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ABSTRACT The existing studies are generally focused on the pixel intensity or noise variance, and not
much attention is given to describe the actual distribution. Some modifications have been proposed over
the years in conventional parametric estimation techniques such as maximum likelihood estimation (MLE)
and Bayesian estimation (BE). These methods have better properties to provide visually pleasing results for
any imagery. In this paper, we use the likelihood estimate from the perspective that as the distribution order
of likelihood increases, the overall effect of parameters under consideration improves within the defined
confidence interval. In this paper, we use two parameters of interest, i.e., contrast and edge information. The
proposed idea uses prior information w.r.t. particular parameter of interest, which is derived from likelihood
estimate. The prior estimation has also been used to compute the reliability of the point estimations under
a confidence interval. The proposed idea has desirable properties such that its optimization improves the
overall image reconstruction.

INDEX TERMS Confidence interval, contrast parameter, edge detection, image priors, likelihood distribu-
tion orders, likelihood estimate, and image restoration.

I. INTRODUCTION
Parameter estimation techniques are used to estimate the
parameters of a distribution model, which maximizes the fit
to a particular data set. The most common methods used
in mathematical statistics are maximum likelihood estima-
tion (MLE) [1] and Bayesian estimation (BE) [2]. These
techniques return the prior and posterior distribution of the
parameters, where the mean of the posterior distribution is
the best-fitting estimate of the parameters. A Bayesian frame-
work interprets the obtained image as an accumulation of the
original image [2]. For exponential families, the likelihood
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is a simple, standardized function of the parameters, and the
conjugate priors are defined in the log-likelihood form. One
of the significant drawbacks of parametric estimation tech-
niques is resolution restoration. Therefore, image priors have
been employed in various imaging applications to restore
the image parameters efficiently. There are various statisti-
cal hypotheses that are supported by maximum likelihood
estimation (MLE) [1], [3], [4]. MLE estimation is generally
used for neighborhood smoothing. But, during neighborhood
smoothing, the sharpness of edges may degrade. This paper
addresses these issues by enhancing the contrast and edge
sharpness of the image.

Generally, sparse signal representation is used in mod-
ern image processing techniques for linear and nonlinear
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transformations [5]. Most of the literature includes pixel
intensity or noise variance, but their exact distribution is not
defined. We have used statistical estimation of likelihood of
image priors such that the contrast and edge information is
restored. The priors use best-fitting parameters for accurate
analysis of likelihood estimate [6], [7]. By simulating indi-
vidual samples of the prior distribution, the actual parameter
values can be recovered, which is assessed using the differ-
ence between first-order and second-order expected likeli-
hood distribution. These estimates are then used to compute
the reliability of the point estimations under a confidence
interval.

In literature, various algorithms have been proposed for
visual quality improvement of images. One of the basic algo-
rithms is histogram equalization (HE) [8] which is widely
used for contrast enhancement. There exist other variants
of HE such as intensity-based mean-preserving HE, mean
preserving sub histogram [9], [10]. One of the advantages of
usingmean preservingHE is that it reduces over enhancement
but the degree of contrast enhancement is uncontrolled due
to mean constraint. Therefore, we propose to maximize the
likelihood estimate using the condition of the parameter of
interest, and controlled estimation is carried out w.r.t. edge
and contrast components.

Other researchers have considered optimization-based
approaches for contrast enhancement [8], [9]. The optimiza-
tion approaches provide flexibility for controlling differ-
ent parameters for enhancement. In [11] and [12] authors
have used intensity mapping function-based optimization for
image enhancement. In [11], the authors used a mapping
function-based optimization, which maximizes the signal
variations for enhancement. In [12], the authors used a linear
transformation-based optimization to restore the image struc-
ture for image enhancement. The aforementioned algorithms
are extensively used for contrast enhancement, but they do not
consider the statistical properties of images. However, in this
paper we have evaluated the statistical estimation based on
confidence interval to address these issues. In the proposed
method, we have maximized the likelihood estimate based
on edge and contrast component to improve the quality of the
image.

The image priors provide better contrast between neighbor-
ing pixels. The different variants of priors have been exten-
sively used in literature for image smoothing and contrast
enhancement. The L1-norm and L2-norm is usually used in
priors to analyze the effect of pixel-based luminance and
interference caused in edge components. The total varia-
tion (TV) prior [13] uses the L1-norm of the gradient. Vector
and Huber prior [14] use a combination of L1- and L2-norms.
The Gaussian prior [2] analyses the effect of neighboring
pixels as per Gaussian distribution. Generally, Markov ran-
dom field (MRF) prior is used for edge restoration [15], [16].
The computation complexity of priors is typically high due to
the exponential function usage. We try to improve the influ-
ence of likelihood order w.r.t. priors on the estimates in this
paper.

