a target application that
has a vulnerable crypto library and operates with the library
inside the process. Specifically, it transforms an executable
binary of the crypto library into one that randomly moves its
location in the memory. Therefore, the corresponding cache
location (i.e., a cache set) is moved as well during runtime.

As the cache location of the library is frequently changed
over time in a randomized manner by the R2-relocator,
attackers are prevented from identifying a vulnerable target
cache set, which is a prerequisite for a successful attack.
Therefore, robust protection against CSAs can be achieved
regardless of the presence of any CSA-susceptible flaws
(including any yet undiscovered ones) in the library. In addi-
tion, the R2-relocator can directly be applied to an exe-
cutable binary. Thus, it does not require modification of
the library source code, thereby enabling easy and instant
deployment to cloud services. Furthermore, R2-relocator
is widely available to various platforms, as it is imple-
mented in software only. This is more beneficial compared
to hardware-based CSA countermeasures that leverage hard-
ware features such as transactionalmemory [13], which limits
its applicability.

We describe how the R2-relocator transforms a normal
executable binary of a library for the intended purpose.
We also present the implementations of this transformation in
detail. Our evaluation reveals that the R2-relocator provides
crypto libraries with robust protection from CSAs, while
introducing negligible performance overhead.

The remainder of this paper is organized as follows.
In Section II, we present previous works related to the pro-
posed method. In Section III, we provide background knowl-
edge about CSAs. In Section IV, we explain threat models
and the design goals of the proposed technique. In Section V
and VI, we describe R2-relocator in detail and present
our evaluation results, respectively. Finally, in Section VII,
we conclude this paper by summarizing our main findings.

II. RELATED WORK
In this section, we present some related works on CSAs of
crypto libraries and mitigation strategies.

A. CACHE SIDE-CHANNEL ATTACKS ON CRYPTO
LIBRARIES
Cache contention among co-located processes or virtual
machines (VMs) allows CSAs, in which an adversary can

1R2-relocator is an abbreviation for ‘‘runtime and randomized
relocator.’’

infer sensitive information such as cryptographic keys from
the victim’s applications [14]. CSAs have been demonstrated
to be possible on a wide range of victim applications in vari-
ous environments. In most cases, attacks occur against cryp-
tographic implementations, in particular, crypto libraries such
as OpenSSL [2], Libgcrypt [3], and wolfSSL [15]. Vulnerable
cryptographic algorithms in these libraries include public
key algorithms such as RSA [6], [7], [16], ECDSA [17],
ECDH [4], [9], and ElGamal [18] and symmetric key algo-
rithms such as AES [19]–[22].

In this paper, we mainly focus on mitigating CSAs in
crypto libraries, although CSAs are not confined to the imple-
mentation of cryptographic algorithms. Indeed, several works
have demonstrated the existence of CSAs in a variety of (non-
cryptographic) applications, such as extracting private infor-
mation from I/O devices [23], [24] and inferring browsing
history from web browsers [25] and firewall policies [26],
[27]. We believe that the mitigating method proposed in this
paper is applicable not only to crypto applications but also
to non-cryptographic applications that have CSA-susceptible
security flaws in their libraries.

B. MITIGATION APPROACHES
In the literature, several mitigation approaches have been
proposed to protect vulnerable crypto libraries from possible
CSAs. Pereida García et al. [10] discovered that certain ver-
sions of the OpenSSL library are vulnerable to CSAs in the
implementation of a DSA algorithm. As a countermeasure,
they proposed a security patch that addressed the vulnerabil-
ity of the library to ensure constant-time execution, regardless
of the inputs of the algorithm. Later, they also identified
another side-channel vulnerability in the same library but in
a different cryptographic algorithm (i.e., ECDSA) [8]. Their
result revealed the difficulty in mitigating CSAs using a pin-
point bug patching strategy. Concurrently, Genkin et al. [9]
discovered a security flaw that allows CSAs in an ECDH
implementation of the Libgcrypt library. The proposed mit-
igating solution involved fixing the flaw in the software,
similar to the solution proposed in [8], [10].

The aforementioned works used a heuristic approach
to identify the vulnerabilities in libraries. In other words,
the flaws were discovered by manually inspecting the source
code of the library. Shin et al. [4] proposed an automatic
method that enables the identification of all vulnerable loca-
tions in crypto libraries. Despite the automatic bug identifica-
tion, it is still necessary to patch the library manually, similar
to the previous methods.

The mitigation strategies presented in the literature have
several restrictions that limit their deployment and utilization
in cloud services. First, these mitigation methods usually
require reconfiguration of the vulnerable crypto library; in
other words, modification and recompilation of the library
source code are necessary. The newly patched (reconfig-
ured) version of the library must then be deployed again
to a large number of vulnerable hosts in the cloud; a sig-
nificant amount of time may be required to complete the

108852 VOLUME 9, 2021

Y. Shin, J. Yun: Runtime Randomized Relocation of Crypto Libraries for Mitigating Cache Attacks

deployment. For instance, it takes 2 - 15 hours to deploy
security patches to guest VMs in the Azure cloud via the auto-
matic update mechanism [28]. This approach is not useful
for enabling instant security responses to newly discovered
critical CSA-susceptible vulnerabilities. Moreover, such a
pinpoint bug-fixing approach for a vulnerable library cannot
eliminate the possibility of security flaws in the patched
library. Even a single undiscovered flaw may undermine the
security patch applied to the library.

