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ABSTRACT Scientific workflows are composed of many fine-grained computational tasks. Generally,
a large number of small tasks will slow down the workflow performance due to the scheduling overhead
incurs during the execution time. Task clustering is an optimization technique that aggregates multiple small
tasks into a large task to reduce the scheduling overhead, and thus it will reduce the overall workflow
makespan, i.e. the total execution time taken by the resources to complete the execution of all of the
tasks. However, finding an optimal clustering number is a big challenge as it usually requires manual
intervention of experienced researchers to define the clustering parameter. In this paper, we proposed the
use of reinforcement learning to tackle this problem by automating the discovery of the optimal clustering
number for the submitted workflow. First, wemodel the workflow environment that allows the reinforcement
learning agent to interact by determining the cluster number for every round of workflow execution. Then,
based on the provenance records after the execution, the workflow environment will analyze the performance
data and then determine either a reward or a punishment as the feedback to the reinforcement learning
agent. The evaluation experiments are performed using real-world scientific workflow (e.g. Montage in
this research), to demonstrate our model capability to identify the optimal cluster number and thus lay the
groundwork for the adoption of reinforcement learning in workflow task clustering.

INDEX TERMS Clustering method, machine learning, workflow management software.

I. INTRODUCTION
In general, large-scale scientific experiments produce a mas-
sive amount of complex and heterogeneous data streams [1].
Although the convergence of modern computing systems
(such as clusters and clouds) with big data technologies
enables data-driven scientific applications, there is still a need
for software systems to enable dynamic coordination and
resource optimization. For example, Workflow management
systems (WMS) enables a mapping of various components of
the scientific applications and effectively utilize their under-
lying computational resources. The basic element of WMS is
a workflow which is commonly represented by direct acyclic
graph (DAG) where the computational tasks are mapped on
the nodes while both the data and control dependencies are
represented on the edges. A few common WMS include
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Pegasus [2],Wings [3], KNIME [4], Airavata [5], Hermes [6],
Cloudbus [7] and Galaxy [8]. These WMS systems primarily
handle multiple workflow submissions by researchers and
perform scheduling of tasks across various computational
resources, handle node/system failure, enable recovery, exe-
cution outcome, and monitor the workflow execution lifecy-
cles. Thus, an efficient identification and utilization of the
available computational resource are critical to achieve the
optimal performance.

Scientificworkflow usually comprisesmany granular tasks
where the lifespan of these tasks is varied accordingly. The
worst-case scenarios of these tasks arise when the scheduling
overhead becomes longer than the execution time of the tasks.
The situation may become even worst when the scheduling is
performed in the large-scale computing systems where both
the scheduling and coordination time introduce latency when
compared with the execution time. Numerous research stud-
ies [9]–[11] proposed a task clustering approach to cluster
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the fine-grained tasks into the coarse-grained task in order
to reduce the number of tasks, i.e. reduces the overhead
and optimizes the performance of the workflow execution.
Generally, workflows are executed in four different phases
which are (i) composition, (ii) mapping, (iii) execution, and
finally (iv) provenance [12]. The configurations of each phase
vary accordingly to the problem domain and the optimization
objectives, while task clustering optimization is commonly
applied in both the mapping and execution phase in theWMS
environment.

Task clustering consists of two variants, namely horizontal
and vertical clustering. Horizontal clustering merges multiple
tasks within the same horizontal level of theworkflow. In con-
trast, vertical clustering merges tasks at the same pipeline
vertically. Generally, the granularity of the task is based on
the cluster size and cluster number. Cluster size controls the
number of tasks in a group and cluster number controls the
total number of the cluster for the specific task. Fig. 1(a)
shows an original workflow that undergoes before the clus-
tering process. Fig. 1(b) demonstrates the effect of horizontal
clustering with cluster size for task B= 3 and cluster size for
C = 2, respectively. However, it is visualized that there are
only four tasks B in the same layer. Even it is an insufficient
task for the second cluster of task B to fulfill the size of 3,
it still groups task B into two clusters. In contrast, if the
configuration is cluster number, task B in the same horizontal
layer will be enforced by the WMS engine to group accord-
ingly as requested, as shown in Fig. 1(c). From here, it can be
seen that determining an optimal cluster number to deliver
the optimal performance of the workflow execution remains
a hurdle inWMS as it is commonly specified by the scientists
based on their understanding of the workflow structures. As
a result of this, it is impractical that having a scientist that
familiar with different domains of workflow and optimize
it all day long manually. Thus, the main motivation of this
paper is to automate the optimal cluster number process and
improve the workflow performance over time without human
intervention.