Few researchers use posterior distribution estimation using
maximum likelihood (ML) [1]. In this paper, the joint pos-
terior distribution has been marginalized over the param-
eters of interest (edge, contrast) to determine exact value
of the posterior mean. The choice of optimization method
and parameter tuning is significant for exact estima-
tion. In recent works for optimization, the variational
expectation-maximization algorithm [15], variational Bayes
approach [16], and majorization–minimization approach has
been used. But, these methods affect image prior so that the
accuracy of estimate reduces. In this paper, we propose to use
an optimization problem so that the effect of edge and contrast
enhancement is maximized.

We have compared our work with the existing prior models
used for image enhancement. In [16], the Authors used a
bilateral total variation (BTV) prior which is based on vari-
ational Bayesian analysis which enhances the visual quality
of a low-resolution image. The drawback of this method is
that the final image could not restore sharpness. This method
has good noise suppression ability, but the results tend to
be blurred. In [17], authors adopted the generalized Gaus-
sian Markov field (GGMF) which is bound for heavy tail
distributions. It is evident that in Heavy tails all moments
may not exist, and few of the pixel information might be
lost. This is overcome by computing higher-order statistics,
which leads to increased computational complexity. In [18],
the authors propose a heavy-tailed prior (HTP) based model
which performs maximum a posteriori estimation for image
enhancement. But, in these models, authors have focused on
resolution enhancement only.

This paper is organized as follows; Section 2 provides the
extraction of contrast and edge components. Section 3 details
the proposed method. Image priors for enhancement are eval-
uated in Section 4. Section 5 presents modified likelihood
coefficients. Optimization of likelihood distribution is pre-
sented in Section 6. Section 7 presents numerical results and
discussion. Finally, Section 8 concludes the paper.

II. EXTRACTION OF CONTRAST AND EDGE COMPONENTS
The discrete image (I ) of size M × N is given as matrix
I =

[
Iij
]
. The contrast matrix is = (i, j) and edge

matrix is = (i, j) such that i = 0, 1, 2, . . .M − 1 and
j = 0, 1, 2, . . .N − 1. The grayscale values of the discrete
image lie in a range between 0 to 255. Clarity of an image can
be significantly improved using contrast enhancement and
edge detection methods [19, 20]. Extraction of such features
from an image is one of the important issues [21].We used the
method presented in [22] to calculate the edge and contrast
components of the image. Each edge component is the con-
volution between the image and its corresponding fractional
differential pair [22]. The edge parameter ( ) corresponds to
the magnitude of edge components such that

(i, j)=
1√(

Dα
x
)2
+

(
Dαy
)2 [{Dαx ∗ Iij}+ {Dαy ∗ Iij}] . (1)
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Here, α is the order of Riemann-Liouville Fractional
Derivative [21]. Dαx and Dαy are α order derivative of Iij in
x and y direction, respectively [22]. The contrast component
( ) is computed in reference to nearby pixels such that

(i, j) =
(
Ef (i, j)− Eb (i, j)

)
× ln

[
mb (i− 1, j− 1)	mf (i− 1, j− 1)
mb (i− 1, j− 1)⊕mf (i− 1, j− 1)

]
. (2)

In eq. (2) the contrast component is computed in reference
to nearby pixels to find relative values of these parameters
with respect to one another. This is demonstrated by the
pixel space (i − 1, j − 1). Ef (i, j) and Eb(i, j) are foreground
and background image entropy [22, 23]. 	 and ⊕ denote
Logarithmic Image Processing (LIP) subtraction and addi-
tion respectively [24]. mb and mf denote mean gray value
of background and foreground [24]. We set a threshold for
(i, j) such that we select only those pixels whose contrast is

greater than a threshold ξ in the range from 0 to 1. We have
computed the edges matrix using fractional calculus. Algo-
rithm 1 presents the stepwise procedure to extract contrast
and edge components.

Algorithm 1 Extraction of Contrast and Edge Components
1 Input: Input image, Iij.
2 Output:Extraction of edge matrix ( (i, j)) and con-
trast matrix ( (i, j)).

3 Compute edge matrix, (i, j) using directional
derivatives of image Iij.

4 Set a threshold ξ in the range from 0 to 1 so that
in contrast matrix (i, j) only those pixel values are
stored whose contrast is greater than ξ .