Brumley and Tuveri [29] proposed a countermeasure to
CSAs that randomly aligns dynamically allocated memory
in a crypto library. Although it seems similar to our method
proposed in this paper, their approach has some limitations.
First, their method provides one-time randomization; once
randomized, the aligned memory remains unchanged during
runtime. Hence, an attacker that has successfully identified a
target cache set can easily extract secret data from the victim
without further intervention. Unlike their method, we attempt
to achieve runtime randomized relocation so as to prevent
from extracting secret data. Besides, their method does not
address the randomization of the library code, which is the
main goal that we attempt to achieve in this paper.

III. CACHE SIDE-CHANNEL ATTACKS
Virtualization techniques that are used in cloud comput-
ing vary in-depth, from container-based (usually used for
PaaS) to hypervisor-based (used for IaaS). However, all the
techniques provide a weak level of isolation to the hard-
ware resources, specifically the cache memory. This leads
to cache contention between VMs, which is the source of a
side-channel through which secret information can be leaked.
Many different CSAs have been proposed in the literature.
These attacks can be classified into two categories according
to the attacker’s ability to share the memory pages with a
victim.

A. SHARING-DEPENDENT CACHE ATTACK
Flush+Reload is a CSA that exploits a shared memory [6],
[17], [20], [24]–[27], [30]–[32]. It exploits memory dedu-
plication, which is a cross-VM page sharing technique that
is implemented in hypervisors such as VMware ESXi and
KVM. An attacker VM begins the attack by flushing the
target memory address (shared with the victim VM) from
the cache using clflush instruction. Then, the attacker
waits for the victim to complete the execution of security
operations, during which the target address may be accessed
based on a secret value. Finally, the attacker measures the
access time while reloading the address. Low latency indi-
cates a cache hit, which implies that the victim accessed the
address, whereas high latency implies that the address was not
accessed by the victim. By observing the victim’s memory
access pattern, the attacker can completely recover the secret
value.

Flush+Reload attack has several variants, including
Flush+Flush [33], Evict+Reload [24], and Invalidate+
Transfer [34]. These techniques typically share the

precondition that memory deduplication is necessary for a
successful attack. Hence, they are easily mitigated by turning
off the memory deduplication in the hypervisor.

B. SHARING-INDEPENDENT CACHE ATTACK
Prime+Probe [7], [16], [18], [20], [21], [35]–[37] and its
variants [5], [22], [38], [39] are also examples of CSAs.
They are effective even when cross-VMmemory sharing (i.e.,
memory deduplication) is not supported by the hypervisor.
Instead of exploiting memory sharing, these attacks utilize
contention on a cache set of L1 cache [18], [37], [40] or
last level cache (LLC) [7], [16], [20], [21], which are shared
between an attacker and a victim.

We begin by supposing that a victim has a secret-dependent
access pattern at a virtual memory address A, and the cache
line corresponding to that address is located on a S-th cache
set (1 ≤ S ≤ N), where N is the number of cache sets:
N is determined based on a target in the cache hierarchy
(e.g., L1 cache or LLC) at which the attack is delivered.
Provided that an attacker has an eviction set e that shares the
same location as the victim’s target set (i.e., the S-th cache
set), he/she mounts a Prime+Probe attack as follows. First,
the attacker primes the target set with data on its eviction set
e. Then, he/she waits for the victim to perform operations,
wherein access to the target set may be obtained based on its
secret value. Finally, the attacker probes the set by measuring
the access latency for its eviction set. A high latency indicates
that the victim has access to the target set.

In this attack, the attacker generally has no prior infor-
mation regarding the target cache set (i.e., S), as the mem-
ory address, A, is obfuscated through address space layout
randomization (ASLR) by a guest OS on the victim’s
VM. Hence, it is necessary for the attacker to determine
S (1 ≤ S ≤ N) to construct the eviction set successfully. The
result of previous work [7] has revealed that identification
of target cache set S is possible using statistical profiling
techniques even when ASLR is in operation, provided that
address A remains fixed during the victim’s execution.

IV. THREAT MODEL AND DESIGN GOALS
In this section, we present a threat model which is considered
in our work and describe some design goals for the proposed
method.

A. THREAT MODEL
We assume that an attacker and a victim are co-located on the
same physical host, while their own guest VM is running on
the host. Co-location of VMs from different security domains
(i.e., an attacker and a victim) is common in virtualization-
based multi-tenant cloud computing services such as AWS,
Microsoft Azure, and Google Compute.

The victim uses cryptographic algorithms in an application
to maintain data confidentiality. The algorithms are imple-
mented in crypto libraries such as OpenSSL and Libgcrypt.
The attacker aims to extract a secret key or a private key
from the victim by launching CSAs against the library.

VOLUME 9, 2021 108853

Y. Shin, J. Yun: Runtime Randomized Relocation of Crypto Libraries for Mitigating Cache Attacks

FIGURE 1. Illustration of the operation of the proposed method.

Specifically, he/she exploits implementation flaws of the
library that leak secret-dependent memory access patterns
through the cache, from which the secret or private key can
be recovered. We assume that cross-VM memory sharing is
not available on the host. As described in Section III, it is
reasonable to assume that most hypervisors turn off memory
deduplication as the default setting for security reasons [41].
Thus, the attacker is forced to conduct sharing-independent
cache attacks, while assuming that he/she is free to choose
the target cache (e.g., the LLC or the L1 cache) for the attack.

