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ABSTRACT This paper studies the passive multi-objective optimal control of uncertain singularly perturbed
systems. First, the uncertainty is described in a norm-bounded way, and then the state space model of the
system is determined. Further time, the problem of passivity can also be transformed into a linear quadratic
performance index problem. According to the Lyapunov stability theory, the system robust stability criterion
is derived, based on the above conclusion, the corresponding parameterized passivemulti-objective controller
is designed using state feedback, and the weight matrix and the minimum performance index are solved
based on the optimal control theory. Finally, a numerical example is given to illustrate the correctness and
feasibility of the control method.

INDEX TERMS Singularly perturbed system, robust control, multi-objective, optimization, LQ-control.

I. INTRODUCTION
Singular perturbed systems widely exist in all areas of human
production and life [1]. Due to the particularity of the sys-
tem itself, the system contains both slow and fast variables,
so there are higher requirements for the control accuracy
of the system. Since the need of scientific and technolog-
ical progress, and meanwhile, the singular perturbed sys-
tem has a wide range of theoretical research and practical
value, therefore, the research on singular perturbed theory
has become the trend of modern scientific research. In the
literature [2]–[5], the predecessors have already made many
important achievements in this field. By using the Riccati
equation, they have obtained relevant conclusions about the
H∞ control and quadratic stability of the singularly perturbed
system. Nowadays, scholars advance the research to a whole
new level. In [6], data-driven control strategies are used to
combine them with fault-tolerant control, and parameter is
designed through a new internal model structure. In [7],
aiming at the stabilization problem of the multi-parameter
quasi-linear singularly perturbed system, the design method
of the corresponding controller is given.
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However, in actual production and life, it is usually difficult
to obtain an accurate mathematical model of the system
or the controlled object. At the same time, with the con-
tinuous advancement of technology, systems or equipment
are gradually becoming more complex and sophisticated.
Since the different control methods selected, we tend to
simplify and approximate them when we analyze, so the
system will inevitably contain uncertainty. These include
parameter uncertainty, the influence of external environment
or interference on it, and many internal system changes
caused by equipment aging. Based on the above factors,
the control method we design must enable the system to have
strong anti-disturbance ability to meet the performance index
requirements we expect. Because of this, the controller design
based on uncertainty is more practical.

Robust control is a better way to solve such problems. It is
mostly used to solve the control difficulties of the system
under the conditions of changing working conditions, exter-
nal interference and parameter errors. Its control idea is to
design a fixed controller to meet the control quality required
by uncertain objects.

With the gradual deepening of research, in [8], for dis-
crete uncertain control problems, a control algorithm based
on hidden Markov model is designed on the basis of linear
matrix inequality and H∞ control. Because stability is a
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prerequisite for the system to work normally, some schol-
ars now combine stability with other performances, such
as passivity and positive reality and so on, this also makes
multi-objective optimization control has more practical appli-
cation value [9], [10]. In the [11], a multi-objective opti-
mization control algorithm based on LMI is given so that the
system has better robustness and ability to adapt to external
disturbances. In [12], for fuzzy switched systems, in order to
reduce the impact of actuators on system performance, a syn-
thesized fault-tolerant output feedback controller is designed
for multiple performances. In the [13] and [14], the multi-
objective optimization control and passivity are combined
and applied to the singularly perturbed system, and with the
help of the understanding of the passivity, the design method
of system’s passive multi-objective optimization controller
is finally obtained. In particular, in [14], the adaptive inte-
gral sliding mode control is applied to the anti-disturbance
observer, the design idea of the observer, the method of con-
troller gain design and ε-bound estimation are given. In [15],
using known theories, the research direction is deepened into
the cooperative control of multi-agents, and the cooperative
problem is equivalently transformed into a dynamic output
feedback robust stabilization problem of a singularly per-
turbed system with linear uncertain cost. Finally, the design
scheme of the dynamic controller is given based on the LMI
method.

The control goal of this paper is: for uncertain singularly
perturbed systems, it can still meet the requirements of stabil-
ity and passivity when there are external disturbances in the
system, and then realize themulti-objective optimal control of
the given system by setting controller. For the multi-objective
optimization of the system, it is generally through the under-
standing of multiple performance indicators to find the com-
mon description form in the performance indicators, and then
merge them through rigorous mathematical derivation, so as
to obtain the performance indicators that the final system
needs to achieve. Based on the research ideas of previous
scholars, the study of the multi-objective optimization control
algorithm based on passivity for the uncertain singularly per-
turbed system, through the calculation method of Lyapunov
theory and LMI , has obtained the corresponding stability
criterion. Finally, the design method of the parameterized
controller is given, and the feasibility and correctness of the
control method are verified through the analysis of numerical
examples.