In the previous study [13], we had explored a Hybrid
Genetic Algorithm (HGA) to optimize the scheduling plan
in the scheduler. Yet, due to the nature of scientific work-
flow where the workflow is repeatedly executed over time
with slight variations on the parameters, inputs, or workflow
structures, the evolutionary algorithm shows limitations on
adapting the change and the lack of the recognition ability.
On the contrary, machine learning methods have the potential
to discover underlying patterns with minimal intervention.
Thus, in this study, we hypothesis that aWMSwith the ability
to collect data and leverage machine learning to continuously
analyze and improve its execution performance is an interest-
ing endeavor. Instead of focusing on the scheduler to optimize
the scheduling plan over the assigned fine-grained tasks in the
execution phase of the workflow lifecycle, we focus on opti-
mizing the workflow tasks clustering in the mapping phase
whereby the workflow tasks are not assigned to any phys-
ical resource for execution. By clustering the fine-grained

FIGURE 1. Horizontal Clustering: Cluster Size and Cluster Number.

tasks during the mapping phase, lower down the number of
tasks for the scheduler in the execution phase and improve
the makespan of the workflow execution. Specifically, our
objective is to closely monitor the performance of workflow
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execution and determine the optimal number of clusters to
gain adequate performance.

Nevertheless, determining which machine learning
approach toward task clustering optimization is pivotal.
With the absence of high-quality labeled data that are pro-
hibitively expensive and almost impossible to generate due
to the computational complexity of the scientific workflows
(Scheduling optimization is an NP-hard problem). It limits
the approaches of machine learning on identifying cluster
numbers for the workflow. Another consideration is that
the machine learning method learning from examples for
NP-hard problems is a suboptimal approach. As the model’s
performance largely depends on the quality of the labeled data
and it would not be of interest to train a model that mimics
the results of a heuristic solver algorithm. Previous study [14]
has empirically demonstrated on the Traveling Salesman and
KnapSack combinatorial optimization problems that even
optimal solutions are used as labeled data in a supervised
learning approach, the generalization can be rather poor com-
pared to a reinforcement learning (RL) agent that can discover
different solutions and observe based on the corresponding
rewards. Given the inability to obtain optimal labels data
nor open repositories, supervised learning does not apply
to the scheduling problem as well as to most combinatorial
optimization problems. Utilizing a reinforcement learning
approach, it is possible to compare the quality of a set of
solutions and provide reward feedback to course a learning
algorithm.

In this paper, we examined the existing machine learning
methods and determine the suitable approach, i.e. reinforce-
ment learning, toward identifying optimal cluster numbers
for the task clustering optimization. Two experiments are
conducted to examine the proposed approach with different
environments and WMS such as Pegasus and WorkflowSim.
The result of the experiments shows that the RL agent can
improvise the task clustering decision throughout the work-
flow execution over several executions and obtain optimal
performance. The proposed model is extendable to provide a
baseline of the reinforcement learning adoption in scientific
workflow task clustering optimization. The rest of this paper
is organized as follows. Section II gives an overview of the
related work. Our proposed approach and execution environ-
mentsmodel is presented in Section III. Section IV reports the
experiments results in discussion. We conclude and discuss
the further research in Section V.

II. RELATED WORK
Workflow scheduling has been a challenging issue in work-
flow execution. The high quantities of the fine-grained tasks
is a common problem for the performance in distributing
platforms where the scheduling overhead and queuing times
at resources are high. Task clustering is a technique that com-
bined fine-grained tasks in the workflow into coarse-grained
tasks to reduce the scheduling overhead by simplifying the
workflow structure and improve the workflow execution per-
formance. For instance, Singh et al. [15] proposed level and

