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ABSTRACT The development of accurate forecasting systems for real-world time series modeling is a
challenging task. Due to the presence of temporal patterns that change over time, the adoption of a single
model can lead to underperformed forecasts. In this scenario, Multiple Predictor Systems (MPS) emerge as
an alternative to adopting single models since they struggle to learn in the presence of temporal patterns
that change over time. Dynamic prediction/ensemble selection is a special case of MPS where each model
is an expert in the time series’s specific patterns. In dynamic selection, instead of combining all models,
the most competent models per test pattern are selected. A criterion commonly used is to evaluate the models’
performance in the region of competence, formed by the patterns present in the in-sample set (training or
validation sets) more similar to the test pattern. Thus, the region of competence’s quality is a key factor in
the precision of the MPS. However, adequately defining the similarity criterion and the size of the region of
competence is challenging and problem-dependent. Furthermore, there is no guarantee that similar data exist
in the in-sample set. This paper proposes a dynamic selection approach entitled Dynamic Selection based on
the Nearest Windows (DSNAW) that selects one or more competent models according to their performance
in the region of competence composed of the nearest antecedent windows to the new target time window.
This strategy assumes that the temporal windows closer to a test pattern have a behavior more similar to
the target than in-sample data. The experimental study using ten well-known time series showed that the
DSNAW outperforms the literature approaches.

INDEX TERMS Time series forecasting, multiple predictor systems, dynamic predictor selection, dynamic

ensemble selection.

I. INTRODUCTION

Time series forecasting is a central task in many applica-
tion areas, such as Economy [1], Seismology [2], Meteorol-
ogy [3], and Astronomy [4], Hydrology [5], Engineering [6].
The development of accurate forecasting systems has been a
central goal in the time series modeling area. However, due
to the presence of different temporal patterns in real-world
time series, accurate forecasting systems’ construction is a
challenge. In this sense, the classical approaches focus on
seeking the best single model to forecast the whole time
series have some serious drawbacks, such as the incorrect
specification of the model’s parameters [7]. Among the alter-
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native approaches that have emerged, multiple predictor sys-
tems (MPS) have gained attention because they employ an
ensemble of models instead of using only one model to
improve the system’s accuracy [8]. Such an ensemble con-
tains many models that likely capture different behavior of the
time series. MPS are composed of three phases [9]: Genera-
tion, Selection, and Integration or Combination. In the Gener-
ation phase, a pool of models is generated using a training set.
After, one or more models are selected using some criterion
in the Selection phase. In the last phase, the prediction is
obtained by combining the forecasts of the selected models.
The Selection phase can be performed during the system’s
training (offline) or in the generalization (online). In either
part, online or offline, this phase has a crucial role because
it is related to the accuracy [10] and the computational
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complexity [11] of the MPS. Dynamic selection approaches
aim to select a subset of the pool containing the most suitable
models to predict each new test pattern [9], [12]-[14]. Thus,
instead of using the same models for all new patterns, these
approaches select a different subset of models per pattern,
which is a suitable strategy in modeling real-world time series
that exhibit dynamic behavior that changes over time [15].
However, selecting the most suitable subset of models for a
given test pattern is complex since there is no well-established
criterion [16].

Dynamic selection approaches commonly use the perfor-
mance of the models in the Region of Competence (RoC)
as a criterion to select the most competent ones [9], [12],
[13], [17]-[19]. The RoC is composed of the k patterns in the
in-sample (training or validation sets) [12], which are more
similar to the test pattern according to some measure such as
the Euclidean distance [20]. This strategy for populating the
RoC is applied for different tasks such as classification [21],
[22], regression [23], [24] and time series forecasting [9],
[12]-[14], [18].

The accuracy of dynamic selection approaches is directly
related to the region of competence’s quality, commonly
defined using the k-nearest neighbors algorithm (k-NN) to
find the £ most similar patterns to the test pattern. However,
to guarantee the optimum similarity measure is being adopted
for a given time series is a challenging task [25] because the
parameters setting of the k-NN is problem-dependent [18],
[26]. Moreover, it is unlikely to assure the existence of pat-
terns having similar behavior to the new test patterns (time
windows) in the RoC due to noise, the available amount of
data, or the absence of similar data [27]. In the time series
context, the data distribution can change over time [28], [29];
consequently, the most suitable model to forecast a new test
pattern can also change [30].

In this paper, we claim that the temporal windows closer
to the new test pattern tend to have more similar behav-
ior to the target than the traditional approach that used the
k-NN to define the RoC. To validate such a hypothesis,
the Kolmogorov Smirnov (KS) [31] test is applied to com-
pare the data distributions defined by the proposal against
the traditional approach. Based on this claim, we propose a
new dynamic selection approach, entitled Dynamic Selection
based on the Nearest Windows (DSNAW), that defines the
region of competence with the nearest windows to the new
test sample. DSNAW consists of four phases: 1) definition of
region of competence using the nearest antecedent windows
to the new time window; ii) evaluation of each model in the
region of competence using a forecasting measure; iii) con-
struction of a ranking of the model by their performance;
iv) forecasting of the point using the selected models.

The proposed approach is evaluated in the one-step
ahead forecast using ten real-world time series. The pro-
posal’s performance is compared to traditional and state-of-
the-art approaches in terms of seven well-known forecasting
error measures: Mean Squared Error (MSE), Mean Abso-
lute Percentage Error (MAPE). Symmetric Mean Absolute
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Percentage Error (SMAPE), Normalized Root Mean Square
Error (NRMSE), Root Mean Square Error (RMSE), Average
Relative Prediction Error Variation (ARV), and Mean Abso-
lute Error (MAE) [6], [32]. The Dynamic Selection based on
Nearest Antecedent Windows (DSNAW) is proposed based
on the assumption that the temporal windows closer to the
new test pattern are promising candidates to compose the
region of competence. The main advantages of the proposed
approach are:

o The creation of the region of competence is based on the
assumption that the nearest temporal windows close to
the new test pattern are promising candidates to compose
the region of competence;

o« DSNAW automatically finds the number (k) of time
windows that compose the region of competence (RoC)
per data set;

« DSNAW also automatically defines the number (n) of
forecasting models used in the test phase. So, DSNAW
can choose the best approach between Dynamic Predic-
tor Selection or Dynamic Ensemble Selection for each
data set;

« DSNAW selects the most suitable way to combine the
forecasting models’ outputs when more than one model
(n > 1) is selected.