5 Compute contrast matrix, (i, j) with reference to
nearby pixels in terms of foreground and background
image entropy.

6 Return, edge matrix, (i, j) and contrast matrix,
(i, j).

III. PROPOSED METHOD: FIRST ORDER LIKELIHOOD
DISTRIBUTION
Wefirst extract the contrast and edge matrices from the image
and then their maximized likelihood estimates are computed.
Later, we use an optimization method for maximization of
statistical estimate. Figure 1 presents block diagram of the
proposed methodology.

The likelihood function for as contrast parameter and
as edge parameter is written as

L ( , ) =
∏
∀i,j

[
L ( )L ( ) ; Iij

]
. (3)

Here, I is an image vector of size (M ×N ). The likelihood
w.r.t. contrast and edge parameter separately is written as

L ( ) = L
(
, ˆ ; Iij

)
, (4a)

L ( ) = L
(
, ˆ ; Iij

)
. (4b)

FIGURE 1. Block diagram showing proposed methodology.

ˆ is the maximum likelihood estimate of for fixed . ˆ
is the maximum likelihood estimate of for fixed . Using
Barndorff-Neilsen definition of the likelihood for first-order
distribution [1] is written as

L1 ( ) = L ( )M ( ) , (5a)

L1 ( ) = L ( )M ( ) . (5b)

M ( ), M ( ) are first-order likelihood adjustment coeffi-
cients w.r.t. and respectively. When the value of contrast
level is too low, then the estimate of L1 ( ) is poor. When the
value of edge strength level is too low, then the estimate of
L1 ( ) is poor. It can be improvised by choosing the proper
values of the likelihood adjustment coefficient. In this paper,
we use priors corresponding to the higher values of contrast
component ( ), edge component ( ) by adjusting the level
of likelihood coefficients i.e., M ( ) and M ( ) respectively.
The values of M ( ) and M ( ) are computed using Fisher
information form [25] such that

M ( ) =

∣∣f (
ˆ ,

)∣∣ 12 ∣∣f (
ˆ, ˆ

)∣∣ 12∣∣∣l
; ˆ

(
ˆ ,

)∣∣∣ , (6a)

M ( ) = =

∣∣f (
, ˆ

)∣∣ 12 ∣∣f (
ˆ, ˆ

)∣∣ 12∣∣∣l
; ˆ

(
, ˆ

)∣∣∣ . (6b)

where l
; ˆ
( , ) =

∂l( , )

∂ ∂ ˆ
T and l

; ˆ
( , ) =

∂l( , )

∂ ∂ ˆ
T .

f ( , ) is the -block of Fisher information of f ( , ).
l ( , ) = logL ( , ) is sample space derivative [25]. Algo-
rithm 2 presents the stepwise procedure of first order likeli-
hood estimation w.r.t. contrast and edge parameters.

IV. IMAGE PRIORS FOR ENHANCEMENT: EDGE AND
CONTRAST PARAMETER BASED ESTIMATION
The possibility of adjusting likelihood functions L1 ( ) and
L1 ( ) using priors [26], [27] helps to improve the image
quality. The corresponding priors w.r.t is written as

Pr ( ) ∝ f .

(
ˆ ,

) 1
2 . (7)

f .

(
ˆ ,

)
is the Fisher information block, which is written

as f .

(
ˆ ,

)
= f ( , )−f ( , ) f ( , )−1f ( , ).
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Algorithm 2 First Order Likelihood Estimation w.r.t. Con-
trast and Edge Parameters

1 Input: Edge component such that = (i, j)
Input: Contrast component such that = (i, j)

2 Output: The first order likelihood adjustment coef-
ficients i.e.M ( ), M ( ).

3 Calculate joint likelihood function (L ( , )) for as
contrast parameter and as edge parameter.

4 Calculate likelihood function w.r.t. contrast and edge
parameter i.e. L ( ) and L ( ) respectively.

5 Compute likelihood coefficients, M ( ) and M ( )

using Fisher transformation.
6 Compute first order likelihood distribution using
Barndorff-Neilsen w.r.t. contrast and edge parameter
i.e. L1 ( ) and L1 ( ) respectively.

7. ReturnM ( ) and M ( ).
8. Return L1 ( ) and L1 ( ).

f ( , ) , f ( , ) , f ( , ) and f ( , ) are the blocks
of expected Fisher information from L1 ( , ). For strong
prior w.r.t. contrast component, the likelihood function now
becomes,

LP ( ) = L1 ( ) f .

(
, ˆ

)
. (8)

LP ( ) contains better contrast information as compared to
L1 ( ). The corresponding prior w.r.t is written as

Pr ( ) ∝ f .

(
, ˆ

) 1
2 . (9)

f .

(
, ˆ

)
is the Fisher information block, which is writ-

ten as f .