We also assume that the details of the executable binary of
crypto libraries (e.g., the version information or the binary
file itself) in the victim’s application are known to the
attacker [6], [7].

B. DESIGN GOALS
Our work has three design goals in terms of the security,
performance, and deployability as follows.

1) SECURITY
The primary goal of the R2-relocator is to protect the
victim’s applications that use a (vulnerable) crypto library
from attackers trying to extract secret information using
sharing-independent cache attacks. More specifically, R2-
relocator aims to prevent attackers from identifying the target
cache set S of the crypto library, which is necessary for the
attacker to deliver the attack successfully. As the attacker is
able to target all cache levels, R2-relocator should provide
security against sharing-independent cache attacks aiming
not only at the LLC but also at the L1 cache.

2) PERFORMANCE
Applying R2-relocator to the vulnerable victim’s application
may affect the performance in terms of storage (i.e., the size
of the executable binary) and computation (i.e., the execution
time). Our design goal is to minimize the storage and compu-
tational overhead when R2-relocator is in use.

3) DEPLOYABILITY
We attempt to eliminate the need for reconfiguration of crypto
libraries while utilizing R2-relocator in a target application.

However, modification of the application may be necessary
for integration with the R2-relocator. Another goal is to
minimize the modification cost. Specifically, we attempt to
perform the integration without modifying and recompiling
the application’s source code.

V. RUNTIME RANDOMIZED RELOCATION
In this section, we present the proposed method for runtime
randomized relocation. First, we describe a system overview
of the method. Then, we give details on its implementation
and operations.

A. SYSTEM OVERVIEW
Webriefly provide an overview of the enforcement of security
on vulnerable crypto libraries while achieving the desired
design goals. The basic idea is to transform an executable
binary of the crypto library into one that has its location in
the memory, as well as the corresponding cache set, that ran-
domly changes during the runtime. By doing so, an attacker
is interfered with mounting CSAs against the library. This
approach follows the general idea of MTD to achieve system
security [12], [42]. MTD reduces the opportunity of attackers
and increases the cost of an attack by dynamically controlling
the configuration of executable binaries.

The idea is concisely illustrated in Fig.1. In the case
where the R2-relocator is not in use (depicted in Fig.1(a)),
the binary of the library occupies specific parts of the cache
sets; the occupied sets are determined when the library is
loaded to the memory, and they remain fixed once the library
is loaded by a dynamic linker. Once the attacker identifies
the target set in the library (i.e., S in Fig.1), he/she is able to
extract secret values successfully by mounting a CSA against
S, as long as the victim’s application continues running.

As illustrated in Fig.1(b), the R2-relocator allows the
library to keep floating over cache sets during runtime.
In other words, it repeatedly (1) randomly chooses a new
base address for a library and (2) relocates the library to the
chosen address. This causes the occupied cache sets to change
over time, thereby obfuscating the target set S . Unless the
attacker can trace a new target set, determining the secret

108854 VOLUME 9, 2021

Y. Shin, J. Yun: Runtime Randomized Relocation of Crypto Libraries for Mitigating Cache Attacks

FIGURE 2. Injecting R2-relocator into a target application.

value via cache attacks is infeasible. Frequent operations
of randomized runtime relocation significantly reduce the
chance for successful identification of S by the attackers.

B. R2-RELOCATOR
In this section, we describe an implementation of
R2-relocator and its operation in detail.

1) IMPLEMENTATION
The general use-case of libraries (including crypto libraries)
in applications is to dynamically link them tomain executable
of the application process in the runtime. In Linux, an exe-
cutable binary of the library has the form of a dynamically
loadable module with the .so file extension, which is built
with position-independent code (PIC) (see Fig.2(a)). The
PIC allows the library to be dynamically linked and relo-
cated to arbitrary addresses in the process memory. The relo-
cated information is updated accordingly to a global offset
table (GOT) in the process so that subsequent library function
calls are appropriately directed to the relevant binary of the
library.

We implement the R2-relocator in the form of a dynamic
loadable module as well (see Fig.2(b)). Using ptrace tech-
nology, the R2-relocator can be injected as a thread into
arbitrary running processes. ptrace is a set of system calls
in Linux that enables process manipulation. As depicted
in Fig.2(b), the injected R2-relocator manipulates the GOT
in the process, which contains the linkage information of the
target library, and begins to perform random rebasing and
relocating of the target library. The detailed operations will
be presented in the following section.

We would like to emphasize that such an implementation
strategy of the R2-relocator facilitates significant benefits in
terms of deployability. In other words, without modifying and

recompiling either the source code of the target application
or the library (thus, redeployment is not necessary), we can
transform an application into one that performs runtime ran-
domized relocation to the target crypto library.