The remainder of the paper is organized as follows.
Section II formulates the problem, and an experiment is
performed to analyze the distribution of the region of compe-
tence generate by the patterns of the in-sample set. Section III
introduces the proposed approach. Section IV describes the
methodology that is used in the experiments. Section V
presents a comparative study involving ten real-world time
series and the respective discussion. Section VI shows the
concluding remarks and future work.

Il. PROBLEM DEFINITION

Dynamic selection approaches [9], [12], [13], [17] for time
series forecasting have been proposed aiming to improve
the accuracy of MPS. These approaches are based on [23]
that seminally proposed a dynamic selection approach for
regression tasks named herein to as Dynamic Selection by
Local Accuracy (DS-LA). In the time series forecasting area,
the dynamic selection approaches supposes that the most
suitable model to forecast the future value z;,4 given the new
time window w; = {z;, /-1, -2, - . - » Zr—n—1} With n lags
(previous records), is the model with the best performance
in the neighbourhood of w;. This neighbourhood called the
region of competence (RoC) is composed of k time windows
from the training or validation set most similar to w;.

The definition of the RoC plays an important role since
its quality can be a limiting factor to the algorithm’s perfor-
mance. Likewise to classification problems, it is not possible
to guarantee the existence of patterns really similar to the test
sample in the region of competence since it depends on the
distribution of the used dataset [27]. Besides, the most suit-
able similarity measure to define the region of competence
for a given temporal behavior is unknown.
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FIGURE 1. An example showing the region of competence defined by the Literature and by the

proposed approach.

Figure 1 shows a new time window w; and its RoC
composed of three temporal windows wy, wy, and w,. This
RoC was defined using the assumption adopted by liter-
ature approaches, named ‘‘Literature RoC”. According to
a given distance measure, the Literature RoC searches for
the temporal patterns in the training and/or validation sets
most similar to the new time window. We claim that this
strategy is not appropriate for the time series forecasting
since it may select a weak model to predict z;41. In con-
trast, we suppose that selecting the temporal windows just
before w; can produce better results; this new region of
competence is composed of w;_1, w;_2, and w;_3, as shown
in Figure 1 -*“Proposed RoC”

It is reasonable to consider that the best model to forecast
Zt4+1 changes over time according to the data distribution.
Based on this, we hypothesize that the k previous temporal
windows (W;—1, wy—2, ..., w;—_;) and w, have a high prob-
ability of belonging to the same distribution. So, the best
forecasting model for the k closest previous windows is a
promising candidate to forecast z;+1, since the behavior of
a time series can be described through its probabilistic dis-
tribution function (PDF) over time [33]. PDF, estimated here
as F'(wy), is a function that describes the probability that an
observation of the time series falls into a range of values. So,
any change in F'(w;) affects F(z;4+1|w;), since w; and z;4 are
described using the same distribution. Hence, a model that
attains a high performance for w; is a promising candidate to
forecast z;41. Moreover, this candidate changes depending on
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the w;, which is a desirable strategy since it is expected that
the data distribution of real-world time series changes over
time [28].

For evaluation of the proposed assumption, an experiment
was performed to compare the data distribution of the new
patterns with the Literature RoC and Proposed RoC. Ten time
series! with different behaviors (described in Table 1) are
used in this evaluation. Each time series was divided into
three sets: the first 50% of the points for the training set,
the next 25% for the validation set, and the last 25% for the
test set. For this experiment, the training set is defined as in-
sample, the validation set is used as out-of-sample, and the
test is not considered.

For the experiment, each window (w;) contains 20 records
from the out-of-sample, i.e., 20 time lags that are used to
forecast z;41. So, in a dataset with 100 records, 80 windows
are generated. It is important to stress that between two
neighboring windows (w; and w; 1), the difference is of only
one record. For each w; of the out-of-sample, two regions of
competence ALT and APR are generated. Each region of com-
petence is composed of 10 windows (k = 10), where A{‘T =
Wm1, Wn2, - - ., wix) represent the windows from in-sample
selected by the literature assumption [9], [12], [13], [17]
(using Euclidean distance), and APR = (w,_y, ..., wi—t)
are the k closest windows to w; selected by the proposed
assumption.

1 https://github.com/EraylsonGaldino/dataset_time_series
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FIGURE 2. Percentual of selected windows (GMC) presents in the RoC that has the same distribution
of the out-of-sample pattern w;. The black and grey columns correspond to the “Proposed RoC” and
“Literature RoC” that were generated by proposed and literature approaches, respectively.

The Kolmogorov Smirnov (KS) test [31] was chosen to
compare the data distribution. The KS test is used to iden-
tify similar patterns on data and for detecting differences in
position, dispersion, or shape of the distribution of the two
samples [34]. This test is appropriate to analyze samples with
sizes varying from 10 to 50 records [35]. The null hypoth-
esis indicates that both samples have the same distribution,
regardless of the distribution.

The KS test is applied to compare w; with both regions of
competence (AILT and Af R) separately. For example, given
the test pattern w; and the region of competence ALY, w, is
compared with each pattern in ALT and it is calculated how
many times (out of k, which is the size of the region of com-
petence) they have the same distribution. This formulation is
defined in Equation 1.

100

GMC(wy, A,) = > KSwi,w)), )

wi€A,

where A, can be A,LT or Af) Rk is the number of pattern in
A,, and the function KS(w;, w;) outputs 1 if w, and w; have
the same distribution, otherwise the output is 0.

Figure 2 shows the experimental results where the higher
the Grand Mean of Occurrence in percent (GMC), the more
selected windows have the same distribution as w;. For
most of the time series, the RoC defined by the proposed
assumption obtained better results. In other words, the pro-
posed hypothesis was able to select more windows with the
same distribution as w; in the in-sample set than the litera-
ture assumption. Besides selecting more promising windows
than literature assumption, the proposal is computational
cheaper because the search for the region of competence is
straightforward.

lll. THE PROPOSED APPROACH

Figure 3 shows the proposed architecture composed of three
phases: generation, dynamic selection, and combination. The
first phase generates a pool of forecasting models P that
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is trained using the training dataset (¢). After, the dynamic
selection phase chooses a relevant subset of models (P’ C P)
for each test pattern (w; € y). If more than one predictor
is selected, their outputs 2} INTREEE Z ', are combined in the
last phase; otherwise, whether only one predictor is selected,
the prediction of w; is given by this predictor. These three

phases are detailed in the next sections.

A. GENERATION

The generation phase’s objective is to create a diverse pool
of forecasters that can model different time series behav-
iors. This diversity can be generated using two main strate-
gies [36]: employing different samples for training each
model or using different models trained from the same train-
ing sample.