label-based clustering whereby an user is able to specify
either the number of clusters or tasks per cluster within the
same level of workflow or labels manually by the user to
group the tasks respectively. Even though their work con-
sidered data dependencies between workflow levels, it is
still not flexible enough for everyone as not every user
has the knowledge over workflow optimization. Nonethe-
less, this method is easy proned to errors and unscalable.
Chen et al. [9] proposed an algorithm that clustering the
task based on the balance between the task run-time and
dependency in order to improve the overall makespan of
the workflow execution. Based on Chen et al. balance task
clustering approach, Dong et al. [10] further enhance the
algorithm toward cost-effective awareness by clustering the
tasks vertically and horizontally with a greedy allocation
of the resources in the cloud environment without missing
the deadline constraint (part of the QoS in a cloud environ-
ment) [16]. Avinash et al. [17] assessed the task-dependency
of the workflow by calculating the impact factors on the
workflow structure tasks that focus on single parent sin-
gle child relationships and available resources to make the
clustering decision. However, applying the task clustering
technique in different phases of the workflow lifecycle yields
different behavior and outcome due to the information dis-
parity and availability different across phases. Wang and
Sinnen [11] explained that task clustering scheduling involves
three simple procedures: clustering, cluster merging, and task
order. The clustering process is a simple step where it groups
similar or labeled task together. Clustering merging is com-
bining the task groups if the number of clusters is more than
the number of processors available. At last, map each cluster
to the processor, and task ordering happen at the machine
execution layer. As compared to the mapping phase, only
the clustering merging process is applied. Task clustering in
the mapping phase is focused on high-level abstraction of
workflow processes to perform clustering optimization. In
contrast with the execution & mapping phase, the task clus-
tering algorithm is focused on identifying workflow structure
and clustering tasks. Our proposed approach is to apply rein-
forcement learning on identifying the optimal cluster number
for the workflow in the mapping phase. We believe that pro-
viding a feedback from the workflow execution performance
data (which only available in the execution and monitoring
phase) to the mapping phase, will help the WMS to make
a better decision on identifying the cluster number towards
the submitted workflow and thus improve over the number of
executions.

Recently, researchers have shown an increased interest in
adopting reinforcement learning into the scientific workflow
optimization domain. For instance, Tong et al. [18] applied
the Q-learning method [19] to assist the HEFT scheduling
algorithm to improvise the task orders in an optimal order
to improve the scheduler performance. Barret et al. [20]
applied reinforcement learning with the Q-learning method
toward user request demands to determine the resource allo-
cation decision. Wu et al. [21] apply REINFORCE, policy
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gradient approach to obtain an optimal scheduling plan to
reduce the makespan of the execution. Orhean et al. [22]
proposed a framework that used a reinforcement learning
algorithm to learn and determine the optimum scheduling
algorithm for workflows within a heterogeneous and dis-
tributed resources environment to reduce overall execution
time. Kintsakis et al. [23] extended Hermes [6] WMS capa-
bilities that leverage machine learning to predict workflow
task runtime and the probability of failure on task assignment
to execution sites. As the task failure decrease over the exe-
cutions, thus workflow runtime has been reduced. The policy
network model for task prediction is trained offline by using
the reinforcement learning approach. We argue that heuristic
scheduling approaches have the difficulty to handle the ver-
satile of workflow design and diversities of task execution
in modern scientific discovery experiments. We adopt the
reinforcement learning method that will grant the WMS to
identify the optimal cluster number of tasks during the exe-
cution on computational resources, with different workflow
computational requirements, to obtain the shortest workflow
makespan.

III. MODEL AND DESIGN
Reinforcement learning has been applied successfully across
a range of domains supporting automated control and allo-
cation of resources [20]. The main notations adopted in this
study are listed in Table 1.

TABLE 1. Main notations used in this study.

A. TASK CLUSTERING OPTIMIZATION MDP
FORMULATION
Reinforcement Learning problems can be modeled using
MDP. Reinforcement learning methods facilitate solutions to

MDPs in the absence of a complete environment model. This
is particularly useful when dealing with real-world problems
as the model can often be unknown or difficult to approxi-
mate. To implement task clustering workflow optimization,
firstly required to model the optimization problem into MDP.
MDPs are a particular mathematical framework suited to
modeling decision-making under uncertainty.

It constructs by four elements, M =< S,A,P,R >,
where S, represents the sets of all possible states of that
RL agent’s observable world. A represents the total action
space, P defines a probability distribution governing state
transitions. R defines the probability distribution governing
the rewards received on the actions perform, at during st .

In the context of workflow task clustering optimization,
the ideal MDP description will be using workflow makespan
as the state space, Smakespan, clustering parameter as the action
space, Acluster number, probability of state shift will be based
on the clustering parameter chosen that affect the workflow
makespan, Pcluster number, and along with the reward mech-
anism for indicating the clustering parameter yield better
performance, Rmakespan as shown in 1(a).

