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ABSTRACT Power outages can disrupt daily domestic activities as well as the economy as operations
are hampered when they occur. They can decrease work productivity by delaying operations that require
electricity. The key solution to this problem is to ensure that there are fewer or no power interruptions.
This can be achieved by ensuring secure and continuous network operations through regular maintenance
and inspection. However, the traditional inspection technique of foot patrol is risky, laborious, and time-
consuming. A preferable contemporary technique uses an unmanned aerial vehicle (UAV) for inspecting
distribution lines. Detecting power lines are crucial for real-time motion planning and navigation of UAVs.
Previous techniques that depend on conventional filters and gradients may fail to detect power lines because
of noisy backgrounds. Thus, this study proposes a novel technique by adopting the Transfer Learning
approach. The process involves re-training the Point Instance Network (a road lane detection model) with
images for power line detection. The proposed method extends the PINet model by adding a comparator
for rotation block before it and a postprocessing block after it. This study generates four versions of the
model, each of which was trained on one of the following datasets (i) self-gathered images captured by a
handheld camera, (ii) a drone, (iii) publicly accessible images from the Power Line Dataset of Mountain
Scene (PLDM), and (iv) Power Line Dataset of Urban Scene (PLDU). Experimental results on each dataset
confirm the feasibility of the proposed approach.

INDEX TERMS Machine vision, power distribution lines, transfer learning, unmanned aerial vehicles.

I. INTRODUCTION
Electricity is an indicator of a sustainable community since it
associates with economic growth and social equity [1]–[3].
A significant number of socio-economic activities such as
jobs to be accomplished at offices, homes, schools, busi-
nesses, and factories, rely on electricity regularly. Electricity
is a necessity for human beings [1].

One of the major components of electrical infrastructure
is the power line. It is used for transmitting electrical energy
from one location in the country to another. The reliability of
a power line is an essential responsibility of the power sector
because of the requirement to ensure a continuous supply of
electricity to consumers. Power outage, a disruption in the
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delivery of electricity, has both direct and indirect economic
consequences. Direct impacts include, but not limited to,
restart costs, loss of production, equipment damage, and raw
material spoilage. Indirect impacts include, but are not limited
to, the cost of income postponement and declining market
share. The power outage also affects society because of the
loss of consumer welfare, leisure time, health and safety
risks, or discomfort at a work due to nonoperating appliances,
such as electric fans and air conditioners [4]. Consequently,
the power outage causes substantial financial loss to both
producers and consumers.

Power outages are mostly caused by power line faults in
a distribution system. According to a study conducted by
the Electric Power Research Institute (EPRI), tree contact is
one of the leading causes of power line faults [5]. Equip-
ment damage, severe weather condition, and animal/human
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intervention are other major causes of power line faults.
According to a 2017 report, one in five power line faults is
because of fallen trees or trees close to power lines. According
to a report issued by the National Grid Corporation of the
Philippines (NGCP) in 2016, the line-to-ground fault caused
by encroaching untrimmed banana trees planted along the
distribution line’s right-of-way is a major cause of the power
outage in the Zamboanga Peninsula.

Persistent maintenance, surveillance, and inspection of
power lines represent vital operations for reducing the fre-
quency of power outages. Early detection of faults in power
equipment can prevent severe and costly damage [6]. Manual
conduct is one feasible approach to inspecting distribution
lines. For instance, the power lines and other electrical infras-
tructures in the Philippines are often surveyed, inspected,
and maintained by lineworkers on duty. However, the inspec-
tion by lineworkers has disadvantages. First, the operation is
labor-intensive because additional lineworkers are needed to
help the pole climbers. Second, it is dangerous because elec-
trocution can occur at any time. Third, it is time-consuming
patrolling on foot, and scaling poles to cover an area takes
time. Lastly, lineworkers are prohibited from patrolling over
wreckage or rubble in the event of a disaster. Otherwise,
their safety is compromised. To overcome these limitations,
an unmanned aerial vehicle (UAV), known as a drone, is used
to perform the task. UAVs can fly close to the power lines,
which have several benefits such as being a convenient,
flexible, inexpensive, and safe way to acquire data from the
distribution line system [6]–[12].