Herein we decided to generate a homogeneous pool where
all the predictors are trained using the same learning algo-
rithm using Bagging [37]. Since Bagging performs a random
sampling with replacement for populating each training data
set, the diversity is achieved using different samples to train
the models.

B. DYNAMIC SELECTION

The dynamic selection phase consists of selecting a single
model or an ensemble of models per new time window (w;).
Algorithm 1 and Figure 4 show the proposed dynamic selec-
tion steps of the Nearest Antecedent Windows (DSNAW)
algorithm.

The first step of the DSNAW is the definition of the region
of competence APW that is composed of the k previous
windows APW = (w,_1, ..., w_x) closest to w; (“Region
of Competence Definition”” module in Figure 4 and line 1 in
Algorithm 1). This strategy of selecting the closest windows
is based on the hypothesis presented in Section II that shows
these windows represent a better choice than choosing the
most similar windows, as performed by the DS-LA algorithm.

In the second step (‘“‘Models Selection” module in Figure 4
and lines 2 - 9 in Algorithm 1), all the models in are evaluated
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FIGURE 3. The flowchart of the proposed dynamic predictor selection system. P is the pool of
predictors; w; is the new time window in out-of-sample y; W is the all previous time window;
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FIGURE 4. The flowchart of the dynamic selection phase performed by the proposed
DSNAW algorithm. W is the all previous time window; w; is the new time window; Afw is
the region of competence; P is the pool of predictors and P’ is the set of models selected;
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in the region of competence. Thus, each model p € P is
employed to predict the patterns in the region of competence
APW Each model’s accuracy is calculated using the Sum of
Absolute Errors (SAE) [38] metric, which was chosen based
on its robustness and reliability [39]. A ranking in ascending
order of the models using the SAE is returned (line 8 —
Algorithm 1). The lower the SAE value, the better the model’s
accuracy.

The selection of the n best models, i.e., the n models having
lower SAE (line 9 in Algorithm 1), can work in two different
ways: dynamic predictor selection, in which only the best
model is selected (in this case, n = 1), or dynamic ensemble
selection, in which a set (n > 1) with the best models of the
ranking is chosen.

In the last step (““Forecasting” module in Figure 4 and lines
10 - 16 in Algorithm 1), each one of the n selected models
in P’ is applied to predicted the value of w;, generating the
following forecasting 2,1 IRTRRRNS Iy
C. COMBINATION
In the last phase, the final forecasting Z;1 is generated.
Whether an ensemble (n > 1) was dynamically selected
in the selection phase, the final prediction is given by the
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are the forecasting of each model selected by the DSNAW.

combination of the output of all models in the ensemble. The
combination can be performed using different strategies, such
as average or median [8], [29]. If only one single model is
selected (n = 1), the forecasting of this model is the final
forecasting.

IV. EXPERIMENTAL PROTOCOL

An experimental evaluation of the proposed approach was
conducted with a set of ten univariate time series (described
in Table 1): Goldman Sachs, Sunspot, Star Brightness, Ama-
zon, Apple, Microsoft, Vehicle, Wine, Pollution, and Electric-
ity [40], [41].> These time series were chosen because they
are widely used in the literature and have distinct behaviors
regarding the presence or absence of seasonality, stationary,
and trend [16]. Figure 5 shows the plot of each time series
used in the experimental evaluation.

Each time series was normalized into the interval [0, 1].
After, the observations are organized into time sliding win-
dows, composed of a maximum of 20 lags [42], where
these lags are selected using the Auto-correlation function
(ACF) [43]. Each time series was split into three sequential

2https:// github.com/EraylsonGaldino/dataset_time_series
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FIGURE 5. Time series used in the experimental evaluation.

samples with the following proportion: 50% for training,
25% for validation, and the last 25% observations for testing.
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The bagging algorithm [37] that performs sampling with
replacement was used to generate a diverse pool. Each bag
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TABLE 1. Description of the data sets.

Time Series | Size Description Frequency Period
Goldman S. | 754 | Adjusted close price of Goldman Sachs stock Daily 01/04/2010-12/31/2012
Electricity 486 Australian electricity production Monthly 01/1956-12/1996

Amazon 2261 Amazon ultra-high-frequency Nanoseconds -

Vehicle 252 Sales of vehicles in USA Monthly 1971-1991
Microsoft 754 Adjusted close price of Microsoft stock Daily 2010-2012
Pollution 130 Shipment of pollution equipment Monthly 1986-1996

Wine 187 Australian wine sales Monthly 1980-1994

Apple 2340 Apple ultra-high-frequency Nanoseconds -

Star 600 Brightness of a variable star on midnights Daily -

Sunspot 314 Wolfs Sunspot Numbers Annual 1700-2014

Algorithm 1: Dynamic

Selection From Nearest

TABLE 2. Values of the parameters for SVR.

Antecedent Windows

// Input: All previous windows (W), new time
window (wy), pool of predictors (P), size of
the region of competence (k), number of
models to be selected (n)

Input: W, P, k,n

Output: 2,1+1, N A

// Region of competence definition composed of
the k previous windows

APW = region-of-competence-definition(W, k)

// Evaluation of each model in the pool P

errors = [ ]

for each predictor p € P do
y=par")

e = error-measure(target, )
errors = errors U {e}

end

// Selection of the n best forecasting models

ranking = ascending-order(errors)

9 P’ = select-best-models(ranking, n)

// Applying the n selected models to the new

N N A WN

o®

time window wy
10 forecasting = [ ]
11 fori= 1t ndo

2 | p=P>

B3|z =pw) .

14 forecasting = forecasting U {E:H}
15 end

16 return forecasting

has the same size as the training sample, and it was split
into 67% for training the model and 33% to validate the
model.

The forecasting model pool is composed of 100 Sup-
port Vector Regressors (SVRs) based in [9]. SVR is a sta-
ble and robust model [44], which has attained significant
performance accuracy in the forecasting task [40], [45].
A grid-search approach was employed for selecting the best
combination of the hyper-parameters for each model.

108472

Parameters Values
Kernel Radial basis function and Sigmoid
Gamma 0.5, 1, 10, 20, ..., 100, 200, ..., 1000

Cost 0.1, 1, 100, 1000, 10000
Epsilon 1, 1E-1, 1E-2, 1E-3, 1E-4, 1E-5, 1E-6

TABLE 3. Parameters of the proposed approach selected in the validation
sample.