2) OPERATION
Once the R2-relocator is injected into a running process of
the target application, it is assigned a new thread in the pro-
cess and begins to perform its operations in the thread context.
The R2-relocator runs different operations with respect to its
execution phase.

a: SETUP PHASE
After being injected, the R2-relocator starts a setup phase.
Specifically, it performs the following operations in this
phase.
Step 1 Allocating Memory Regions: First, it allocates two

new regions of memory, region0 and region1, and maps them
to the address space of the process. These regions are used to
conduct re-randomization and relocation of the library. The
allocating size of each region is decided based on the size
of the target library, Sl , and the degree of randomization, D
(D > 0).We configureD to beD = N , whereN is the number
of cache sets on the LLC or the L1 cache. Then, the size of
each region, Sr , can be determined as follows:

Sr = Sl + (D− 1) · b, (1)

where b is the size of a cache line (b = 64 bytes in most
processors) in the cache. It should be noted that Sr is the min-
imum size of the allocated space for each region to perform
an operation.
Allocation of Two Regions: We need to allocate at least

two memory regions. This is because performing operations
of the R2-relocator (i.e., re-randomization and relocation)

VOLUME 9, 2021 108855

Y. Shin, J. Yun: Runtime Randomized Relocation of Crypto Libraries for Mitigating Cache Attacks

over a memory region while allowing the target application to
concurrently execute tasks within a library in the same region
that is being relocated is likely to cause consistency prob-
lems. The preparation of two memory regions, region0 and
region1, can prevent this problem; the R2-relocator performs
its operation over one region (e.g., region0) while the main
threads of the application simultaneously use a library located
in another region (e.g., region1). When the relocation of the
library region is completed, the R2-relocator is swapped
between these two regions and continues its operation over
the other region. In the remainder of this paper, we denote a
region in which a library is actively in use by the application
as the active region and the other region as the inactive region.
Step 2 Setting up Hooks in GOT: After allocating mem-

ory regions in the process context, the R2-relocator installs
hooks for all export functions of the target library at the
GOT. As a result, all the library function calls invoked by the
application are passed to the R2-relocator, which, in turn,
mediates and redirects the function calls to the library at the
appropriate location (i.e., the active region).

The function hooks also provide synchronization between
the R2-relocator and the target application to ensure consis-
tent executions.

b: RUNNING PHASE
After initialization, the R2-relocator proceeds to a running
phase. In this phase, it begins to repeatedly perform an oper-
ation over an inactive region via a loop. The operation that the
R2-relocator executes for each iteration of the loop consists
of three steps, as depicted in Fig.3.

FIGURE 3. Operation of the R2-relocator in a running phase.

Specifically, for the i-th iteration, the R2-relocator pro-
ceeds with its operation over inactive region regionc, where
c = i mod 2 (i > 0), as follows.
Step 1 Rebasing and Reloading Library: It determines the

new base address of the library from the address space of
regionc. The base address of the library, basei, is calculated
as

basei = baser + b · Hk (i),

where baser is the base address of regionc, b is the line size
of the cache, and Hk : {0, 1}∗ → {0, 1, . . . ,D − 1} is a

FIGURE 4. Three types of pointers that are relevant to the library.

cryptographic keyed hash function that uses a secret key k
and maps an arbitrary value to an integer in a range from 0 to
D− 1. (D is the randomizing degree.)

The R2-relocator then performs a memory copy of the
library located in the active region (e.g., region0 in Fig.3) to
the newly determined base address basei in inactive region
regionc (e.g., region1 in Fig.3).
Step 2 Pointer Adjustment: Given that the location of the

library in the memory changes, we need to adjust relevant
pointers accordingly to avoid missing links to objects in the
library.

As shown in Fig.4, three types of pointers are relevant to the
library: (a) inbound pointers, located outside the library that
reference the library objects, (b) outbound pointers, located
inside the library that reference objects outside the library
(e.g., the main executable or other libraries), and (c) self-
referential pointers that are also inside the library but point
to its objects in the library.

Among these pointers, we do not consider the outbound
and inbound pointers in this step. This is because in the case of
outbound pointers, any executables except the target library
remain unchanged relative to their locations. For inbound
pointers, we need to update the corresponding GOT entries
in the .got.plt section of the main executable, which will be
conducted in the next step.

Hence, in this step, we only need to consider the self-
referential pointers. These pointers are located in a data
section of the library, which can be identified via program
analysis. We update each pointer in the section by adjusting
its value by 1, where 1 = basei − basei−1 (i > 1).
Step 3 Updating the GOT: In this step, we complete the

running phase by updating the GOT. Specifically, we modify
entries in the table of .got.plt so that subsequent procedure
calls are passed to the newly relocated library.

VI. EVALUATION
In this section, we evaluate the R2-relocator with respect to
its performance, security, and deployability.

A. PERFORMANCE
1) EXPERIMENTAL SETUP
We conducted several experiments to evaluate the per-
formance of the R2-relocator. In these experiments,

108856 VOLUME 9, 2021

Y. Shin, J. Yun: Runtime Randomized Relocation of Crypto Libraries for Mitigating Cache Attacks

FIGURE 5. Performance evaluation results with respect to the runtime execution of R2-relocator.

we implemented two victim applications that perform sev-
eral cryptographic operations. In particular, one of those
applications performed AES encryptions, wherein the AES
algorithm was implemented in the Libgcrypt library (i.e.,
libgcrypt.so.20.3.0). The other performed RSA encryptions,
wherein the algorithm was implemented in the OpenSSL
library (i.e., libcrypto.so.1.1). These applications were built
using a GNU C compiler for version 9.3.0 and executed in
Ubuntu 20.0.4 LTS 64-bit Linux.

The R2-relocator was injected as a running thread into
each process of the applications during runtime. For the run-
time injection, we used the ptrace APIs provided in Linux.