M = {Smakespan,Acluster number,Pmakespan,Rmakespan} (1a)

M = {Scluster number,Acluster number,Pcluster number,Rmakespan}

(1b)

There are several challenges to adopt the MDP description
in 1(a). Firstly, if workflow makespan, tmakespan is used as
the state of the MDP description, then the state space of the
MDP will be from the range of 0 to infinity, 0 < tmakespan <

∞, as the workflow makespan is time-series data. With the
endless possibility of state space, the probability of state
transition based on the action goes infinite as well, which
the agent deemed to be challenging in identifying the optimal
clustering parameter which yields the best reward. Apart from
infinite state and possibility, the workflow makespan also
varies from each execution with the same configuration given
as the resources and scheduling time is inconsistent. Based on
these assessments, using workflow makespan as the state of
the MDP description in 1(a) is invalid.

The state of the MDP is required to be repeatable, pre-
dictable, and controllable. Thus, the cluster number is cho-
sen for the proposed method. In contrast with workflow
makespan, cluster number ranges from 0 to the number of
total CPU in the resource pool, ncpu. As the number of cluster
numbers more than the total number of CPU in the resource
pool, the performance of the workflow will be worse. The
probability of the state transition on each state will be model
as 1

ncpu
. It is a more predictable and repeatable state identified,

the MDP description based on the cluster number is used for
the proposed method as shown in Equation 1(b).

B. REINFORCEMENT LEARNING WORKFLOW
ENVIRONMENT PROPERTIES
The concept of developing a workflow environment for rein-
forcement learning (RL) is inspired by Arcade Learning
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Environment (ALE) that was proposed by Bellmare et. al [24]
as a software framework for interfacing with emulated
500 games that originally developed for the Atari 2600.
Before designing the environment, it is crucial to first under-
stand that the environment’s predictability and complexity.
Workflow environment is amodel based on the nature ofWMS
execution over workflow submitted on fixed resource pools
that are allocated. Typically, workflow submitted toWMS for
execution will schedule by the scheduler and each workflow
execution will obtain a portion of necessary resources from
the pool to execute. When there are multiple workflows able
to schedule and execute concurrently, the availability of the
resources becomes unpredictable which leads to the unpre-
dictable workflow makespan. The objective of the work-
flow environment is to provide a learning environment for
the RL agent to learn about the optimal clustering which
yields the best makespan for particular workflow execution.
Russell and Norvig [25] suggested seven properties of the
environment to determine the difficulty, which are deter-
minism, static, observable, agency, knowledge, episodic, and
discreteness. Based on the observation of WMS executing
workflow, the properties of environment can be inference
as stochastic (i.e. workflow makespan rely on the resource
availability), dynamic (i.e. computation resources availabil-
ity), fully observable (i.e. provenance data), multi-agent (i.e.
number of users of WMS), unknown (i.e. the outcome of
the clustering parameter toward makespan), episodic (i.e.
clustering parameter is independent to workflow makespan
on every execution), and continuous (i.e.WMS is constantly
executing submitted workflowwithout turning off) by nature.

However, the inconsistency of resource availability and
makespan of the workflow enactment is dynamic and unpre-
dictable, which is anticipated as a challenge for the RL agent
that leads to the high error rates on learning the outcome of the
experiment. Hence, certain properties of the workflow envi-
ronment required modification for the goal of the experiment
design. First, the observable of the WMS environment from
full to partial observable, as the RL agent does not require to
obtain all performance provenance data for decision making
but solely the workflow makespan. The workflow makespan
is a time-series data, whereby it is a continuous variable and
difficult to form an internal representation model within the
RL agent under two conditions, the workflow makespan can
be identical regardless of different clustering parameter is
provided, and the makespan of the workflow can be different
with an interval of time, for instance, 100 and 105 seconds
respectively, by using an identical clustering parameter pro-
vided in different rounds of execution. Therefore, instead
of feeding back RL agents with the workflow makespan,
clustering parameter as the state of the environment is more
preferable. Next, the static of theWMS environment is altered
from dynamic to static by controlling the number of workflow
enactment to ensure the availability of resources available
and the consistency of workflow makespan. Lastly, the dis-
creteness of the environment is the change from continuous
to discrete for the workflow environment design to control the

range of clustering parameters and the number of workflow
enactments per episode.

In practice, workflow submission and enactments are
ongoing tasks, and the optimal clustering parameter for
each workflow is unique without constraint. Yet, enforcing
a constraint on both workflow submission and clustering
parameters is necessary for the validation of this research
as a control variable in the experiment. By setting a limited
number of workflow enactments per episode, the workflow
makespan is more consistent and predictable for the RL agent
to figure out the optimal clustering parameter for a workflow.
Therefore, the properties and behavior of the workflow envi-
ronment is model as stochastic (previous workflow execution
is independent to the future execution), static (computation
resource availability), partial observable (clustering parame-
ter), single-agent (number of users using theWMS), unknown
(unpredictable makespan), episodic (workflow makespan is
independent on previous execution), discrete (number of
workflow execution per cycle).