Time Series Pararn.eter.s
k | n | Combination approach
Amazon 20 | 14 Median
Apple 7 |11 Average
Electricity 2 |16 Median
Goldman Sachs | 10 | 11 Median
Microsoft 12 | 10 Average
Pollution 12 | 3 Median
Star 10 | 16 Median
Sunspot 9 |5 Median
Vehicle 18 | 10 Median
Wine 8§ | 11 Median

The DSNAW has two parameters: k (size of the region of
competence) and n (number of selected models). For both
k and n parameters, the values are defined in the range [,
20]. These values for k and n expand the interval evaluated
in literature [46], [47]. When n = 1, one forecaster model is
selected (Dynamic Predictor Selection task) and whenn > 1,
an ensemble of models is selected (Dynamic Ensemble Selec-
tion task). For the latter case (n > 1), the average and median
operators are employed in the combination phase. These
combination approaches are commonly employed because it
is fairly simple and obtains accurate forecasting [8], [29]. The
parameters k, n, and the combination operator are defined
are selected through the validation set for each time series
(Table 3).

The DSNAW was compared against 12 literature
approaches. These approaches can be grouped into four main
categories, described in the next paragraphs.

VOLUME 9, 2021
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Single Models group is composed of the traditional statisti-
cal models and Support Vector Regression (SVR) model [48]:

o ARIMA [49]: the ARIMA parameters were estimated
for each data set using the auto ARIMA python
library [50];

o Exponential Smoothing (ETS) [51]: the ETS parame-
ters were estimated using the Statsmodel library of the
Python [52];

o« Random Walk Forecasting (RW) [53]: RW model
was modeled using the ARIMA(0,1,0). Its parameters
were estimated through the Statsmodel library of the
Python [52];

e« SVR: named herein of Monolithic. The hyper-
parameters were selected using a grid-search (values
in Table 2).

Dynamic Predictor Selection class is comprised of the
following approaches:

o DS-LA (1): dynamic selection approach that employs
parameters of the literature [46], [47]. The model is
selected based on its performance in the region of com-
petence composed of the time windows from in-sample,
which are more similar to the test pattern;

o Temporal-window Framework (TWF) [54]: approach
that trains the models using specific partitions of the
time series. Given a test pattern, TWF selects the model
trained in the partition more similar (calculated via the
dynamic time warping algorithm [55]) to this new pat-
tern. The TWF parameters were defined based on [54].

Full Pool group is formed of the approaches that combine

all forecasting of the Pool generated by Bagging approach:

e Bagga [37]: Bagging of SVRs combined by average;
o Baggy [37]: Bagging of SVRs combinated by median.

Dynamic Ensemble Selection class is composed of the
approaches that selects an ensemble and combines them:

o DS-LA: dynamic selection approach [46], [47] employ-
ing parameters values selected in the validation sample
for each data set;

o DES,4: Dynamic Ensemble Selection combined by mean
using parameters defined in the literature [23];

e DESy: Dynamic Ensemble Selection combined by
median using parameters defined in the literature [23];

o DES-PALR [9]: DES - Predictor Accuracy over Local
Region selects a set of forecasting models with the
higher performance in the cluster (region of compe-
tence) that have the center closer to the new test pattern.

All models were assessed in the one step ahead forecast-
ing using the test sample. The evaluation of the results was
performed using seven traditional performance measures:
Mean Squared Error (MSE), Mean Absolute Percentage
Error (MAPE). Symmetric Mean Absolute Percentage Error
(SMAPE), Normalized Root Mean Square Error (NRMSE),
Root Mean Square Error (RMSE), Average Relative Pre-
diction Error Variation (ARV), and Mean Absolute Error
(MAE) [6], [32].
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The following nomenclature is used in the definition of
the performance metric (Equation 2 to 8): N is the number
of observations, output is the predicted value by the model,
target is the actual value of the time series, and ¢ corresponds
to the respective time (¢) at the sample. The average, maxi-
mum and minimum values of the sample are represented by
target, targetyqy, and targety,, respectively.

MSE is a measure commonly used in the literature [32] to
evaluate forecasting models. MSE is defined by the following
equation:

N
1 2
MSE = — target; — output,)”. 2
N t_Zl ( gel; P t) 2
RMSE is the square root of the MSE value. The RMSE
results are in the time series interval and hence can be more
interpretable than MSE. The RMSE is defined as:

RMSE = vMSE. 3)

The normalized RMSE (NRMSE) is used to compare the
performance of models in the time series forecasting with dif-
ferent range values. The NRMSE is defined by the following
equation:

RMSE
NRMSE = . “
((targetmax) - (targetmin))

MAPE computes the average forecast error percentage
regardless of the scale of the values and indicates the forecast
error margin in percentage. The following equation defines
the MAPE:

N
100
MAPE = —
N

t=1

target; — output;

. 5)

target;

The SMAPE measure evaluates the percentage of average
absolute error independent of the scale of the values. The
following equation defines the SMAPE:

SMAPE =

100 target; — output
_Z |arget Oupu" (6)
N (|target;| + |output;|)/2.

t=1

ARV is arelative metric that compares the model’s forecast
with the forecasting of time series using the mean. If the ARV
value is less than 1, the model’s accuracy is better than the use
of mean; otherwise, the model is worse than the forecasting
by the mean. If the ARV value is equal to 1, the forecasting
model is equivalent to the mean. The ARV is defined by the
following equation:

Zi\;l (target, — output)?

ARV = N .
Y i (target — output;)?

@)

MAE is commonly applied to measure the error of the
model on average. The following equation defines the MAE:

N
1
MAE = N Z |target; —output;|. ®)

=1
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The Diebold-Mariano (DM) [56] statistical test was
applied to verify whether the proposed approach has a per-
formance statistically equal (pValue > 0.05) to the literature
approaches. If the performances are statistically different
(pValue < 0.05), the best model is the one with the lowest
MSE value.

Equation 9 was used to measure the performance percent-
age difference between the proposed approach and the litera-
ture approaches. g, is the performance of the base method,
and ¢; is the performance of the proposed approach. The
proposed approach is better than the base method when
the ratio value is positive, which means the error of the
base method (g,) is higher than the error of the proposed
approach (&p). This measure is interesting because it allows
quantifying the difference of performance between two
approaches [16].

ratio = £4 =) . 100, 9)

Ea
The source-code was implemented in the Python program-
ming language using the Sklearn [57] library and performed
on a computer with an Intel Core i7-7500 CPU and 20 GB
RAM.