(
, ˆ

)
= f ( , ) − f ( , ) f ( , )−1

f ( , ) .f ( , ) , f ( , ) , f ( , ) and f ( , ) are
the blocks of expected Fisher information fromL1 ( , ). For
strong prior w.r.t. edge component, the likelihood function
now becomes,

LP ( ) = L1 ( ) f .

(
ˆ ,

)
. (10)

LP ( ) contains strong edge information as compared to
L1 ( ). The maximizer of eq. (8) and eq. (10) is a solution to
an estimating equation obtained from higher-order distribu-
tion for parameters and which is detailed in the subsequent
section. Therefore, an improvement is observed in the maxi-
mum likelihood estimator w.r.t. ˆ and ˆ .

(
ˆ, ˆ

)
is maximum

likelihood estimator of ( , ). Algorithm 3 presents the step-
wise procedure of computing image priors based likelihood
estimation w.r.t. edge and contrast parameters.

V. MODIFIED LIKELIHOOD COEFFICIENTS: SECOND
ORDER LIKELIHOOD DISTRIBUTION
The likelihood adjustment coefficients also depend on the
parameter and which is used to construct the distribution
[6, 26] for and . We present detailed steps to compute
modified likelihood adjustment coefficient w.r.t and later
similar steps can be generalized w.r.t. . As we integrate the
prior from eq. (7) over the parameter space the derivative of

Algorithm 3 Image Priors Based Likelihood Estimation w.r.t.
Edge and Contrast Parameters

1. Input: First order likelihood estimationw.r.t. contrast
and edge parameter i.e. L1 ( ) and L1 ( ).

2. Output: Image priors based likelihood estimation i.e.
LP ( ) and LP ( ).

3. Use Fisher transformation to compute Fisher infor-
mation block w.r.t. edge and contrast components i.e.
f .

(
, ˆ

)
and f .

(
ˆ ,

)
respectively.

4. Compute likelihood function of strong priors w.r.t.
contrast component i.e. LP ( ).

5. Compute likelihood function of strong priors w.r.t.
edge component i.e. LP ( ).

6. Return, image priors based likelihood estimation
w.r.t. contrast and edge components as LP ( ) and
LP ( ).

tail area approximation is obtained which follows Bayesian
expansions [27]. It is written as

∫
−∞

Pr ( ) dc = φ
(
M∗ ( )

)
. (11)

φ (.) is standard normal distribution function [7, 26].M∗ ( ) is
the modified likelihood adjustment coefficient which is given
as

M∗ ( ) = M ( )+
1

M ( )
log

q ( , )

M ( )
, (12)

q ( , ) = l ′ ( , ) .

∣∣f .

(
ˆ, ˆ

)∣∣ 12∣∣f .

(
, ˆ

)∣∣ 12
.

l
; ˆ

(
, ˆ

)
∣∣f (

, ˆ
)∣∣ 12 ∣∣f (

ˆ, ˆ
)∣∣ 12 . (13)

l ′ ( , ) is the derivative of l ( , ) w.r.t. M∗ ( ) or M∗( )
respectively. In view of this, the tail probability area the prior
is the strong prior. More precisely, the value of first order
likelihood ratio function can be used to derive a point estimate
for defined as a zero-level confidence interval. For values of
, when M∗ ( ) = 0 is the estimate of ˆ which improves the
estimation. We follow similar steps to compute the modified
likelihood adjustment coefficient w.r.t. can be written as

M∗ ( ) = M ( )+
1

M ( )
log

q ( , )Pr ( )
M ( )

. (14)

Thus, the modified likelihood distribution w.r.t. becomes

L2 ( )=−
1
2

(
M∗ ( )

)2
−

[
logPr ( )+log

q ( , )Pr ( )
M∗ ( )

]
.

(15)

Eq. (15) is a second-order equation. Eq. (15) shows
that L2 ( ) likelihood coefficient and prior (Pr ( )) can be
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adjusted such that contrast information is preserved. Simi-
larly, the modified likelihood distribution w.r.t. becomes

L2 ( )=−
1
2

(
M∗ ( )

)2
−

[
logPr ( )+log

q ( , )Pr ( )
M∗ ( )

]
.

(16)

If ˆ is maximizer ofL1 (.) then it corresponds toM ( ). If ˆ
is maximizer of L1 (.) then it corresponds toM ( ). Eq. (16)
shows that L2 ( ) likelihood coefficient and prior (Pr ( ))
can be adjusted such that edge information is preserved.
Algorithm 4 presents the stepwise procedure of computing
modified likelihood as second-order likelihood distribution.