II. PROBLEM DESCRIPTION
Consider the specific system:{

Eε ẋ(t) = (A+1A)x(t)+ (B+1B)u(t)+ D1ω(t)
z(t) = Cx(t)+ Bzu(t)+ D2ω(t)

(1)

where

x(t) =
[
x1(t)
x2(t)

]
, Eε =

[
In1 0
0 εIn2

]
(2)

ε is the perturbation parameter, x(t) ∈ Rn is the state variable
of the system, u(t) ∈ Rm is the control input variable of the

system, y(t) ∈ Rp is the observable output variable of the
system, ω(t) ∈ Rl is the disturbance and satisfies L2[0,∞).
1A and 1B are unknown uncertain matrices, which have
the form described by equation (3). A, B, Bz, C , D1 and D2
are constant matrices with appropriate dimensions. Assuming
that the system is completely controllable.

[1A 1B] = dF(t) [Ea Eb] (3)

where D,Ea,Eb are known constant matrices, describing the
structural information of uncertain parameters, F(t) ∈ Ri×j

are time-varying unknown matrices, satisfying the norm
Bounded conditions:

F(t)FT (t) ≤ I (4)

The task of this chapter is to design a state feedback
controller

u(t) = Kx(t) (5)

Make the system (1) meet the gradual stability and meet
the index requirements.

The closed-loop system state equation can be obtained by
the system (1) and the state feedback controller (5){

Eε ẋ(t) = A∗x(t)+ D1ω(t)
z(t) = C∗x(t)+ D2ω(t)

(6)

then A∗ = A+ BK + DF(t)(Ea + EbK ), C∗ = C + BzK
The definition of passivity is given below.
Definition: In the zero initial state, if the system (1) satis-

fies the following matrix inequality (7), then the system (1)
for non-zero disturbances ω(t) ∈ L2[0,∞) is passive.∫

∞

0
ωT (t)z(t)dt ≥

∫
∞

0
ωT (t)ω(t)dt (7)

The selection of performance indicators is generally
closely related to the mathematical model of the system and
the expected system performance. In this chapter, the perfor-
mance indices that need to be optimized are

J =
1
2

∫
∞

0
[xT (t)Qx(t)+ uT (t)Ru(t)]dt (8)

where Q is a non-negative symmetric weight matrix, and R
is a positive definite weight matrix. Bring the controller (5)
into the quadratic performance index (8), the linear quadratic
performance index can be obtained as

J =
1
2

∫
∞

0
xT (t)Q̄x(t)dt (9)

where, Q̄ = Q + KTRK , Q, R1 and R2 are waiting matri-
ces related to passivity. Although the manifestation of this
performance index is a general linear quadratic performance
index, the parameters in it contain the relevant performance
requirements necessary for the system.

In order to obtain the main results of this paper, the follow-
ing three lemmas are given.
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Lemma 1 [16]: Set the matrices Z (ε) and Eε be as follows

Z (ε) =

[
Z1 + εZ3 εZT5

Z5 Z2 + εZ4

]

Eε =
[
I1 0
0 εI2

]
(10)

If there is a matrix Zi(i = 1, 2, 3, 4) with Zi =
ZTi (i = 1, 2, 3, 4), which satisfies the following linear matrix
inequality

Z1 > 0[
Z1 + ε∗Z3 ε∗Z5T

Z5 Z2 + ε∗Z4

]
> 0[

Z1 + ε∗Z3 ε∗Z5T

ε∗Z5 ε∗Z2 + ε∗2Z4

]
> 0 (11)

then

EεZ (ε) = ZT (ε)Eε > 0, ∀ε ∈ (0, ε∗] (12)

Lemma 2 [17]: Suppose x ∈ Rp, x ∈ Rp, D and E are
constant matrices of appropriate dimensions, then for any
appropriate dimension matrix F satisfying FFT ≤ I , there
is

2xTDFEy ≤ εxTDDT x + ε−1yTETEy (13)

Lemma 3 [18]: For a given symmetric matrix (42), where
S11 is r dimensional, the three conditions in (42) are equiva-
lent.

S =
[
S11 S12
S21 S22

]
(14)

1) S < 0

2) S11 < 0, S22 − S12T S11−1S12 < 0

3) S22 < 0, S11 − S12S22−1S12T < 0 (15)

III. DESIGN STATE FEEDBACK CONTROLLER
Theorem 1: If there are constant ψ > 0, matrix
Pi(i = 1, 2, · · · , 5), satisfying Pi = PTi (i = 1, 2, 3, 4)
and the following set of matrix inequalities, the closed-loop
system (6) for ∀ε ∈ (0, ε∗] is asymptotically stable and
satisfies the requirement of passivity.