V. EXPERIMENTAL RESULTS

Table 4 shows the results of the proposal (DSNAW) and
literature approaches using seven well-known performance
metrics: MSE, MAPE, ARV, MAE, RMSE, NRMSE, and
SMAPE. The DSNAW achieved better values in most perfor-
mance metrics than single models in 6 out of 10 data sets. For
Apple, Pollution, Sunspot, Wine series, the proposed method
attained lower performance than at least one single model.
In the Apple series, RW obtained better performance than
DSNAW. For other data sets, RW, monolithic, and ARIMA
models attained better measure values for Pollution, Sunspot,
and Wine, respectively.

Compared with Dynamic Predictor Selection approaches
(DS-LA (1) and TWF), DSNAW reached the best overall
results in 9 out of 10 series. DS-LA (1) attained better error
metrics values only for the Star series. TWF attained better
values only for specific metrics in some data sets, such as
ARV in Apple, Pollution, and Vehicle.

Regarding Ensemble approaches, the proposed method
reached smaller measure values in 9 out of 10 data sets.
DSNAW obtained a worse overall performance than two
ensemble approaches, Bagga and Baggyy, for the Star series.

Concerning the four Dynamic Ensemble Selection
approaches employed in the comparison, the DSNAW
attained the best general performance in 9 out of 10 time
series. The DS-LA, DESs, DESy, and DES-PALR
approaches reached the best accuracy in terms of the set of
measures for the Star series.

Table 5 shows the percentage difference in performance
between the DSNAW and other approaches in terms of MSE
using Equation 9. The proposed approach attained a posi-
tive gain compared with the other approaches in most time
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series evaluated. The proposed approach reached a high-
lighted performance in several cases. For instance, DSNAW
attained a percentage gain greater than 80% regarding most
of the literature approaches for the Amazon, Apple, Elec-
tricity, Goldman, Microsoft, and Wine series. For the Pol-
lution and Vehicle sets, the proposed approach reached a
gain greater than 50% regarding most literature approaches.
In the Star and Sunspot series, poor performance was reached,
where the DSNAW loss was up to 28%. We can asso-
ciate the performance percentage difference of the proposed
approach to selecting windows with the same distribution
in the region of competence. In most time series, where
the literature dynamic selection approaches have the GMC
value smaller than 70% (see Figure 2), the DSNAW has
a performance 50% greater than other methods. Based on
these results, we can correlate the high performance of the
proposed approach with generating a region of competence
composed of the high occurrence of windows with the same
behavior.

Table 6 shows the statistical comparison between DSNAW
and literature approaches using the DM hypothesis test.
The symbols “+4, “—" and “-” mean that DSNAW
attained better, worse, and equal accuracy than the concur-
rency, respectively. The last three rows show the summary
of the comparison, where Win represents the number of time
series the proposed approach obtained statistically significant
results (less than 0.05), Loss represents the number of times
the proposed approach obtained worse results than the litera-
ture approach, and Tie shows in how many time series the per-
formance of proposed approach and the literature approach
was similar. The proposed approach attained a statistically
better or equal MSE value than literature approaches in 8 out
of 10 data sets. For the Apple series, the DSNAW obtained
a lower performance only regarding the RW model. For the
Star series, Bagga, Baggmu, DES4, and DES), approaches
reached a better MSE value than the proposed approach. So,
considering the 120 direct (10 data sets x 12 approaches)
comparisons performed with literature approaches, DSNAW
obtains 91 wins, 24 draws, and 4 losses. This result
shows a significant performance attained by the proposed
approach.

Figures 6 and 7 show the forecast of the DSNAW and
the two best literature approaches for the Star and Amazon
series, respectively. Although there are differences in the
performance metrics for the Star series, Figure 6 shows that
the forecasts of the selected models are very close. Indeed,
Table 4 shows that the forecasting approaches based on ML
models attain similar results. On the other hand, Figure 7
shows a significant difference in the forecast of the models for
the Amazon series. It is possible to verify that the approaches
generate distinct forecasts for the test set of the Amazon
series.

A. DISCUSSION
In the previous section, DSNAW presented promising results
in terms of accuracy regarding several literature approaches.
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TABLE 4. Results of performance metrics for the approaches evaluated. The best metric value for each time series is in bold.

Time ) Single ‘Dynamic ) Ensemble Dynamic ) Proposed
Series Metric Models _ Predictor Selection Full Pool Ensemble Selection
ARIMA ETS RW Monolithic | DS-LA (1) | TWF Bagga | Baggy | DS-LA | DES4 | DES); | DES-PALR | DSNAW
MSE 6.08E-3 | 6.04E-3 | 1.20E-2 3.32E-2 9.29E-3 1.66E-4 | 2.36E-3 | 1.08E-3 | 7.20E-3 | 9.16E-3 | 7.20E-3 2.18E-2 1.30E-4
MAPE 85.17 85.36 82.47 436.85 228.14 30.51 135.00 100.38 198.62 | 222.58 199.01 354.24 22.40
ARV 2.52 2.54 1.36 1.20 1.38 5.62E-2 | 9.26E-1 | 4.57E-1 1.35 1.39 1.35 1.38 3.93E-2

Amazon MAE 6.04E-2 | 6.03E-2 | 9.34E-2 1.64E-1 5.51E-2 1.01E-2 | 2.94E-2 | 1.97E-2 | 493E-2 | 548E-2 | 492E-2 9.16E-2 8.94E-3
RMSE | 7.80E-2 | 7.77E-2 | 1.09E-1 1.82E-1 9.64E-2 1.29E-2 | 4.86E-2 | 3.29E-2 | 8.49E-2 | 9.57E-2 | 8.49E-2 1.48E-1 1.14E-2
NRMSE | 3.15E-1 | 3.15E-1 | 4.43E-1 7.38E-1 3.90E-1 5.22E-2 | 1.97E-1 | 1.33E-1 | 3.43E-1 | 3.87E-1 | 3.43E-1 5.97E-1 4.61E-2

SMAPE 63.83 63.59 139.79 90.75 43.18 16.19 33.13 26.32 41.23 42.99 41.21 57.12 13.80
MSE 2.74E-2 | 2.73E-2 | 1.14E-2 1.38E-1 1.70E-1 6.89E-2 | 1.26E-1 | 1.49E-1 | 1.62E-1 | 1.53E-1 | 1.65E-1 1.71E-1 1.90E-2
MAPE 273.10 272.81 169.01 597.72 614.01 411.01 550.51 58528 | 603.27 | 590.50 | 604.88 614.07 245.72
ARV 3.07 3.09 5.15 1.51 1.51 2.02 1.68 1.62 1.53 1.55 1.52 1.48 225