Image processing is used extensively in aerial inspec-
tion [13]. The motivation of the proposed technique in this
study is to take the knowledge obtained in the previous task
and apply it to a different but related problem. The authors
fine-tuned a pretrained model from the road lane detection
problem to detect power lines. Fig. 1 shows that the weights
from a road lane detection model are fine-tuned to perform
seamlessly on another but related task. The authors obtained
images using a handheld camera and a drone inside the
university environment to demonstrate the feasibility of the
proposed approach. They further validated the method using
two publicly available datasets, the power line dataset of a
mountain scene (PLDM) and power line dataset of an urban
scene (PLDU), published in [14]. To the best of the authors’
knowledge, this approach has not been previously introduced.

The rest of the paper is organized as follows. Section II
discusses the existing literature on power line detection.
Section III describes the proposed approach. Section IV illus-
trates the experimental results on both the self-constructed
and open-source datasets. Finally, Section V contains the
conclusions and recommendations.

II. RELATED WORKS
Several techniques for power line detection have been
presented thus far, and are discussed in the succeeding
subsections.

FIGURE 1. Proposed approach involves fine-tuning a pretrained model
from the road lane detection problem to address the power line detection
problem. In this paper, four datasets are used to validate the proposed
method - from self-gathered datasets captured using (a) handheld
camera and (b) drone, and from two publicly available datasets published
in [14], the (c) PLDM and (d) PLDU datasets.

A. LINE-BASED METHODS
The Hough transform is the most frequently used imaging
technique for detecting general lines. It has been beneficial
in several real-life applications including but not limited to
the following. First, the Hough transform is a handy tool
for detecting tactile pavement, assisting visually impaired
individuals to walk in public places [15]. Second, it is the
primary method used in precision agriculture to detect crop
rows and direct UAVs in selectively spraying agrochemi-
cals in the field [16]. Third, it is significantly faster than
raster scanning in detecting ellipse-enclosing characters in
large-sized document images [17]. Fourth, it is capable of
detecting nearby structures to map robust relevant landmarks
for high-speed railway mapping [18]. Lastly, it can be used
to detect and track road lanes for lane departure warning
systems [19].

The Hough transform can also detect power lines for a
distribution line inspection [9], [10]. This approach takes
advantage of the fact that a power line is essentially a line
that appears to be a straight segment in an image. Applying
a filter to an image to eliminate unnecessary data is one
way to improve the current Hough transform approach. For
instance, the Pulse Coupled Neural Network (PCNN) filters
unnecessary information from images such as grass, trees,
roads, buildings, and other background noise [11]. PCNN,
a single-layered, two-dimensional neural network, generates
an edge map of intriguing lines, unlike the typical results
of Canny and Sobel filters. In [20], the authors used the
Sobel filter to obtain the edges in the image, and a com-
bination of Hough transform and Particle Filters to detect
the power lines from the edges. The number of detected
points for each line in the image corresponds to the parti-
cles’ weights. Another improvement technique is the creation
of Region-of-Interests (ROIs) to isolate the subject matter.
In [12], the image and Hough table information defines
the ROIs. This approach is only reliable when the cam-
era is neither too far from the targets or way above the
targets.
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FIGURE 2. Transfer Learning is applied from road lane detection to power line detection. The trend shows how the training
improved within each epoch.

B. KNOWLEDGE-BASED METHODS
With the Hough transform’s limitations in a complex envi-
ronment, various alternatives emerged by leveraging power
line context characteristics. First, the power lines appear
in groups and are parallel to one other [11], [21]. Sec-
ond, power lines are connected by the pylon poles. Pylon
poles, which serve as elevation proofs, must be detected to
recognize power lines [9]. Third, power lines are straight
parallel lines when viewed at the overhead level. Due to
this auxiliary, two equidistant points of a straight line will
exist at the circumference of a circle. As a result, Circle
Based Search is a feasible power line detection approach [22].
Lastly, no other artifact within an overhead frame will have
a high density besides power lines. This is because metallic
objects reflect most electromagnetic radiation in the visual
spectrum [23].