Algorithm 4 Computing Modified Likelihood as a Second
Order Likelihood Distribution

1 Input: Fisher information block i.e. f .

(
, ˆ

)
and f .

(
ˆ ,

)
.

Input: First order likelihood adjustment coefficients
i.e. M ( ), M ( ).

2 Output: Modified likelihood distribution w.r.t. con-
trast and edge parameter which takes the form of
second-order likelihood i.e.L2 ( ) andL2 ( ) respec-
tively.

3 Use first-order likelihood adjustment coefficients to
compute modified likelihood adjustment coefficients
w.r.t. contrast and edge parameter i.e. M∗ ( ) and
M∗ ( ) respectively.

4 Use the likelihood ratio function for and to define
confidence intervals.

5 Adjust the prior values w.r.t. contrast and edge com-
ponent (Pr ( ) and Pr ( ) respectively) so that the
contrast information and edge information are pre-
served.

6 Use the adjusted prior values from step 5 and mod-
ified likelihood coefficients from step 3 to compute
L2 ( ) and L2 ( ).

7. Return, second-order likelihood i.e. L2 ( ) and
L2 ( ).

VI. OPTIMIZATION OF LIKELIHOOD DISTRIBUTION AND
FINAL IMAGE RECOVERY
We use the maximization problem for final image reconstruc-
tion. The likelihood distribution is further optimized using by
maximization of Iij w.r.t. and . The transformed pixel vec-
tor can be represented using the maximization equation [28]
as

Î ( , )=
1(

L2 ( , )−L1 ( , )
)2 ‖ , ‖22+λ1 (L2 ( , )

)T
×

∑−1

∀i,j

(
L2 ( , )

)
+ λ2 ‖ , ‖∗ . (17)

Î ( , ) is the contrast and edge maximized estimate of image
Iij. ‖.‖∗ is the nuclear norm [29] of matrix and . λ1 and λ2
are the weights of the likelihood and nuclear norm terms [29].

L2 ( , )−L1 ( , ) is similar to statistical variance between
first order and second order likelihood. We can maximize the
overall objective function in eq. (17) by maximizing each
term independently. To achieve this, we have used squared
F-norm [29]. The Iij is maximized w.r.t. and such that
the overall effect of edges and contrast is maximized. The
maximization equation is written as

Î ( , ) = argmin
,

1(
L2 ( , )− L1 ( , )

)2 ‖ , ‖22
+ λ1

(
L2 ( , )

)T ∑−1

∀i,j

(
L2 ( , )

)
+
∥∥Iij + [ , ]

∥∥2
F + λ2

∥∥Iij∥∥∗ . (18)

Here,
∥∥Iij + [ , ]

∥∥2
F represents squared F-norm. ( , )

represents the maximization of Iij w.r.t. and such strong
edges and high contrast components are extracted. In order to
solve eq. (18) is varied by keeping fixed in Iij. By doing
this, the squared F-norm term becomes a quadratic function of
. Therefore, the optimization w.r.t. ( , ) in Iij can be written
as

Î ( , ) = argmin
,

1(
L2 ( , )− L1 ( , )

)2 ‖ , ‖22
+ λ1

(
L2 ( , )

)T −1∑
∀i,j

(
L2 ( , )

)

+

∥∥Iij [:, ]+ Iij [:, ]+ [ , ]
∥∥2
2

(MN + 1)
(
L2 ( , )− L1 ( , )

)2 . (19)

1
(MN+1)(L2( , )−L1( , ))

2 is Lagrange multiplier [20] which

is used to represented F-norm in form of squared norm.
Iij [:, ] represents the pixel vector with high contrast. Iij [:, ]
represents the pixel vector with strong edges. Since eq. (19)
is quadratic in nature therefore, its derivative w.r.t. and
will give eq. (20a) and eq. (20b) respectively. These are linear
equations that can be written as(
MN + 2
MN + 1

+λ,
(
L2 ( , )−L1 ( , )

)2
.
∑−1

∀i,j
L2 ( , )

)
= + λ1

(
L2 ( , )− L1 ( , )

)2∑−1

∀i,j
L2 ( , )

+
Iij [:, ]
MN + 1

, (20a)(
MN + 2
MN + 1

+λ,
(
L2 ( , )−L1 ( , )

)2
.
∑−1

∀i,j
L2 ( , )

)
= + λ1

(
L2 ( , )− L1 ( , )

)2∑−1

∀i,j
L2 ( , )

+
Iij [:, ]
MN + 1

. (20b)

We can recover final image (F(i, j)) in pixel domain using
strong edge and high contrast pixels only. The optimal solu-
tion of this maximization problem is

F(i, j) = argmin
,

λ0 ‖ , ‖
2
2 +

∑
∀i,j

∥∥Iij + [ , ]
∥∥2
F . (21)
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λ0 is a positive constant [4]. Eq. (21) represents the final
recovered image. Algorithm 5 presents the stepwise proce-
dure of optimization of likelihood distribution and final image
recovery.