Apple MAE 1.19E-1 | 1.19E-1 | 8.89E-2 2.82E-1 3.02E-1 1.85E-1 | 2.46E-1 | 2.65E-1 | 2.90E-1 | 2.84E-1 | 2.96E-1 3.10E-1 8.02E-2
RMSE 1.65E-1 | 1.65E-1 | 1.07E-1 3.71E-1 4.13E-1 2.63E-1 | 3.55E-1 | 3.86E-1 | 4.03E-1 | 3.92E-1 | 4.06E-1 4.14E-1 1.38E-1
NRMSE | 3.86E-1 | 3.85E-1 | 2.49E-1 8.65E-1 9.63E-1 6.12E-1 | 8.28E-1 | 9.00E-1 | 9.39E-1 | 9.13E-1 | 9.47E-1 9.65E-1 3.21E-1

SMAPE 52.79 52.79 47.75 74.04 73.79 62.03 66.92 67.92 72.17 72.09 73.25 75.61 42.15
MSE 2.12E-2 | 1.51E-2 | 2.70E-2 1.89E-1 4.76E-2 6.09E-3 | 2.05E-2 | 1.56E-2 | 3.72E-2 | 3.11E-2 | 3.61E-2 6.58E-2 3.74E-3
MAPE 17.755 14.053 20.964 58.356 23.624 8.730 17.177 15496 | 20.426 18.817 18.432 29.966 6.933
ARV 3.52 4.65E+2 227 1.02 1.15 2.69E-1 | 891E-1 | 6.96E-1 1.21 1.21 1.35 1.20 2.67E-1
Electricity MAE 1.23E-1 | 1.02E-1 | 1.41E-1 4.26E-1 1.80E-1 6.11E-2 | 1.30E-1 | 1.15E-1 | 1.58E-1 | 1.46E-1 | 1.45E-1 2.29E-1 5.18E-2

RMSE 1.46E-1 | 1.23E-1 | 1.64E-1 4.35E-1 2.18E-1 7.81E-2 | 1.43E-1 | 1.25E-1 | 1.93E-1 | 1.76E-1 | 1.90E-1 2.57E-1 6.11E-2
NRMSE | 3.23E-1 | 2.72E-1 | 3.64E-1 9.65E-1 4.83E-1 1.73E-1 | 3.17E-1 | 2.77E-1 | 428E-1 | 391E-1 | 4.21E-1 5.69E-1 1.35E-1

SMAPE 16.35 13.83 18.59 83.13 28.01 9.40 19.01 16.98 23.65 21.43 21.40 36.18 7.25
MSE 2.85E-2 | 1.88E-2 | 2.83E-2 4.30E-2 3.65E-3 6.21E-4 | 7.11E-4 | 5.46E-4 | 2.36E-3 | 2.20E-3 | 2.50E-3 3.58E-3 4.06E-4
MAPE 95.33 99.45 95.90 149.90 26.00 12.82 12.38 11.17 21.96 20.80 21.35 25.90 9.52
ARV 9.33 5.74 9.77 1.42 1.72E-1 4.32E-2 | 442E-2 | 347E-2 | 1.24E-1 | 1.17E-1 | 1.32E-1 1.79E-1 2.64E-2

Goldman MAE 1.52E-1 | 1.16E-1 | 1.52E-1 1.68E-1 4.40E-2 1.90E-2 | 2.03E-2 | 1.81E-2 | 3.71E-2 | 3.53E-2 | 3.66E-2 4.43E-2 1.53E-2
RMSE 1.69E-1 | 1.37E-1 | 1.68E-1 2.07E-1 6.04E-2 249E-2 | 2.67E-2 | 2.34E-2 | 4.86E-2 | 4.70E-2 | 5.00E-2 5.98E-2 2.01E-2
NRMSE | 3.95E-1 | 3.21E-1 | 3.93E-1 4.85E-1 1.41E-1 5.83E-2 | 6.24E-2 | 547E-2 | 1.14E-1 | 1.10E-1 | 1.17E-1 1.40E-1 4.71E-2

SMAPE 68.98 51.73 68.65 61.50 31.82 11.56 12.90 11.46 2491 23.69 24.65 31.20 9.44
MSE 6.01E-2 | 6.01E-2 | 7.99E-2 2.30E-2 1.56E-2 1.30E-2 | 5.25E-3 | 6.05E-3 | 1.56E-2 | 1.16E-2 | 1.36E-2 1.78E-2 1.99E-3
MAPE 34.46 34.45 40.02 15.96 13.96 12.42 8.18 8.35 13.96 12.19 13.09 14.99 5.03
ARV 1.32 1.32 1.28 1.31 5.08E-1 4.77E-1 | 2.74E-1 | 3.14E-1 | 5.08E-1 | 4.51E-1 | 4.87E-1 5.48E-1 1.28E-1

Microsoft MAE 2.13E-1 | 2.13E-1 | 2.49E-1 1.23E-1 9.82E-2 8.68E-2 | 5.83E-2 | 597E-2 | 9.82E-2 | 8.67E-2 | 9.29E-2 1.06E-1 3.41E-2
RMSE | 245E-1 | 245E-1 | 2.83E-1 1.52E-1 1.25E-1 1.14E-1 | 7.24E-2 | 7.78E-2 | 1.25E-1 | 1.08E-1 | 1.17E-1 1.34E-1 4.46E-2
NRMSE | 5.23E-1 | 5.23E-1 | 6.03E-1 3.23E-1 2.66E-1 2.44E-1 | 1.55E-1 | 1.66E-1 | 2.66E-1 | 2.30E-1 | 2.49E-1 2.85E-1 9.51E-2

SMAPE 27.42 27.41 31.03 17.96 15.36 13.70 8.66 8.90 15.36 13.34 14.50 16.92 5.08
MSE 7.69E-2 | 4.76E-2 | 4.29E-2 1.26E-1 9.96E-2 1.16E-1 | 4.56E-2 | 1.09E-1 | 1.07E-1 | 1.03E-1 | 1.06E-1 1.15E-1 4.47E-2
MAPE 54.83 44.61 41.47 74.34 49.22 53.99 30.37 51.42 50.69 49.65 50.30 53.62 32.26
ARV 1.36 1.67 1.91 1.08 1.24 1.20 1.64 1.22 1.23 1.24 1.23 1.20 1.78