C. PROPOSED SOLUTION
At any discrete time step t = 0, 1, · · · ,T − 1 where T is
the final step, the RL agent receives a representation of the
environment’s state, st ∈ S, where S is the set of all possible
states, and on that basis the RL agent selects an action, at ∈ A,
where A is the set of all available actions. One time step later,
at t + 1, as the results of the agent’s action, the RL agent
receives a reward rt+1 ∈ R and an update of on the new
state, st+1 from the environment. Each cycle of the interaction
is called a transition experience, et+1 = (st , at , rt+1, st+1).
Fig. 2 shows a general interaction between an RL agent and
the environment.

FIGURE 2. The RL agent and environment interaction in reinforcement
learning.

At each time step, the RL agent implements a mapping
from states to all possible actions, π : S → A, called policy.
The objective of the RL problem is to obtain the highest
expected value of return, Gt =

∑T
t ′=t γ

t ′−trt ′+1 for all t =
0, 1, · · · ,T − 1, where T is the final step and γ ∈ [0, 1]
is a discount factor. The optimal policy, is the policy that
maximizes the expected return, i.e π∗ = argmaxπEπ [Gt ],
where Eπ [.] denotes the expected value of random variable
given that the RL agents follows policy π . In order to solve
this optimization problem, it is often useful to define a value
function q : S × A→ R. In order to seek the optimal policy,
the RL agent can search for the optimal state-action value
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function, q∗ = maxπqπ (s, a) for all s and a. In this paper,
the RL agent has adopted the Q-learning policy to identify
the optimal cluster number for the submitted workflow.

In our implementation, as shown in Fig. 3, the agent-
environment interactions begin with the initialization of the
workflow environment by generating an initial state, S0 by
the state function, where 0 < S0 < ∞ represent the
cluster number that the environment was chosen and pass to
the RL agent to determine the suitable action to act upon.
Based on the observation state, S0, the RL agent employs
Q-learning as the optimal policy to determine the action, A0,
the optimal clustering number for the workflow execution.
When the workflow environment received the action, A0 from
the RL agent, the embed WMS will responsible to execute
the experiment. The interaction between the RL agent and the
environment will be on hold until the workflow is completely
executed. The environment is always ensuring resource avail-
ability and only one workflow is executing at a time. After
the workflow is completed, the interaction is resumed with
reward evaluation by querying the provenance records of the
workflow whereby extended from existing WMS features.
The pseudo-code for the RL agent that interacts with the
workflow environment is given in Algorithm 1.

f (reward) = R(
∑
n

jobmakespan); (2a)

jobmakespan = tpre-scheduling + texecution + tpost-scheduling;

(2b)

Algorithm 1: Reinforcement Learning Agent Policy: Q-
Learning
Input : At
Parameters: α = 0.5, γ = 0.7, ε = 0.3
Initialize Q(S,A);
foreach episode do

Initialize S0;
while terminate condition does not match do

Choose At from S using policy derived from Q
(e.g. ε-greedy) ;
Take action At and execute experiment ;
Observe Rt (return by Reward Function 2) and
St+1 ;
Q(St ,At )← Q(St ,At )+ α[Rt +
γ maxQ(St+1,At+1)− Q(St ,At )] ;
S ← St+1 ;

end
end

The rewarding function, f (reward) evaluation shown
in 2a is based on the makespan of the workflow execu-
tion. jobmakespan represents the sum of all workflow jobs
pre-scheduling time tpre−scheduling, execution time texecution,
and post-scheduling time tpost−scheduling, as shown in 2b.
Every cycle of the workflow execution will be stored within

an array of execution records, Rmakespan, and the 10th per-
centile of the Rmakespan is evaluated before stored in an array,
R10th percentile, which is used as the benchmark of RL agent
rewards. If the current cycle of the makespan, tcurrent makespan,
is performed better than the mean of the records of 10th
percentile, Rpercentile, then a positive reward, +1 will be
returned to the RL agent as a positive action, else −1 will
be rewarded as a punishment of the chosen action. To prevent
the data distribution bias of the Rpercentile to one end of the
records, the 10th percentile of the Rmakespan of each execution
is evaluated by improvement of 10% before added into the
list of R10th percentile, as shown in the Reward Function 2.