Most of the auxiliaries for detecting power lines are man-
ually determined as shown in [24]. However, a technique
proposed in [25] to optimize the procedure uses a local
optimization approach to automatically acquire the context
information of each type of auxiliary.

Detecting power lines can be achieved by recognizing
them as objects in a way that improves auxiliary information
performance [26]. The authors in [27] presented that a power
line is an object if it contains the thin line structure, special
material, and flat color properties. Thus, it is possible to
create an object-awareness detection algorithm using these
properties. The approach in [28] described the applicability
of spatial correlation assistance between line and pylon. With
this correlation, the technique achieved high detection rates
with low false alarm rates.

C. DEEP LEARNING-BASED METHODS
The recent approach to detecting power lines involves
developing deep neural networks. However, the unavail-
ability of a sufficiently large public dataset of power lines
with pixel-wise annotations is a drawback of the deep
learning-based method. In [29], a model based on dilated
convolutional networks was created and trained on the syn-
thetic images of wires generated by POV-Ray, a ray-tracing
engine. The LS-Net [30], a fast single-shot line segment
detector, was trained using synthetic images of power lines
produced by the Physically Based Rendering method. The
study in [14] provided two datasets of power line images
taken from urban and mountain scenes of China due to the
shortage of power line datasets in the public domain. The
PLDU consists of 573 images, whereas the PLDM consists

of 287 images. The study in [31] also provided a dataset
containing 4,000 visible and 4,000 infrared images of power
lines within Turkey. The study in [32] used these visible
images to train their convolutional neural network to perform
binary classification to a colored image as having or not
having power lines. Finally, the work in [33] provided the
University of South Florida (USF) dataset having low-quality
videos of thin lines taken from various urban regions in
Florida and New Zealand. The dataset contains 86 videos
with 10,160 wires spanning 5,576 frames. This dataset was
used in [29] to evaluate their trained network.

Deep neural networks can be developed in different ways.
One prominent technique is to construct the deep network
from scratch. This is by selecting and stacking layers to
extract features and eventually produce the desired out-
put. Another approach is via Transfer Learning. Here the
weights of a previous task’s pretrained model are used
to improve the generalization of another but related task.
Several studies have explored the applicability of Transfer
Learning for distribution line inspection using UAV images.
For instance, the weights from the RetinaNet object detec-
tor [34], which was originally pretrained on ImageNet, are
fine-tuned to automatically map roadside utility poles with
crossarms from Google Street View images [35]. Faster
R-CNN [36], an end-to-end deep learning algorithm that
was also pretrained on the ImageNet dataset, was used
in [37] to build a detection model that can accurately iden-
tify transmission line faults categories. Lastly, the Mask
R-CNN [38], also pretrained on ImageNet, was improved
to develop a segmentation algorithm that can detect power
lines [39].

In this study, the authors employed Transfer Learning
to develop a novel technique for detecting power distribu-
tion lines. They built on an existing road lane detection
architecture. Road lanes are curves that self-driving vehicles
use for navigation and control [40]. From this perspective,
power lines are curves that guide UAVs in autonomous nav-
igation during distribution line inspection. Thus, this study
presents this application by fine-tuning Point Instance Net-
work (PINet) [41]. The PINet’s architecture has shared layers
for feature extraction and various branches for detection and
embedding to generate precise points on the lanes. The trend
in Fig. 2 illustrates the refinement of the network performance
as loss decreases with each epoch. The original PINet net-
work’s trained weights were able to transcend to fit a good
generalization to extract features from images of the power
line detection problem.
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FIGURE 3. Proposed system process flow has three main blocks- Comparator for Rotation block, Point Instance Network block,
and Postprocessing block.

FIGURE 4. Timing diagram shows that the input image is rotated only when necessary. The triggering factor is when one of the
detected power lines has less number of points than the threshold value. The comparator block secures that the image to be fed to the
PINet network is in the desired layout. The resulting images with an orange border illustrate the rotated images with the same
resolution as the original.