Pollution MAE 2.29E-1 | 1.79E-1 | 1.62E-1 3.35E-1 2.85E-1 3.11E-1 | 1.79E-1 | 2.99E-1 | 2.95E-1 | 2.89E-1 | 2.93E-1 3.09E-1 1.74E-1
RMSE | 2.77E-1 | 2.18E-1 | 2.07E-1 3.55E-1 3.16E-1 341E-1 | 2.14E-1 | 3.29E-1 | 3.27E-1 | 3.21E-1 | 3.25E-1 3.39E-1 2.11E-1

NRMSE | 548E-1 | 4.32E-1 | 4.10E-1 7.02E-1 6.24E-1 6.74E-1 | 4.22E-1 | 6.51E-1 | 6.47E-1 | 6.35E-1 | 6.43E-1 6.70E-1 4.18E-1
SMAPE 37.41 31.52 29.22 50.10 68.09 76.77 36.88 72.24 71.13 69.14 70.43 76.04 3743

MSE 1.72E-1 | 8.99E-2 | 8.62E-2 8.57E-5 6.24E-5 7.08E-5 | 5.26E-5 | 5.25E-5 | 5.29E-5 | 5.26E-5 | 5.25E-5 6.84E-5 6.77E-5
MAPE 275.46 235.43 228.42 3.12 2.77 3.01 2.26 2.18 3.27 2.26 2.18 2.59 2.99
ARV 3.05 3.41 3.81 1.35E-3 9.79E-4 1.11E-3 | 8.28E-4 | 8.27E-4 | 8.31E-4 | 8.28E-4 | 8.27E-4 1.07E-3 1.07E-3
Star MAE 3.43E-1 | 245E-1 | 2.42E-1 7.04E-3 5.38E-3 6.84E-3 | 5.07E-3 | 5.02E-3 | 5.48E-3 | 5.07E-3 | 5.02E-3 6.06E-3 6.08E-3

RMSE | 4.15E-1 | 3.00E-1 | 2.94E-1 9.26E-3 7.90E-3 8.41E-3 | 7.25E-3 | 7.25E-3 | 7.27E-3 | 7.25E-3 | 7.25E-3 8.27E-3 8.23E-3
NRMSE | 4.19E-1 | 3.03E-1 | 2.97E-1 9.35E-3 7.98E-3 8.50E-3 | 7.33E-3 | 7.32E-3 | 7.34E-3 | 7.33E-3 | 7.32E-3 8.35E-3 8.31E-3

SMAPE 72.77 52.13 51.84 3.61 3.35 3.02 2.48 2.36 432 2.48 2.36 2.74 3.77
MSE 6.28E-2 | 7.75E-2 | 7.76E-2 2.66E-2 4.13E-2 3.16E-2 | 3.26E-2 | 3.61E-2 | 3.52E-2 | 3.26E-2 | 3.61E-2 3.97E-2 3.31E-2
MAPE 231.63 194.99 226.00 99.48 130.78 142.92 81.85 75.02 89.36 81.85 75.02 77.53 62.44
ARV 1.85E+1 9.54 1.54E+1 5.45E-1 1.34 1.17 1.32 1.44 1.24 1.32 1.44 1.55 9.55E-1

Sunspot MAE 1.94E-1 | 1.97E-1 | 2.05E-1 1.14E-1 1.42E-1 1.33E-1 | 1.22E-1 | 1.25E-1 | 1.24E-1 | 1.22E-1 | 1.25E-1 1.37E-1 1.14E-1
RMSE | 2.51E-1 | 2.78E-1 | 2.79E-1 1.63E-1 2.03E-1 1.78E-1 | 1.81E-1 | 1.90E-1 | 1.88E-1 | 1.81E-1 | 1.90E-1 1.99E-1 1.82E-1
NRMSE | 2.53E-1 | 2.81E-1 | 2.81E-1 1.65E-1 2.05E-1 1.79E-1 | 1.82E-1 | 1.92E-1 | 1.89E-1 | 1.82E-1 | 1.92E-1 2.01E-1 1.84E-1

SMAPE 74.80 75.59 77.69 60.31 63.34 56.45 47.94 46.36 50.00 47.94 46.36 54.54 46.31
MSE 294E-2 | 2.38E-2 | 4.04E-2 2.86E-1 8.99E-2 6.34E-2 | 5.66E-2 | 5.69E-2 | 5.62E-2 | 5.03E-2 | 5.54E-2 3.72E-2 1.81E-2
MAPE 20.58 18.61 24.28 64.93 33.18 29.01 26.27 26.25 26.37 24.97 26.07 21.12 15.39
ARV 4.44 3.26E+1 2.34 1.08 1.31 9.97E-1 1.22 1.18 1.21 1.22 1.19 1.42 1.45

Vehicle MAE 1.23E-1 | 1.15E-1 | 1.44E-1 5.14E-1 2.63E-1 2.15E-1 | 2.15E-1 | 2.15E-1 | 2.14E-1 | 2.02E-1 | 2.12E-1 1.66E-1 1.09E-1
RMSE 1.71E-1 | 1.54E-1 | 2.01E-1 5.34E-1 3.00E-1 2.52E-1 | 2.38E-1 | 2.38E-1 | 2.37E-1 | 2.24E-1 | 2.35E-1 1.93E-1 1.34E-1
NRMSE | 2.93E-1 | 2.64E-1 | 3.44E-1 9.14E-1 5.13E-1 4.31E-1 | 407E-1 | 4.08E-1 | 4.05E-1 | 3.84E-1 | 4.03E-1 3.30E-1 2.30E-1
SMAPE 16.71 15.82 18.88 97.24 40.89 34.55 30.77 30.80 30.84 28.91 30.57 23.56 15.14

MSE 2.69E-3 | 3.15E-3 | 5.55E-3 4.60E-3 1.75E-2 7.88E-3 | 2.46E-2 | 4.04E-2 | 3.80E-2 | 2.58E-2 | 3.79E-2 3.99E-2 2.94E-3

MAPE 104.73 171.84 72.55 93.03 242.57 281.33 | 468.31 585.97 | 571.88 | 471.41 569.16 582.28 135.02

ARV 8.76 6.71 1.80 9.43E-1 1.06 1.41 1.09 1.07 1.07 1.08 1.07 1.06 1.39
Wine MAE 3.32E-2 | 448E-2 | 5.71E-2 5.50E-2 1.12E-1 8.25E-2 | 1.50E-1 | 1.95E-1 | 1.88E-1 | 1.53E-1 | 1.88E-1 1.94E-1 3.54E-2

RMSE | 5.18E-2 | 5.62E-2 | 7.45E-2 6.78E-2 1.32E-1 8.88E-2 | 1.57E-1 | 2.01E-1 | 1.95E-1 | 1.61E-1 | 1.95E-1 2.00E-1 5.43E-2
NRMSE | 2.29E-1 | 2.49E-1 | 3.30E-1 3.00E-1 5.85E-1 3.93E-1 | 6.94E-1 | 8.90E-1 | 8.62E-1 | 7.11E-1 | 8.62E-1 8.84E-1 2.40E-1
SMAPE 44.77 54.29 93.57 93.91 100.50 77.54 102.30 113.68 111.88 103.13 112.01 113.60 43.84

In general view, MPS (approaches based on ensemble) show the superiority of these MPS based approaches and
attained better results than single models. Tables 4, 5, and 6 corroborate with literature findings [9], [12]-[14], [18].
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TABLE 5. Percentage difference (%) between DSNAW and the literature approaches using Equation 9 in terms of MSE.