Reward Function 2: Compare With the Mean of Per-
centile Records
Variable:
Rmakespan = {records of each cycle makespan}
R10th percentile =
{10th percentile records of each cycle makespan}
Rpercentile = mean of the R10th percentile
tcurrent makespan = current cycle of makespan
t10th percentile =
the 10th percentile of the makespan from the records
Function Reward(tmakespan):

if
|t 10th percentile −Rpercentile|

t10th percentile
* 100 > 10 then

add t10th percentile to R10th percentile ;

if tcurrent makespan ≤ Rpercentile then
Rt = 1 ;

else
Rt = −1 ;

return Rt ;

At the same time, the environment will generate the next
state, S1 along with the reward, R0 to be returned to RL
agent, and counted as a complete single cycle of the episode
during the experiment. The reward function represents both
the unknown and stochastic of the workflow environment
characteristic, whereby the makespan of the workflow is
unpredictable for each execution and every execution is
independent of the previous execution respectively. The expe-
rience and interaction of the RL agent and workflow envi-
ronment are represented as the episodic and discrete of the
environment. The RL agent will continuously interact with
the environment by acting for a maximum of 100 cycles
as an episode until the terminal state or objective of the
environment is achieved.

IV. EXPERIMENTS AND DISCUSSION
A. EXPERIMENT SETUP
Two experiments were conducted to validate our proposed
model. The first experiment was carried out using Pega-
sus [2], deployed in UM Data-Intensive Computing Centre.
The master node server is equipped with a 2.40 GHz Intel
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FIGURE 3. The proposed workflow reinforcement learning environment.

E5645 processor, 8 GB memory, and 100 GB of storage,
together with two slave nodes with the same Intel E5645 pro-
cessor, each with 12 CPUs running at 2.40 Ghz, 16 GB
memory, and 1TB storage to evaluate real-time performances.
Due to the resource limitation in DICC, we only managed to
set up a testbed with 24 slave nodes. Thus, we conducted a
scale-up experiment in WorkflowSim [26], a cloud workflow
simulation tool. The environment comprises 100 slave nodes,
and each node consists of 1 CPU, 512 MB memory, and
10 GB of storage.

All of themachineswere installedwith Java (version 8) and
Python (version 3.6) to support the experiment framework
that comprises: a) the Pegasus (version 4.9.1) as the workflow
manager to manage the workflow submission, provenance
query, and enactment monitoring, b) HTCondor [27] as the
workflow execution engine that manages the task schedul-
ing and execution, and c) OpenAI Gym [28], a toolkit for
developing and comparing reinforcement learning algorithm.
Open AI Gym is used to model theworkflow environment and
apply the reinforcement learning algorithm for learning the

clustering parameter optimization. TheMontage (version 5.0)
was used as the use case to generate the test workload as the
input for the experiments.

Montage is a science-grade mosaic generating engine that
is commonly used in astronomy. It was initially funded by
NASA’s Earth Sciences Technology Office and is currently
maintained by the Infrared Processing and Analysis Centre
(IPAC). Montage is used to combine multiple satellite images
within the same region into a mosaic. The input of the Mon-
tage workflow contains the region of the sky that is desired,
the size of the mosaic in terms of square degrees, and other
parameters such as which image archive to be used. The
images for the mosaics are taken from the images archives,
such as the Two Micron All Sky Survey (2MASS) [29],
Sloan Digital Sky Survey (SDSS) [30], and the Digitised Sky
Surveys at the Space Telescope Science Institute (STScI). The
input images are first reprojected to the coordinated space of
the output mosaic. The background of the reprojected images
will then been rectified and added to become the final output
mosaics according to degrees specified, as shown in Fig. 4.
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FIGURE 4. Overall structure of the Montage workflow.

Montage is a highly scalable and complex data-intensive
application [31]. It comprises a large number of tasks with
small runtime of at most of a fewminutes. Bharathi et al. have
developed a workflow generator called Workflow Genera-
tor [32], to create workflow models of any size that resemble
real workflow applications. The workflow model generated
by the Workflow Generator uses the XML file format to
represent the DAG workflow model (DAX), i.e. the work-
flow representation in the Pegasus. One of the generated
workflow models of Montage with 1000 nodes was used in
WorkflowSim to examine the effectiveness of the proposed
approach in the second experiment. The complete source
code and experiment setup can be found at our Github [33].