2) RESULTS
In the experiment, a single execution of each application con-
sisted of one hundred encryptions and decryptions. During
the execution, the R2-relocator simultaneously performed
runtime randomized relocations of the target library (i.e.,
libgcrypt.so.20.3.0 or libcrypto.so.1.1) inside the process.

a: COMPUTATIONAL OVERHEAD
We measured the execution time and CPU utilization of
the applications as the R2-relocator was employed. Fig.5
presents the results of the experiments. The term ‘Period
(µs)’ in the graph refers to the interval of relocation in
microseconds, which represents the frequency at which the
R2-relocator is invoked. For comparison, the measurement
was also conducted without utilizing the R2-relocator, and
the results are shown as ‘N/A’ in the graph.

We observed that both execution time and CPU uti-
lization gradually increased with the frequency of up to
104 µs. In the case of an RSA application, for instance,
execution of the R2-relocation with a relocation period
of 104 µs (i.e., 10 ms) resulted in an execution time
of 727.12 ms and 27.3% CPU utilization, which introduced
approximately 25% overhead compared to the case where the
R2-relocator was not used. For a frequency of 106 µs (i.e.,
1 s), the R2-relocator introduced the overhead of at most 5%
and 9% for the RSA and AES applications, respectively. The
performance overhead is also confirmed by the change in the

TABLE 1. Cache hit rates with varying the relocating frequency.

cache hit rate. We monitored the cache hit rate by using a
Linux perf tool while executing R2-relocator over the crypto
applications. The result is shown in Table 1. For instance,
we observe that the cache hit rate of the RSA application
slightly decreases from 83.3% where R2-relocator is not
in use (i.e., ‘N/A’) to 77.1% where in use with a frequency
of 106 µs.

We can also observe that for a frequency of 103 µs,
the overhead significantly increases for both applications.
We attribute the increase in the overhead to the additional
computational burden owing to synchronization between the
main process and the R2-relocator.

The running frequency of the R2-relocator may be deter-
mined based on the trade-off between security and perfor-
mance (i.e., the computational overhead). As we will discuss
in the next section, running with minimal frequency (i.e.,
106 µs) is sufficient to provide protection from state-of-the-
art CSAs. Hence, the R2-relocator achieves the required
security with aminimum computational overhead of only 9%.

b: STORAGE AND MEMORY OVERHEAD
We evaluate the R2-relocator in terms of its storage and
memory overhead. The R2-relocator occupies 361 KB in a
file system in the case when a compile option ‘‘-O2’’ is used
to build the executable binary, which is negligible compared
to the size of the target applications.

In terms of the memory overhead, the R2-relocator
requires additional memory to allocate two regions (i.e.,
region0 and region1) during runtime. The required size of
each region depends on both the actual binary size of the
target library and the degree of randomization, as described
in the previous section. In the case of the Libgcrypt library,
for instance, the size of the binary file libgcrypt.so.20.3.0 is
4.8 MB. Then, for D = 16, 384 and b = 64, the minimal size

VOLUME 9, 2021 108857

Y. Shin, J. Yun: Runtime Randomized Relocation of Crypto Libraries for Mitigating Cache Attacks

TABLE 2. Experimental result.

of a region Sr is determined to be at least 5.8 MB according
to Eq.1. Thus, at least 11.6 MB of additional memory is
required for the R2-relocator to perform its operation over
the Libgcrypt library.

B. SECURITY
To evaluate the security of the R2-relocator, we consider an
adversary who mounts a sharing-independent cache attack
(e.g., Prime+Probe [7]) against a victim’s application that
uses a crypto library. The attacker and victim run as a VM on
a host, where the number of cache sets of an LLC is N .
As described in Section III, the attacker has to determine

the target cache set S (1 ≤ S ≤ N) before performing
the cache attack. If only the temporal cache access pattern
of the victim’s application is known, the attacker needs to
examine all the LLC sets individually to determine which one
is relevant. In most modern processors, the number of LLC
sets (N) varies from 2,048 (for desktop processors) to 16,384
(for server processors), none of which are sufficiently small
to determine S within a short period of time.
Even after successfully identifying S, the attacker requires

a sufficient amount of time to extract full bits of secret from
the target cache set of the victim’s application. For instance,
Liu et al. reported in their work [7] that the recovery of
a secret key from GnuPG, which is an executable version
of Libgcrypt, required at least 12 min. The reported time
included both the identification of S and the extraction of the
secret against S, both of which are referred to as an online
attack in [7]. It should be noted that the result was obtained
under the setting that the location of the victim’s executable
binary remains static during runtime.

With the R2-relocator enabled, the location of S changes
frequently in a randomized manner during runtime. Hence,
it is quite challenging for an attacker to determine target set
S unless he/she can predict the next location. Even if the
attacker succeeds in this identification, it is likely that S will
be moved to another set during the cache attack, which will
hinder the attacker from extracting secret values from the
victim.

The frequency at which the relocation occurs is a con-
figurable parameter of the R2-relocator. In other words,
it may be chosen from a range between a few milliseconds to
several seconds based on the trade-off between security and
performance, as described in the previous section. Regardless
of the frequency configured, the period of relocation (i.e.,
the change in S) is ten orders of magnitude shorter than the
required time for the successful attack.

1) PREDICTABILITY OF THE RANDOMIZED RELOCATION
An attacker might be able to bypass the hurdle introduced by
the R2-relocator if he/she can predict the next S chosen by
the randomized relocation. The R2-relocator uses a keyed
hash function Hk to randomize the next base address of
the library. HMAC is an instance of the keyed hash func-
tions. Provided that key k is kept secret, it is infeasible
for the attacker to infer the next location chosen by the
R2-relocator.