III. PROPOSED METHOD FOR DETECTING POWER
DISTRIBUTION LINES
This study proposes a novel technique for detecting the power
lines by refining the pretrained weights of the road lane detec-
tion model. The details of the proposed method and dataset
used for training are discussed in the following subsections.

A. SYSTEM PROCESS FLOW
The end-to-end implementation of the proposed method is
summarized into three major blocks, namely, the comparator
for rotation block, the PINet network block, and the postpro-
cessing block (Fig. 3). Each block has its vital function, which
is discussed in the succeeding paragraphs.

1) COMPARATOR FOR ROTATION
The first block’s major function is to check if the input image
is in the optimal layout and to generate an image that fits
the requirement of the next block. This block receives two
input parameters, an input image and vector, At , containing
the number of points for every detected power line. The input
image is a RGB frame with high resolution. At is a vector
with a size equal to the number of detected power lines, and
t represents the iteration index. Mathematically,

At = { a1, a2, . . . , an | n is number of power lines } (1)

At the start of the program (t = 0), A0 is null. This
is because there are no existing points at the start of the
program’s execution. The number of points is updated only
at the succeeding runs. For instance, the first run generates
points for each power line at the output block. If the proposed
system detects three power lines at the first input image,
then A1 = {a1, a2, a3}. Where a1 is the number of points
from the first detected power line, a2 is from the second
detected power line, and a3 is from the third detected power
line. At the second iteration of program execution (t = 1),
the comparator block receives the second input image and
vector A1 from the previous run. At the third iteration of
program execution (t = 2), this block receives the third input
image and vector A2. At the fourth iteration, it receives the
fourth image and vector A3, so on and so forth.
The comparator block determines if the input image should

be rotated by comparing the minimum number from vector
At (min(At )) to the threshold value. In this study, a threshold
value of 10 points was assigned by the authors. In other
words, the input image will be rotated counter-clockwise if
min(At ) is less than 10 points. This rotated image will then
be fed to the next block. Fig. 4 illustrates the timing dia-
gram of the instances where the input image is rotated either
counter-clockwise or clockwise. The image layout changes
only when the number of points is below the threshold value.
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FIGURE 5. Result of the postprocessing block. (a) is an input image, and
(b) is output from PINet. The red line in (b) has two outliers which are
considered to be false positives. In (c), the outliers are removed, and only
smooth longest power lines remain.

The first input image in the same figure is at the original
layout. The rotation is applied when the detected power lines
begin to curve horizontally. The layout reverts to the original
setup through a clockwise rotation when the power lines
emerge again as vertical curves.

The rotational transformation is motivated by the unprece-
dented alteration of the slopes of the detected power lines.
From the road lane detection problem, the lanes are always
assumed to be vertical curves. However, the power lines can
be considered as vertical or horizontal curves depending on
the angle where the drone is present. Therefore, the proposed
method should compare the number of points with the thresh-
old value. Thus, as the name implies, the comparator block.

2) PINet ARCHITECTURE
PINet was originally developed to solve the road lane detec-
tion problem. It is a network that can generate points and
distinguish between lane instances. It receives an input image
of 512 × 256 pixels. The image is forwarded to a resizing
layer and then to a feature extraction layer. A sequence of the
convolution and max-pooling layers compress the size of the
input data.

The features from the input data are extracted using two
stacked hourglass blocks. Each hourglass block comprises
down-sampling bottleneck layers, the same bottleneck layers,
and up-sampling bottleneck layers. There are three output
branches at the end of every hourglass block that can predict
each grid’s confidence, offset, and instance feature. Details
on the computation of the loss function for each branch are
elaborately explained in the original study [41].

In this study, the PINet architecture was not altered. How-
ever, the weights of the pretrained model were fine-tuned
to solve the power line detection problem with better
generalization.