B. EXPERIMENT 1: PROPOSED MODEL EVALUATION
USING PEGASUS WMS
The first experiment aimed to validate our proposed
reinforcement-learning model for workflow task-clustering
described in Section III-C.We had chosen theMontage work-
flowwith a single band(red) of color with 0.5 degrees over the
2MASS dataset. This workflowwas used as the test workload
for the execution on the Pegasus WMS testbed set up in
DICC, which consists of 24 slave nodes.

FIGURE 5. Pegasus makespan over cluster number.

In Pegasus, the task clustering process happens during the
workflow mapping phase [2]. The workflow manager uses
the transformation catalog to map the abstract workflow to
a concrete workflow with executable tasks, which are ready
to be enacted on the execution platform. In our experiment
testbed, the workflow environment received the action from
the RL agent, i.e. the desired cluster number, and changed the
transformation catalog accordingly (refer to Fig. 3). Based on
Chen et al. [34], we have identified four tasks to be clustered
in the Montage workflow, i.e. mProject, mDiff, mDiffFit,
and mBackground. The performance data for each execu-
tion is captured by the Pegasus provenance module. Thus,
the makespan of each run can be obtained by querying the
Pegasus provenance record to update the reward function. To
validate our proposed model, we performed a preliminary run
of 30 execution over each cluster number within the range of
0 < clusternumber < 30 to collect the workflow makespan.
The optimum cluster number found is 9 and 10, and will
be used as the ideal cluster number range to benchmark the
performance of the RL agent, as shown in Fig. 5.

1) EXPERIMENT SETUP
• Action range, A: 1 ≤ A ≤ 10
• Ideal action range: 9 ≤ A ≤ 10 as shown in Fig. 5
• Environment State, S: Uniform random between 1 to 10
• Episode Setting: 100 cycles of execution
• Episode Terminate Condition: Repisode > 20 or
Repisode < −20 or reach 100 cycles of execution

• Total episodes of the experiment: 100 episodes

2) EXPERIMENT RESULTS
The results of the first experiment are shown in Fig. 7. The
Q-value in Fig. 7a and Fig. 7b shows that the RL agent
managed to determine the right pattern shown in Fig. 6, where
the positive rewards are given for cluster number 9 and 10.
Fig. 7c and Fig. 7d show that the RL agent able to consistently
terminate the episode earlier, with an average of 38 cycles
per episode and a positive reward of more than +20. After
5 episodes of execution, the RL agent had found the optimal
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FIGURE 6. Ideal Q-value for experiment 1.

TABLE 2. Overhead parameters configuration in WorkflowSim.

cluster number. However, for the rest of the 95 episodes,
we can see a fluctuation range between 25 to 65 cycles per
episode. This is due to the RL agent constantly exploring
other potential states that yield positive rewards while main-
taining learning objectives.

C. EXPERIMENT 2: SCALE-UP EVALUATION USING
WorkflowSim
The second experiment aimed to perform a scale-up eval-
uation of the proposed reinforcement-learning model for
workflow task clustering using the WorkflowSim [26],
a workflow simulator developed by the Pegasus team as
a flexible workflow engine simulator. It is a common tool
that has been widely adopted within the scientific work-
flow community to simulate large-scale scientific workflow
experiments. WorkflowSim offers various configurations
(e.g. hardware specifications, network speed, and latency) to
make the workflow simulation execution to be more realis-
tic. There are four types of overhead parameters provided

FIGURE 7. Results of experiment 1 over 100 episodes.

in the WorkflowSim for the configuration of task cluster-
ing optimization problems: cluster delay, postscript delay,
queue delay, and workflow engine delay. The cluster delay
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TABLE 3. Qualitative comparison of related work.

FIGURE 8. Mean makespan for preliminary run on WorkflowSim.

is the time required for the WMS to cluster the jobs. The
postscript delay is the time required for the WMS to clean
up the jobs after the job finishes the execution. The queue
delay is the time for the job queue in the scheduler. Lastly,
the workflow engine delay is the time required for WMS
to schedule the workflow for execution. In the experiment,
we had configured the overhead parameter based on the find-
ing of Chen et al. [35] on the overhead analysis over scientific
workflow execution, as showed in Table 2. The Montage
template with 1000 nodes of tasks used in this experiment
is adopted from Bharathi et al. [32].

1) EXPERIMENT SETUP
• Action range, A: 1 ≤ cluster number ≤ 100
• Ideal cluster number range: 2 ≤ cluster number ≤ 11 as
shown in Fig. 8

• Environment State, S: Uniform randombetween 1 to 100
• Episode Setting: 100 cycles of execution
• Episode Terminate Condition: Repisode > 20 or
Repisode < −20 or reach 100 cycles of execution

• Total episodes of the experiment: 100 episodes

FIGURE 9. Ideal Q-value for experiment 2.