Algorithm 5 Optimization of Likelihood Distribution and
Final Image Recovery

1) [1] Input: L1 ( ) and L1 ( ) from algorithm 2.
Input: L2 ( ) and L2 ( ) from algorithm 4.

2) [2] Output: Final optimized image, (F).
3) [3] Compute the statistical variance between first

order and second order likelihood as L2 ( , ) −

L1 ( , ).
4) [4] Compute transformed pixel vector using themax-

imization problem [26].
5) [5] Maximize the overall objective function of trans-

formed pixel vector computed in step 4 w.r.t. and
such that the overall effect of edges and contrast is

maximized..
6) [6] Use squared F-norm w.r.t. ( , ) for optimization

of maximization function computed in Step 5.
7. Using F-norm in the form of squared norm compute

contrast and edge optimized image vector as Iij [:, ]
(the pixel vector with high contrast) and Iij [:, ] (the
pixel vector with strong edges) respectively.

8. Recover final image (F(i, j)) in pixel domain using
strong edge and high contrast pixels as computed in
step 7.

7) [9] Return, final optimized image, F(i, j).

VII. RESULTS AND DISCUSSION
This paper has shown various performance measures for
comparison such as peak signal to noise ratio, entropy, struc-
tural similarity index measure, correlation coefficient, and
local texture energy. In this paper, the image database from
http://vision.middlebury.edu/stereo/data/ is used for evalua-
tion [30].We have used 18 reference images and presented the
average numerical results. The input images are shown in Fig-
ure 2. The qualitative comparison among various methods is
shown in Figure 3-5 for image size 128×128, 512×512 and
1024 × 1024 respectively. We have chosen contrast thresh-
old as 0.4 for capturing the qualitative results for proposed
method. However, the numerical results present the analysis
by varying the contrast threshold as 0.8, 0.4 and 0.2 for
proposed method.

Table 1 analyzes the likelihood deviation (d). It is
observed that as deviation increases the efficiency of estimate
improves. Mathematically, the deviation (d) are computed
as d =

∥∥(ˆ, ˆ )− ( , )
∥∥. Here, (ˆ, ˆ ) is maximum likeli-

hood estimator of ( , ). Table 1 summarizes the values of
likelihood-based statistical estimate when the contrast thresh-
old (ξ ) is taken as 0.8, 0.4 and 0.2. This statistical estimate is
observed for different image sizes as 1024 × 1024, 512 ×
512 and 128 × 128. The image priors show dependency on

image space therefore, when image size is changed, then the
image specifics also change, which changes the final image
appearance. Therefore, we have used a larger image size for
better analysis. Most of the times the existing methods of
finding the parameters of interest are unrealistic therefore,
it is difficult to get exact estimate. In those cases, statistical
estimate can used to make an estimate more accurate. From
Table 1, we have observed the likelihood-based statistical
estimate. The deviation is computed against each estimate.
It is observed that when the deviation value is smaller when
the image size is smaller and vice versa. Also, as deviation
increases the efficiency of the estimate improves.

Table 2 gives empirical converges for equitailed 95% con-
fidence interval of M ( ) ,M ( ) and M∗ ( ) ,M∗ ( ). The
estimates are compared in terms of the parameters, which are
relative to maximization of likelihood estimate respectively.
A confidence interval provides more information about the
parameter value in any estimate. Therefore, in this paper we
have estimated the confidence interval w.r.t. edge and contrast
parameters in the proposed likelihood distribution. When the
probabilities converge faster in any confidence interval then
it is concluded that the estimation is close to the nominal
confidence level because the confidence interval observes the
difference of the means of the normal distribution. In the
proposed method, the confidence interval has observed the
difference of the means w.r.t. contrast and edge parameters.
It is also observed from Table 2 that the coverage proba-
bilities under the confidence level of 0.95 are close to the
nominal confidence level of 0.95 when the image sizes are
large. From table 2 it can be noted that the maximizer of
L1 ( , ) is preferable, which results in high contrast and
strong edge restoration. This result is due to the fact that when
this maximizer is computed w.r.t.M∗ ( ) andM∗ ( ) is based
on second-order likelihood distribution. We illustrate that the
proposed method improves the visual quality of image with
the estimation of and .