Time Series | ARIMA | ETS RW Monolithic | DS-LA (1) | TWF | Bagga | Baggy | DS-LA | DES, | DES); | DES-PALR
Amazon 97.87 | 97.85 | 98.92 99.61 98.60 21.97 | 94.50 88.01 98.20 98.59 98.20 99.40
Apple 30.58 30.41 | -66.35 86.19 88.85 7242 | 84.92 87.25 88.29 87.60 88.46 88.89
Electricity 8240 | 75.19 | 86.14 98.03 92.14 38.68 | 81.75 76.07 89.96 87.97 89.65 94.32
Goldman 98.58 | 97.84 | 98.56 99.06 88.87 34.61 | 42.89 25.68 82.83 81.59 83.74 88.67
Microsoft 96.69 96.69 | 97.51 91.35 87.26 84.75 | 62.13 67.14 87.26 82.88 85.43 88.86
Pollution 4191 6.26 | -4.00 64.56 55.15 61.54 2.06 58.85 58.28 56.73 57.71 61.06
Star 99.96 | 99.92 | 99.92 21.05 -8.47 444 | -2855 -28.81 -27.96 | -28.55 | -28.81 1.04
Sunspot 47.22 57.20 | 57.30 -24.69 19.66 -5.03 -1.65 8.30 5.79 -1.65 8.30 16.49
Vehicle 38.45 2421 | 55.23 93.67 79.91 7148 | 68.06 68.23 67.33 64.07 67.40 51.39
Wine -9.52 6.71 | 46.99 36.02 83.18 62.65 | 88.03 92.72 92.25 88.60 92.23 92.62

TABLE 6. DM statistical test (critical value « = 0.05) results comparing the DSNAW performance with literature approaches regarding to MSE values. The

oo

symbols “+",

and “~" correspond to the better, worse and equal accuracy attained by the DSNAW, respectively.

Time Series | ARIMA | ETS | RW | Monolithic | DS-LA (1) | TWF | Bagga | Baggy | DS-LA | DES, | DES); | DES-PALR
Amazon + + + + + + + + + + + +
Apple + + - + + + + + + + + +
Electricity + + + + + + + + + + + +
Goldman + + + + + + + + + + + +
Microsoft + + + + + + + + + + + +
Pollution - “~ - + + + - + n T + T
Star + + + -~ -~ -~ - - “ - - “
Sunspot + + + “ “ “ “ “ “ “ “ “
Vehicle -~ - + + + + + + + + + +
Wine - - -~ ~ + + + + + + + +
Wins 7 7 7 7 8 8 7 8 8 8 8 8
Tie 3 3 2 3 2 2 2 1 2 1 1 2
Loss 0 0 1 0 0 0 1 1 0 1 1 0
1 T
— Target
- - -DSNAW
---DES,,
- - -Bagg,,
]
]
=2
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FIGURE 6. Star time series prediction values for the proposed approach and the best literature approaches in the first

100 points of the test set.

From the analysis of the accuracy of the MPS, it is pos-
sible to verify that DPS and DES approaches present higher
variability in the accuracy than Ensembles. As all MPS used
in this work employed the same pool, it can be inferred
that this variability is related to how the forecasting models
are chosen. This selection is performed from RoC, and its
definition is closely related to system accuracy, as highlighted
in the literature [9], [12], [13], [17].
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The literature approaches create the RoC using temporal
windows of the training and/or validation data according to
some similarity criterion. However, there is no guarantee the
existence of patterns really similar to the new test patterns
since the data can be noisy, or the generator phenomenon
of the data can have changed over time. On the other hand,
DSNAW creates the RoC using the available temporal records
closer to the test pattern. The objective is to increase the
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FIGURE 7. Amazon time series prediction values for the proposed approach and the two best literature

approaches interval 100 to 200 points in the test set.

chance of using more similar temporal windows to the test
pattern. So, an accurate forecasting model in the defined RoC
is a promising candidate to forecast the test pattern. This
strategy can overcome the issues mentioned earlier once the
RoC is generated from the latest temporal data.

Moreover, the DSNAW an adaptable proposal since it
defines which dynamic selection approach is the most
promising between DPS and DES from their performance in
the validation set.

VI. CONCLUSION

This paper presented a novel dynamic selection algorithm
for time series forecasting called Dynamic selection based
on the nearest windows, DSNAW for short. DSNAW is a
multiple predictor system that selects the best models per
query instance instead of combining all the models.

One key point in dynamic selection algorithms is the def-
inition of the region of competence, a set composed of time
windows that belong to the validation or training set. This
region of competence is employed to select the best models
per test pattern. A common alternative to select the time
windows for the region of competence is to search for the
patterns that have a minimum distance to the test pattern,
as used in [23]. DSNAW is based on the assumption that
the time windows close to the test pattern are more likely
to have similar behavior to the test pattern than the previous
strategy. Thus, a model that performs well in the region of
competence formed by the closest windows to the test pattern
is a promising candidate to forecast it.

DSNAW employs this new way to define the region of
competence jointly by choosing the most suitable approach
between Dynamic Predictor Selection or Dynamic Ensem-
ble Selection for each data set under study. The experi-
mental evaluation was carried out using ten real-world time
series. The proposed approach reached better performance
values than literature models (single models, ensembles, and
dynamic selection approaches) in most time series evaluated.

VOLUME 9, 2021

These promising results obtained by DSNAW show that it
selected more competent models per test pattern than the
concurrence since it better defines the composition of the
region of competence.

As future work, given that choosing between the two
contexts of the DSNAW (DPS or DES) is time-dependent,
we intend to propose a meta-test that aims to select one con-
text or another depending on the test pattern under analysis.
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