2) EXPERIMENT RESULTS
The result of the second experiment is shown in Fig. 10. The
Q-value function in Fig. 10a and Fig. 10b shows that the RL
agent managed to determine the right pattern, where positive
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FIGURE 10. Results of experiment 2 over 100 episodes.

rewards are given to lower cluster number from the range
between 2 to 11, as shown in Fig. 9. The RL agent demon-
strates that over 97% of the states prefer the cluster number
within the optimal cluster range. Fig. 10c also shows that

the RL agent can consistently terminate the episode earlier
with an average of 78 cycles per episode in Fig. 10d and a
positive reward of more than +20. However, we observed
that many states remain unexplored by the RL agent from
Fig. 10a. This phenomenon is due to insufficient episodes for
the RL agent to explore and sample all of the states, i.e. 10000
cluster numbers in the state space.

D. DISCUSSION
The finding of both experiment shows that the RL agent can
identify and maintain the optimal cluster number over the
course of the experiment. Due to the absence of the similar
works optimising task clustering during mapping phase that
can be used for the performance comparison and analysis,
we have performed a qualitative comparison with the relevant
approaches, as presented in Table 3. The comparison was
made based on the optimization phase, target, and machine
learning approach. From the optimization target perspec-
tive, the existing task clustering optimization approaches [9],
[10], [17] focus on identifying the imbalance distribution
of runtime and dependency of the tasks while maintaining
the timeline and budget of the experiment through heuristic
approaches, while the other machine-learning optimization
approaches [20]–[23] are generally improving the scheduler
performance by applying machine learning over the schedul-
ing plan and resource allocations. All of the existing stud-
ies on task clustering and machine learning optimization
approaches are focusing on the execution phase of the work-
flow lifecycle. As compared to our study, we applied task
clustering optimization over the mapping phase during the
workflow enactment. Task clustering in the mapping phase
normalizes the workflow structures and indirectly reduces the
number of tasks submitted to the scheduler to improve the
overall workflow performance. This paper is the first attempt
that applied the machine-learning approach toward mapping
phase optimization in the context of the scientific workflows.

V. CONCLUSION
Scientific workflows consist of many fine-grained computa-
tional tasks. The execution time for each of the tasks may
vary from milliseconds to hours. For workflows with a large
number of small tasks, such as image re-projection and differ-
ence in the Montage workflow, we can optimise its execution
by grouping these fine-grained tasks into a larger cluster to
reduce the execution overhead. In the current practice, most
of the clustering process required domain expert expertise
and experience to decide on the clustering parameter, i.e.
cluster size and cluster number. However, it is impracticable
to have a human intervention to optimize workflows sub-
mitted at all the time. In this paper, we propose to address
this problem by identifying the optimal clustering number
using a machine learning approach. We have defined a new
approach that incorporates the use of RL agent in the WMS.
The workflow environment queries the provenance records of
previous execution to update the reward function for the RL
agent so that the RL agent can determine the best parameter
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to cluster the workflow tasks in the upcoming execution.
This approach allows the continuous improvement of the
workflow makespan over time.

We have conducted two experiments to evaluate the pro-
posed approach. We validated the proposed RL model using
a real-world scientific application, namely Montage and was
enacted using Pegasus WMS. The experiment results showed
that the RL agent was able to learn and identify the pos-
itive rewarded actions, i.e. optimal cluster number, for the
selected workflow. We then performed a scale-up experiment
on WorkflowSim to simulate the workflow environment with
a larger number of computing resources. The RL agent man-
aged to converge as planned. However, we also observed the
limitation of the Q-learning algorithm chosen for our RL
model. After an average of 7,400 execution cycles, there is
still a large number of unexplored states in the RL agent state
space. Thus, we foresee that it will be difficult to scale into
millions of CPU in a real-world HPC environment which
involves the production of an excessively large Q-table and
update.

In the future work, we will explore alternative RL algo-
rithms to overcome the large-state-space convergence effi-
ciency using deep reinforcement learning (DQN) [36],
gradient boost [37], and actor-critic [38]. We also consider to
further improve the performance of our proposed RL model
using a neural network to discover the underlying workflow
patterns before the execution. This information is useful in
identifying which tasks are suitable for task clustering and
further explore other clustering dimensions.
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