Table 3 examines the influence of likelihood order w.r.t.
priors on the estimates. The use of priors in the likelihood
estimation is considered as an objective statistical model. Any
interference or noise in the input image and any change in
size of input image is directly reflected in the uncertainty
of priors. Therefore, in this paper our estimation is extended
to different image sizes which allow us even to incorporate
different features like edge and contrast. An advantage of
a prior with reasonably small values of L2 ( , )− L1 ( , )

is that the long tails truncate for the likelihood function.
Therefore, we have to set the likelihood function in such a
way that its distribution falls in center for given parameters in
the data set. The likelihood, on the other hand, becomes more
peaked with increasing image sizes and the area surrounding
the peak is zero. It is observed that when prior takes a small
value of likelihood variance

(
L2 ( , )− L1 ( , )

)
, the peak

is higher and vice versa.
In table 3 we have analyzed the variations in prior which

is computed over the proposed estimation criteria. This vari-
ation in prior

(
L2 ( , )− L1 ( , )

)
is directly related to
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FIGURE 2. Input images Row 1: Image size 128 × 128, Row 2: Image size 512 × 512, Row 3: Image size 1024 × 1024.

FIGURE 3. Qualitative comparison among various methods for input image size 128 × 128.

FIGURE 4. Qualitative comparison among various methods for input image size 512 × 512.

the probability measures using different parameter of interest
used in this paper. This is a unique approach with respect to
(w.r.t.) most of the works in literature, as we have targeted

our choice of parameters of interest. This parameter is an
important measure which reflects the uncertainty in the prior.
Its small value indicates robustness. On the other hand, a large
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FIGURE 5. Qualitative comparison among various methods for input image size 1024 × 1024.

FIGURE 6. Qualitative results for contrast and edge enhancement using proposed method for image size 128 × 128.

value is an indication that there is lack of robustness. It is
observed from Table 3 that when the variation L2 ( , ) −

L1 ( , ) is small then the value of PSNR is also reasonably
good. A good set of priors should increase the precision of
the estimates with a larger value of peak signal to noise ratio
(PSNR). Peak signal to noise ratio (PSNR) is calculated as

PSNR = 20log10

 L2

1
MN

∑M−1
i=0

∑N−1
j=0 (Iij − Îij)

2


where L in the number of gray levels in the image. High
PSNR value corresponds to a better reconstruction of the
image.

A. CONTRAST COMPARISON METRIC
The good imaging method aims to restore contrast as best
as possible. In this paper we present contrast comparison
among original input and final output image by computing
the difference between grey pixels and white pixels. We use

contrast threshold (ξ ) to separate the grey pixels and white
pixels in image. Let us assume I ingrey and I inwhite as average
intensities of grey and white pixels in original input image
respectively. We assume Ioutgrey and I

out
white as average intensities

of grey andwhite pixels in the final output image respectively.
The contrast comparison metric (κ) is computed using the

formula given in [31] such that κ =
Ioutwhite+I

out
grey

Ioutwhite−I
out
grey
∗

I inwhite−I
in
grey

I inwhite+I
in
grey

.

Fig. 9 shows contrast comparison among various methods
w.r.t. SNR. It is observed from Fig. 9 that the performance of
BTV and GGMF are very similar at both high and low SNRs,
and the performance of the proposed method is best among
them. However, for the proposed method, as SNR improves
the contrast restoration capability improves as compared to
conventional methods.

B. EDGE SHARPNESS METRIC
The image sharpness is measured by Tenengrad sharp-
ness measure [32] using intensity values of pixels. The
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FIGURE 7. Qualitative results for contrast and edge enhancement using proposed method for image size 512 × 512.

FIGURE 8. Qualitative results for contrast and edge enhancement using proposed method for image size 1024 × 1024.

edge sharpness metric for original input image (sin) is
computed as sin =

∑
∀i

∑
∀j

[I (i+ 1, j)− I (i− 1, j)]2G2
x

+ [I (i, j+ 1)− I (i, j− 1)]2 G2
y . The edge sharpness met-

ric for final output image (sout) is computed as sout =∑
∀i
∑
∀j [F(i+ 1, j)− F(i− 1, j)]2 G2

x + [F(i, j + 1)−
F(i, j− 1)]2G2

y , where Gx and Gy are horizontal and vertical
gradients computed using Sobel filter [33]. Sobel filter is
capable of filtering more edges or make edges more visible as
compared to other operator. This is because in sobel operator
more weights are alotted to the pixel intensities around the

edges. The Sobel method provides an approximation to the
gradient magnitude and can even detect edges and their
orientations. The overall edge sharpness metric ( ) difference
between input and output image is given as = out− in. The
sharpness metric is plotted for various methods in Fig. 10 It
is observed from Fig. 10 that that the sharpness metric
restores its value very slowly when SNR drops below 10dB
for conventional methods. But for the proposed method the
sharpness metric restoration is better than other methods. The
restoration of the edge component deteriorates when external
noise is introduced.
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FIGURE 9. Plot showing contrast comparison metric w.r.t. SNR for various
methods.