3) POST-PROCESSING METHOD
The developed network’s raw predictions occasionally yield
false-positive points. A power line is expected to contain
only a smooth curve. However, there are some outliers
from the predicted points that are visually distinguishable.
Fig. 5 illustrates the existing problem and the outcome after
the postprocessing method. This method adopts the idea of
removing outliers by eliminating the influential points across

FIGURE 6. Least-squares regression lines when outliers are (a) included
and (b) omitted. In (a), the blue line does not fit according to the data
points because the two outliers are highly influential points. Whereas in
(b), the yellow line shows a best-fitted regression line.

the prediction for a single power line. The governing proce-
dure is presented below:
• Step 1: Obtain every detected power line point.
• Step 2: Using Ordinary Least Squares (OLS), fit a

regression model for the data points of each detected
power line. For n sets of data points, there are also n
regression models. The data points can be represented
with linear regression models because of two main rea-
sons. First, the points are two-dimensional numerical
values, the x and y coordinates. Second, a power line
instance is almost always linear.
The OLS model can be written in matrix notation as,

y = Xβββ + εεε (2)

where
• y is the response variable (y-coordinates),
• X is the explanatory variable (x-coordinates),
• βββ is the unknown parameters (coefficients),
• and εεε represents the unobserved random variables

(errors).
• Step 3: Find all influential points in each regression

model. An influential point is a point that significantly
changes the parameter estimates when removed from the
calculations. Fig. 6 shows the scatter plots retrieved from
the actual data of a sample image. The blue line repre-
sents the least-squares regression line when an outlier
is included in the analysis. The yellow line represents
the least-squares regression line when the data point is
tossed out. The two outliers in the scatter plot in Fig. 6a
show a high influence on the blue line. On the other
hand, the regression line in Fig. 6b shows a best-fit to
the data points. The influence is measured using Cook’s
distance. The equation is expressed as,

Di =

∑n
j=1(ŷj − ˆyj(i))

2

ps2e
(3)

where
• ŷj is the jth fitted response value,
• ˆyj(i) is the predicted jth response value with ith data

point removed,
• p is the number of coefficients in the regression

model, and
• s2e is the mean squared error.

• Step 4: Remove the influential points in each regression
model.

• Step 5: Repeat from step 1 to step 4 for all input images.
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B. DATASET
This study used a handheld camera and drone to collect
images to serve as data sets for fine-tuning the network. All
images are set to have a 1280 × 720 resolution. Table 1
presents the distribution of the scenes on training and test sets
based on the number of power lines. The raw images captured
by a handheld camerawere evenly distributed. This is because
the images were obtained through video streams, and the
authors randomly select one image each for the training and
test set for every 20 consecutive frames in the video stream.
Meanwhile, the authors performed data augmentation on the
images captured by drone for the training set, resulting in a
data split of 80% to 20%. The data were obtained within the
Mindanao State University – Iligan Institute of Technology.
This is to prepare the developed system to operate accurately
on the deployment.

This study uses two publicly available PLDU and PLDM
datasets, aside from self-gathered images, to evaluate the
proposed method’s performance. The distribution of images
per set is listed in Table 2, as presented in the original
paper [14].

IV. EXPERIMENTAL EVALUATION
The originally trained PINet model exhibits low false posi-
tives at validation on the tuSimple dataset. Therefore, the goal
of this study is to fine-tune this pretrained network to perform
a good generalization for the power line detection problem.
The initial setup of the network training is adjusted to have a
learning rate of 1e−4, a to 1.0, and γn to 1.0 during the first
300 epochs. For the last 300 epochs, the values of a and γn
were both changed to 1.50. The optimizer used is Adam with
a learning rate of 2e−4. The expected output has a 64 × 32
size. The training happened at Google Colaboratory, which
was powered by GPUs of Compute Engine backend. The test
hardware is a personal computer with NVIDIAGeForce GTX
1050 Ti graphics card.

Fig. 7 shows that the validation losses exhibit decreasing
trends during training of the four datasets.

Comparatively, the validation loss curve from the
self-gathered image dataset using a handheld camera has the
smoothest declining curve among all validation loss curves.
The major reason is that the power lines in that dataset are
nearly identical to the road lanes in the tuSimple dataset. They
are brighter lines of almost the same thickness. However,
the validation losses from PLDM and PLDU datasets exhibit
abrupt spikes, displaying a nonideal but diminishing trend.
It is because the power lines in the two publicly accessible
datasets’ images are less white and considerably thicker than
the road lanes in the tuSimple dataset.