2) SECURITY AGAINST THE L1-BASED
SHARING-INDEPENDENT CACHE ATTACK
As sharing-independent cache attacks are available not only
to the LLC but also to the L1 cache, we now discuss the secu-
rity that R2-relocator can achieve against L1-based cache
attacks [37], [40], [43], [44]. Modern processors have 32KB
L1 instruction (L1-I) cache and 32KB L1 data (L1-D) cache
per physical core: each has 64 cache sets. Thus, the randomiz-
ing degree with which R2-relocator works over the L1 cache
is at most D = 64, which is relatively low compared to the
maximum degree over the LLC. The low randomizing degree
might reduce the security to some extent when applying to the
L1-based attacks.

In order to quantitatively measure the gap of security
against between L1-based and LLC-based cache attacks,
we conducted an additional experiment under the same envi-
ronmental setting in Section VI-A1. For the experiment,
we implemented a victim application that imitates the cache
behavior of crypto libraries. It simply makes a specific cache
footprint, based on a pre-configured secret value σ of length λ
in bits, on a target set S in the L1-D cache. More specifically,
given a bit vector σ = {b0, . . . , bλ−1}, it iterates memory
operation at the address in S: at the i-th iteration, the memory
load takes place only if bi = 1. As L1-based attacks are
also available to L1-I cache [43], [44], we implemented a
variant of the victim that the cache footprint is made over
the instruction cache. During the experiment, these victim
applications are running with R2-relocator being applied
within these processes.

We also constructed a spy program that attempts to
extract σ from the victim applications. The spy launches the
sharing-independent attack at different cache levels. For the
LLC-based attack, the spy employs a technique of [7]. For
the attacks aiming at L1-D and L1-I cache, the spy employs
techniques of [37] and [44], respectively. In the experiment,
we measured the total amount of time spent by the spy on
successfully extracting the secret σ from the victim.

108858 VOLUME 9, 2021

Y. Shin, J. Yun: Runtime Randomized Relocation of Crypto Libraries for Mitigating Cache Attacks

Table 2 shows the experimental result. The terms ‘TL1’
and ‘TLLC ’ refer to the total amount of time spent by the
spy for the attack with L1-based and LLC-based techniques,
respectively. For the L1-based spy, a smaller one between
results of L1-I and L1-D attacks was chosen to be TL1. The
term ‘Ratio’ implies the security gap between L1-based and
LLC-based attacks. As shown in the table, the gap is relatively
small for the victim with a large length of secret (λ). The
security gap will close even further with shorter interval (i.e.,
Period) of R2-relocator, which will come at the cost of
increasing in the computational overhead.

C. DEPLOYABILITY
One of the design goals of the R2-relocator is deployabil-
ity; it should be easily integrated with applications without
modifications to the source code.

As indicated in Section V-B1, the R2-relocator is imple-
mented as a dynamically loadable module. Thus, it can be
injected into arbitrary running processes using theptraceAPI
in Linux. The injectedmodule then transforms the application
to a binary level so that it can perform runtime random-
ized relocation to the target crypto library in the application
process. This has a significant advantage with respect to
deployability, as it eliminates the need for reconfiguration
(i.e., modification and recompilation of the source code) of
either the application or the target library.

1) PROCESS STABILITY
R2-relocator can be injected into a running process with help
of ptrace system calls. This may affect the process stability.
For instance, the process may lose its stability if library
calls from the application are made concurrently while the
injected R2-relocator is operating relocation over the same
library. In order to avoid this problem, R2-relocator does not
directly access the target shared library within the injected
process. Instead, as described in Section V-B, it manipulates
the library over newly allocated memory regions. Besides,
it provides synchronization with the target process by setting
up function hooks in GOT. Specifically, a mutex-based syn-
chronization is implemented in function hooks so that every
library call is checked before being passed to the library.
This way, simultaneous accesses to the library from both
an application and R2-relocator is prevented. This allows
R2-relocator to perform correctly without breaking consis-
tency of the process. Therefore, the process stability can be
preserved while R2-relocator is running concurrently with
the target process.

VII. CONCLUSION
In this paper, we proposed the application of theR2-relocator
to protect crypto libraries from CSAs in a cloud com-
puting environment. Using the novel idea of a MTD,
the R2-relocator provides robust protection to a vulnerable
crypto library based on random movement over the mem-
ory during runtime. Given that the corresponding cache set
changes frequently over time, it is difficult for an attacker

to identify a target cache set, which is a prerequisite for a
successful attack.

The R2-relocator can be easily deployed to cloud services
because it does not require reconfiguration (i.e., recompila-
tion of the source code) of the crypto library. All vulnerable
libraries that contain unpatched CSA-susceptible flaws can
be protected from an attack. We extensively evaluated the
proposed method in terms of its performance, security, and
deployability. The evaluation results demonstrate its effec-
tiveness for achieving secure cloud services.

REFERENCES
[1] L. Xiao, D. Xu, C. Xie, N. B. Mandayam, and H. V. Poor, ‘‘Cloud

storage defense against advanced persistent threats: A prospect theo-
retic study,’’ IEEE J. Sel. Areas Commun., vol. 35, no. 3, pp. 534–544,
Mar. 2017.