FIGURE 10. Plot showing edge sharpness metric w.r.t. SNR for various
methods.

In this paper for numerical analysis we have considered
performance metrics like Entropy (E), Correlation coeffi-
cient (C), Local texture energy (l), peak signal to noise
ratio (PSNR) and structural similarity index measure (SSIM)
[34-38]. Entropy (E) is the information content of image
and it is represented as E = −

∑L−1
i=0 Dilog2Di. Here, L

is the total of grey levels, Di =
{
D0,D1, . . . ..DL−1

}
is the

probability distribution of each level [38].

TABLE 1. Statistical estimate for proposed algorithm with average values
from reference images.

TABLE 2. Empirical converges of likelihood coefficients under 95%
confidence interval with average values from reference images.

TABLE 3. Variations in PSNR w.r.t. L2 ( , ) − L1 ( , ) with average
values from reference images.

The average correlation C can be expressed as

C =
F(i, j).I (i, j)√

M−1∑
i=0

N−1∑
j=0

(I (i, j)2 + F(i, j)2)

. (22)

The average correlation metric [37] provides quantitative
measure of the degree of correlation.
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TABLE 4. Comparison among various methods for different performance
measures (Image size (128 × 128)).

TABLE 5. Comparison among various methods for different performance
measures (Image size (512 × 512)).

Local texture energy (l) is an image quality assessment
parameter that measures distortions affecting the image tex-
tures [34], [35]. We have used this metric to measure any
impairment caused by contrast or edges. We have used this
metric due to color images, because, texture and color have
interdependent roles. We have used local binary patterns
for analysing both color and texture information so as to
predict the quality of images. Any noise or distortion in image
decreases the local texture energy.

The local binary patterns operator incorporates color
information separately, while keeping texture information
restored [34]. We have computed the value of local texture
energy using central pixel and the corresponding neighboring
pixels as they have similar color channels. We have taken the
value of neighboring pixels as 8 and analyzed its variation
w.r.t. different image sizes to compare different algorithms.
Mathematically, Local texture energy (L) is computed as

` =

(∑P−1
p=0 F(i , ip).2p

)
.P−

∑P−1
p=0 F(i , ip).D

P2 . (23)

D = 1
(
ip−1, i0

)
+

∑P−1

p=0
1
(
ip, ip−1

)
(24a)

1(., .) = F((i− i ) , j)− F(i, (j− i )) (24b)

Here, i is center pixel, ip is neighborhood pixel, P is
number of neighbourhood pixel andD is deviation in the local
texture energy w.r.t. neighborhood pixel. 1(., .) represents
the variation function defined for pixel space in accordance
to center pixel.

TABLE 6. Comparison among various methods for different performance
measures (Image size (1024 × 1024)).

Table 4, Table 5 and Table 6 show the comparison of
different methods in terms of Entropy (E), Correlation coef-
ficient (C), Local texture energy (l), PSNR and SSIM for
three different image sizes i.e. 128 × 128, 512 × 512 and
1024 × 1024 respectively. The image with high entropy has
high information content. The image quality improves when
C is closer to 1. If the value of l is close to unity then it
is interpreted that the color texture restores well and it is
assumed that distortions are less. On the other hand, if the
l value deviates more from unity then there exist distortions
in the image. The PSNR and SSIM are related to each other
in such a way that when PSNR reduces, then the similarity
between images also reduces and vice-versa. It is observed
that PSNR and SSIM have the best values (in bold) using
the proposed method. This is due to the fact if the long
tails appear in the prior distribution, then the image quality
degrades. It is also observed that for the larger image size the
PSNR and SSIM take better values.

VIII. CONCLUSION
We propose an adjustment of likelihood distribution based on
the parameters of interest. The proposed method corresponds
to signal likelihood to follow second order distribution. The
maximizer of proposed likelihood estimator improves image
reconstruction. The numerical results present the observation
related to the statistical estimate of likelihood distribution
orders. As such, the prior no longer has any influence on
the statistical estimates. However, in practical applications,
it is not known if there is a critical sample size beyond which
the prior has no influence anymore. Also, when the long tails
of the likelihood function converge faster, the value of peak
signal to noise ratio improves w.r.t. to different image sizes
as analyzed in this paper.
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