A. EVALUATION METRICS
This study adopted the evaluation metrics presented in [41],
which include the accuracy, number of false positives, and
number of false negatives. Accuracy means the average num-
ber of the correct points and is defined by the following

TABLE 1. Distribution of the scenes according to the number of power
lines on training and test sets from self-gathered data.

TABLE 2. Distribution of images on training and test sets from publicly
available datasets.

equation.

accuracy =
∑
clip

Cclip
Sclip

(4)

where
• Cclip denotes the number of correct predictions on the

given image clip,
• Sclip denotes the number of ground-truth points in the

same image clip.
A false positive, from a power line detection problem per-

spective, is an error indicating a point exists in the image clip
when it should not. This results from an incorrect affirmative
decision. On the other hand, a false negative is an error
indicating a point does not exist in the image clip when it
is supposed to exist. Moreover, a false negative is an error
indicating a point does not exist in the image clip when it
should exist. It results from the failure to identify the presence
of a point. The two errors are defined in Equations 5 and 6
respectively. Equation 5 is also known as the probability
of false discovery. While Equation 6 is also known as the
miss rate.

FP =
Fpred
Npred

(5)

FN =
Mpred

Ngt
(6)

where
• Fpred denotes the number of incorrect predictions,
• Npred denotes the number of predictions,
• Mpred denotes the number of missed predictions, and
• Ngt denotes the number of ground-truths.
In statistical analysis, the F1-measure (also known as F1-

score) is the harmonic mean of the precision and recall of
the model’s performance on the test dataset. It implies the
robustness of the method in the given problem. Precision is
the number of correct predictions over the total number of
predictions. Alternatively, it can be computed by subtracting
the probability of false discovery from one. On the other hand,
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FIGURE 7. Validation loss curves during network training with the four datasets. Minimum validation losses are 0.0852, 0.1443,
0.1447, and 0.1377 respectively from left to right.

FIGURE 8. View results. Top row: input images. Middle row: ground-truth power lines. Bottom row: final line predicts
after postprocessing. First column: sample image captured using handheld camera. Second column: sample image
captured using drone. Third column: sample image from PLDM dataset. Last column: sample image from PLDU
dataset.

FIGURE 9. Results on some sample images from the self-gathered dataset using a handheld camera. Top row: input images. Bottom
row: final line predicts after postprocessing.

Recall is the number of correct predictions over the total
number of ground truths. Alternatively, it can be calculated
by subtracting the miss rate from one. Thus, F-measure can
be obtained by using Equation 7.

F1 = 2 ∗
(1− Fpred

Npred
) ∗ (1− Mpred

Ngt
)

(1− Fpred
Npred

)+ (1− Mpred
Ngt

)
(7)

B. EXPERIMENTS
The authors conducted experimental evaluations on the pro-
posedmethod. They used the images from the test set of every
dataset. The authors used 475 images from the handheld cam-
era and 120 images from the drone (Table 1). The authors also
used 50 images from the PLDM dataset and 120 images from
the PLDU dataset (Table 2). The experiments’ objectives

TABLE 3. Evaluation result on the four datasets.

are to calculate the accuracy, number of false positives, and
number of false negatives. That is performed by comparing
the predictions with the ground truth.

Table 3 presents the detailed evaluation results. In all
datasets used by the authors, the proposed method exhibited
high accuracy, low false-discovery rate, and low miss rate
on the images captured by a handheld camera. Additionally,
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FIGURE 10. Results on some sample images from the self-gathered dataset using a drone. Top row: input images. Bottom row: final
line predicts after postprocessing.

FIGURE 11. Results on some sample images from PLDU and PLDM datasets (From left to right: original image, our modified PINet
model, CCNCDM, BDCN, CFSC, RCF, HED, Gestalt Grouping and Canny). Our model can detect and segment instances of the power lines.
Instead of key points, a single line represents an instance of a power line through a curve fitting with linear least-squares.

the method also performed with acceptable accuracies on the
other datasets.