[2] OpenSSL. (2020). OpenSSL—Cryptography and SSL/TLS Toolkit.
[Online]. Available: https://www.openssl.org/

[3] Libgcrypt. Libgcrypt-GnuPG. [Online]. Available: https://gnupg.org/
software/libgcrypt/index.html

[4] Y. Shin, H. C. Kim,D.Kwon, J. H. Jeong, and J. Hur, ‘‘Unveiling hardware-
based data prefetcher, a hidden source of information leakage,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2018, pp. 131–145.

[5] S. Briongos, P. Malagón, J. M. Moya, and T. Eisenbarth,
‘‘RELOAD+REFRESH: Abusing cache replacement policies to perform
stealthy cache attacks,’’ in Proc. 29th USENIX Secur. Symp., 2020,
pp. 1967–1984.

[6] Y. Yarom and K. Falkner, ‘‘Flush + reload: A high resolution, low noise,
L3 cache side-channel attack,’’ in Proc. 23th USENIX Secur. Symp., 2014,
pp. 719–732.

[7] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, ‘‘Last-level cache
side-channel attacks are practical,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2015, pp. 605–622.

[8] C. P. García and B. B. Brumley, ‘‘Constant-time callees with variable-time
callers,’’ in Proc. 26th USENIX Secur. Symp., 2017, pp. 83–98.

[9] D. Genkin, L. Valenta, and Y. Yarom, ‘‘May the fourth be with you: A
microarchitectural side channel attack on several real-world applications
of Curve25519,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2017, pp. 845–858.

[10] C. Pereida García, B. B. Brumley, and Y. Yarom, ‘‘‘Make sure DSA signing
exponentiations really are constant-time,’’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2016, pp. 1639–1650.

[11] S. Sengupta, A. Chowdhary, A. Sabur, A. Alshamrani, D. Huang, and
S. Kambhampati, ‘‘A survey of moving target defenses for network
security,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 3, pp. 1909–1941,
3rd Quart., 2020.

[12] M. Torquato andM. Vieira, ‘‘Moving target defense in cloud computing: A
systematic mapping study,’’ Comput. Secur., vol. 92, pp. 1–11, May 2020.

[13] S. Chen, F. Liu, Z.Mi, Y. Zhang, R. B. Lee, H. Chen, and X.Wang, ‘‘Lever-
aging hardware transactional memory for cache side-channel defenses,’’ in
Proc. Asia Conf. Comput. Commun. Secur., May 2018, pp. 601–608.

[14] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, ‘‘A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware,’’ J. Cryp-
tograph. Eng., vol. 8, no. 1, pp. 1–27, Apr. 2018.

[15] Wolfssl. WolfSSL, Embeded TLS Library. [Online]. Available: https://
www.wolfssl.com/

[16] B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar, ‘‘Cache attacks
enable bulk key recovery on the cloud,’’ in Proc. Int. Conf. Cryptograph.
Hardw. Embedded Syst. (CHES), 2016, pp. 368–388.

[17] Y. Yarom and N. Benger, ‘‘Recovering OpenSSL ECDSA nonces
using the Flush+Reload cache side-channel attack,’’ IACR Cryp-
tol. ePrint Arch., Tech. Rep., 2014/140, 2014. [Online]. Available:
https://eprint.iacr.org/2014/140

[18] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, ‘‘Cross-VM side chan-
nels and their use to extract private keys,’’ in Proc. ACM Conf. Comput.
Commun. Secur. (CCS), 2012, pp. 305–316.

[19] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, ‘‘Wait a minute! A fast,
cross-VM attack on AES,’’ in Research in Attacks, Intrusions and Defenses
(Lecture Notes in Computer Science), vol. 8688. 2014, pp. 299–319.

VOLUME 9, 2021 108859

Y. Shin, J. Yun: Runtime Randomized Relocation of Crypto Libraries for Mitigating Cache Attacks

[20] B. Gulmezoglu, M. S. Inci, G. Irazoqui, T. Eisenbarth, and B. Sunar,
‘‘Cross-VM cache attacks on AES,’’ IEEE Trans. Multi-Scale Comput.
Syst., vol. 2, no. 3, pp. 211–222, Jul. 2016.

[21] G. Irazoqui, T. Eisenbarth, and B. Sunar, ‘‘S$A: A shared cache attack
that works across cores and defies VM sandboxing–And its application to
AES,’’ in Proc. 2015 IEEE Symp. Secur. Privacy, May 2015, pp. 591–604.

[22] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen,
‘‘PRIME+ABORT: A timer-free high-precision L3 cache attack using
Intel TSX,’’ in Proc. 26th USENIX Secur. Symp., 2017, pp. 51–67.

[23] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, ‘‘ARMaged-
don: Cache attacks on mobile devices,’’ in Proc. 25th USENIX Secur.
Symp., 2016, pp. 549–564.

[24] D.Gruss, R. Spreitzer, and S.Mangard, ‘‘Cache template attacks: Automat-
ing attacks on inclusive last-level caches,’’ in Proc. 24th USENIX Secur.
Symp., 2015, pp. 897–912.

[25] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, ‘‘Cross-tenant side-
channel attacks in PaaS clouds,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Nov. 2014, pp. 990–1003.

[26] Y. Shin, ‘‘Cross-VM cache timing attacks on virtualized network func-
tions,’’ IEICE Trans. Inf. Syst., vol. E102.D, no. 9, pp. 1874–1877, 2019.