The visible features of the power lines in the images are the
major cause of the large disparity in performances. The input
images from every dataset showed that the power lines from
the image captured by the handheld camera are more visu-
ally vivid compared to the other datasets (Fig. 8). They are
whiter and more distinguishable from the complex environ-
ment. Further, the PLDU dataset exhibited the second-highest
accuracy. This is because the power lines in this dataset
are thicker compared to the other datasets. The thickness of

the power lines moderately affects the method performance.
Meanwhile, the images captured by the drone present diffi-
culties since power lines are often difficult to identify from
their surroundings, particularly when they overlap with other
objects of the same properties. Nevertheless, the evaluation
results show that Transfer Learning from a pretrained road
lane detection model to the power line detection agent is
feasible.

The input images from the self-gathered data using a
handheld camera showed that the power lines were not in
a uniform point-of-view from different scenes (Figure 9).
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TABLE 4. F1-measure on PLDM test set.

The angles from the reference point where the authors posi-
tioned the camera may vary from one scene to another. In
some scenes, the power lines are taken from the sides. While
on another scene, the power lines are taken from a bird’s
eye view. The non-uniformity of the shots wants to simulate
the possible varying views of the power lines, thus intending
to train a model to predict robustly even in different point-
of-views. The proposed method showed feasibility in these
cases as long as the power lines are vivid and do not mix
inadvertently with the background. The quality of the image
still matters as it directly impacts the accuracy of the model.

The drone is positioned above the power lines during data
gathering to capture the power lines on a bird’s eye view.
As shown in Figure 10, the input images appear as parallel
vertical lines converging at the horizon. The proposedmethod
had an acceptable result with this dataset. However, the per-
formance may deteriorate at some point, especially when the
power lines are almost untraceable because they mix with
the background. This scenario causes an increase in false
discovery rate and miss rate. Improving the quality of drone
shots can enhance the performance of the model.

Using the PLDM and PLDU test sets, the authors
compare the proposed method with the reported results
from the paper that introduced the Convolutional Neural
Network-based cable detection method (CNNCDM) [42].
Most of the reported results can be cited back from the
paper that studied the convolutional features and structured
constraints (CFSC) for power line detection [14]. Further-
more, the paper in [42] compared the performances of several
methods, like Bi-directional cascade network perceptual edge
detection (BDCN) [43], CFSC [14], Richer convolutional
features for edge detection (RCF) [44], Holistically-nested
edge detection (HED) [45], Gestalt Grouping [46], and
Canny [47]. Figure 11 shows test results on some sample
images from both PLDM and PLDU datasets. The sample
images of the previously-mentioned methods are copied from
the CNNCDM paper. It is worth noting that these methods
produce resulting images of predicted edges.

Meanwhile, the proposed method of this paper predicts
key points of the power lines, just like CNNCDM. Although,
the proposed method can segment instances of the power
lines, unlike CNNCDM.As shown in Figure 11, the predicted
key points for each instance are represented with a single
line through a curve fitting with linear least-squares. In this
manner, the key point estimation and point instance segmen-
tation are suitable for detecting power lines. Tables 4 and 5
compare the F1 scores of the proposed method and some

TABLE 5. F1-measure on PLDU test set.

existing works as evaluated on the test sets of both PLDU and
PLDM. The reported results are copied from the CNNCDM
paper. The proposed method may not excel on the PLDM test
set, but it surpasses all existing methods on the PLDU test set.
Besides, predicting key points and segmenting power lines is
much significant for the distribution line inspection.

V. CONCLUSION
The authors of this paper proposed a new power line detection
method that uses Transfer Learning to fine-tune a pretrained
road lane detection network in order to detect power lines
for distribution line inspection. The proposed method, which
is based on PINet, can detect power lines from a given
image and handle line orientation variations. The results
from the four datasets demonstrated the feasibility of the
proposed method as it achieves acceptable accuracy, low
false-discovery rate, and low miss rate. The study’s future
work includes to deploy the method to an UAV’s microcon-
troller, investigate other road lane detection methods as a
replacement for PINet, improve latency of the postprocessing
technique, and improve the drone’s camera setup to obtain
more vivid power lines.
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