[27] Y. Shin, D. Koo, and J. Hur, ‘‘Inferring firewall rules by cache side-channel
analysis in network function virtualization,’’ in Proc. IEEE INFOCOM
Conf. Comput. Commun., Jul. 2020, pp. 1798–1807.

[28] M. Azure. (2021). Azure Automation Update Management Overview.
[Online]. Available: https://docs.microsoft.com/en-us/azure/automation/
update-management/ove%rview

[29] B. B. Brumley and N. Tuveri, ‘‘Cache-timing attacks and shared contexts,’’
in Proc. Int. Workshop Constructive Side-Channel Anal. Secure Design
(COSADE), 2011, pp. 1–10.

[30] T. Hornby, Side-Channel Attacks on Everyday Applications: Distinguish-
ing Inputs With FLUSH+RELOAD. BlackHat, 2016.

[31] G. Berk, M. S. Inci, G. Irazoqui, T. Eisenbarth, and B. Sunar, ‘‘A faster
and more realistic flush + reload attack on AES,’’ in Proc. Int. Work-
shop Constructive Side-Channel Anal. Secure Design (COSADE), 2015,
pp. 111–126.

[32] A. C. Aldaya, C. P. García, L. M. A. Tapia, and B. B. Brumley, ‘‘Cache-
timing attacks on RSA key generation,’’ IACR Trans. Cryptograph. Hardw.
Embedded Syst., vol. 2019, pp. 213–242, Aug. 2019.

[33] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, ‘‘Flush+flush: A fast
and stealthy cache attack,’’ in Proc. 13th Int. Conf. Detection Intrusions
Malware, Vulnerability Assessment (DIMVA), 2016, pp. 279–299.

[34] G. Irazoqui, T. Eisenbarth, and B. Sunar, ‘‘Cross processor cache attacks,’’
in Proc. 11th ACM Asia Conf. Comput. Commun. Secur., May 2016,
pp. 353–364.

[35] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A. Boano,
S. Mangard, K. Roemer, and S. Mangard, ‘‘Hello from the other side: SSH
over robust cache covert channels in the cloud,’’ in Proc. Netw. Distrib.
Syst. Secur. Symp., 2017, pp. 21–24.

[36] L. Zhang, A. A. Ding, Y. Fei, and Z. H. Jiang, ‘‘Statistical analysis
for access-driven cache attacks against AES,’’ Cryptol. ePrint Arch.,
Tech. Rep. 2016/970, 2016, pp. 1–31.

[37] D. A. Osvik, A. Shamir, and E. Tromer, ‘‘Cache attacks and counter-
measures: The case of AES,’’ in Proc. Cryptographers Track at RSA Conf.
(CT-RSA), 2006, pp. 1–20.

[38] B. Gras, H. Bos, and C. Giuffrida, ‘‘Translation leak-aside buffer : Defeat-
ing cache side-channel protections with TLB attacks,’’ in Proc. 27th
USENIX Secur. Symp., 2018, pp. 955–972.

[39] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, ‘‘The spy
in the sandbox—Practical cache attacks in Javascript,’’ in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS), 2015, pp. 1406–1418.
[Online]. Available: http://arxiv.org/abs/1502.07373

[40] C. Percival, ‘‘Cache missing for fun and profit,’’ in Proc. BSDCan, 2005,
pp. 1–13.

[41] VMware. (2018). Security Considerations and Disallowing Inter-Virtual
Machine Transparent Page Sharing. [Online]. Available: https://kb.
vmware.com/s/article/2080735

[42] C. Lei, H.-Q. Zhang, J.-L. Tan, Y.-C. Zhang, andX.-H. Liu, ‘‘Moving target
defense techniques: A survey,’’ Secur. Commun. Netw., vol. 2018, pp. 1–25,
Jul. 2018.

[43] O.Aciiçmez, ‘‘Yet anotherMicroArchitectural attack: Exploiting I-cache,’’
in Proc. ACM Workshop Comput. Secur. Archit. (CSAW), 2007, pp. 1–13.

[44] O. Aciiçmez, B. Bob Brumley, and P. Grabher, ‘‘New results on instruction
cache attacks,’’ in Proc. Int. Workshop Cryptograph. Hardw. Embedded
Syst. (CHES), 2010, pp. 110–124.

YOUNGJOO SHIN received the B.S. degree in
computer science and engineering from Korea
University, Seoul, South Korea, in 2006, and the
M.S. and Ph.D. degrees in computer science from
KAIST, Daejeon, South Korea, in 2008 and 2014,
respectively. He was with the National Security
Research Institute (NSR), Daejeon, as a Senior
Researcher, from 2008 to 2017. He was with
Kwangwoon University, Seoul, as an Assistant
Professor, from 2017 to 2020. He is currently an

Assistant Professor with the School of Cybersecurity, Korea University. His
research interests include system and network security, CPU microarchi-
tectural security, cloud computing security, and vulnerability analysis on
embedded systems.

JOOBEOM YUN received the B.S. degree in com-
puter science and engineering from Korea Uni-
versity, Seoul, South Korea, in 1999, and the
M.S. degree in computer engineering from Seoul
National University, Seoul, in 2001, and the Ph.D.
degree in computer science from Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, South Korea, in 2012. He is currently
an Associate Professor with the Department of
Computer and Information Security, Sejong Uni-

versity, Seoul. His research interests include software security, artificial
intelligence (AI) security, and network security.

108860 VOLUME 9, 2021