P1 > 0[
P1 + ε∗P3 ε∗P5T

P5 P2 + ε∗P4

]
> 0[

P1 + ε∗P3 ε∗P5T

ε∗P5 εP2 + ε∗2P4

]
> 0

ϕ1 < 0

ϕ1 + ε
∗ϕ2 < 0 (16)

where set

P0 =
[
P1 0
P5 P2

]
(17)

P̂0 =
[
P3 PT5
0 P4

]
(18)

ϕ1 =


PT0 Ā+ Ā

TP0 M P0N̄T PT0D1 − C̄
MT

−ψ−1I 0 0
N̄PT0 0 −ψI 0
∗ 0 0 2I − D2 − DT2

 (19)

ϕ1 =


P̂T0 Ā+ Ā

T P̂0 0 P̂T0N P̂T0D1
0 0 0 0

NT P̂T0 0 0 0
∗ 0 0 0

 (20)

note: Ā = A+ BK
Proof: First prove the asymptotic stability of the closed

loop system (6). Assume Pε = P0 + εP̂0,

ETε Pε =

[
P1 + εP3 εPT5
εP5 εP2 + ε2P4

]
(21)

From the inequality group (16) and the lemma 4 can be
obtained

ETε Pε = PTε Eε > 0 (22)

Choose the Lyapinov function as

V (t, ε) = xT (t)ETε Pεx(t) > 0 (23)

then the function of Lyapunov can be derived from t:

V̇ (t, ε) = 2xT (t)ETε Pε ẋ(t)

= 2xT (t)ETε (Pε ẋ(t))

= xT (PTε A
∗
+ A∗TPε)x(t)

+ 2xT (t)PTε D1ω(t) (24)

When ω(t) = 0, there is a set of matrix inequalities (16) to
get V̇ (t, ε) < 0, so the closed-loop system (6) is in ε ∈ (0, ε∗]
is asymptotically stable.

The passivity of the closed-loop system (6) is discussed
below.

Rewrite the passive performance index (7) into the follow-
ing form:

Jzw =
∫
∞

0
2[ωT (t)ω(t)− ωT (t)z(t)]dt

=

∫
∞

0
2[ωT (t)ω(t)− ωT (t)z(t)+ V̇ (t, ε)]dt

+V (t, ε)|t=0 − V (t, ε)|t=∞ (25)

In the zero initial state, there are V (t, ε)|t=0 = 0 and
V (t, ε)|t=∞ ≥ 0, so by the formula (25) is available

Jzw ≤
∫
∞

0
2[ωT (t)ω(t)− ωT (t)z(t)+ V̇ (t, ε)]dt (26)

where

ξ (t) =
[
x(t)
ω(t)

]
, (27)

9 =

[
PTε A

∗
+ A∗TPε PTε D1 − C̄
∗ 2I − D2 − DT2

]
(28)

From the set of inequalities (16), we can get 9 < 0, that
is, Jzw < 0

108342 VOLUME 9, 2021



L. Liu, S. Feng: Multi-Objective Optimal Control for Uncertain Singularly Perturbed Systems

The following is a relevant proof of the feasibility of robust
variance control

The certificate is complete.
The parameterized representation of the state feedback

controller is given below.
Theorem 2: If there are constant τ > 0, matrix Xi(i =

1, 2, · · · , 5) and Y satisfy Xi = XTi (i = 1, 2, 3, 4) and
the following matrix inequality (28), then the closed-loop
system (6) for ∀ε ∈ (0, ε∗] is asymptotically stable and
satisfies passivity The gain of the state feedback controller is
K (ω) = Y (X0 + εX̂0)−1.

X1 > 0[
X1 + ε∗X3 ε∗X5T

ε∗X5 X2 + ε∗X4

]
> 0[

X1 + ε∗X3 ε∗X5T

ε∗X5 ε∗X2 + ε∗2X4

]
> 0

51 < 0

51 + ε
∗52 < 0 (29)

where

X0 =
[
X1 0
X5 X2

]
, X̂0 =

[
X3 XT5
0 X4

]
(30)

51 =


N D E1∗

T D1 − XT0 C + Y
TBTz

DT −τ−1I 0 0
E1∗ 0 −τ I 0
∗ 0 0 2I − D2 − DT2

 (31)

52 =


X̂T0 A

T
+ AX̂0 0 E2∗

T D1
0 0 0 0
E2∗ 0 0 0
∗ 0 0 0

 (32)

note: N = XT0 A
T
+AX0+ Y TB+BTY , E1∗ = EaX0+EbY ,

E2∗ = EaX̂0
Proof: Perform proper matrix transformation on the

inequality group (16). Performing contract transforma-
tion, that is, multiply diag

{
P−Tε , I

}
on the left, multiply

diag
{
P−1ε , I

}
on the right, set X = P−1ε , then the set of

inequalities (29) can be obtained.
From this, the calculation formula of the weight matrix R

can be obtained:

R = −(K (ε)P−1ε B−T )−1 (33)

TheweightmatrixQ is the solution of the following Riccati
equation.

ATPε + PTε A+ Q− P
T
ε BR

−1BTPε = 0 (34)

IV. NUMERICAL EXAMPLE
Consider the uncertain singularly perturbed system (1),
in which the system parameters are set as follows:

Eε =
[
1 0
0 0.1

]
; A =

[
1 1
−1 −1

]
; B =

[
1.2
0.3

]
;

C =
[
0 1

]
; D =

[
0.5 0
0 −0.5

]
; D1 =

[
0.5
1

]
;

FIGURE 1. Control variable when ω(t) = 0.

FIGURE 2. State variable when ω(t) = 0.

Ea =
[
0.4 0.2
0.5 0.4

]
; Eb =

[
0.2
0.2

]
; x0 =

[
1
1

]
;

F = 0.5; D2 = 2; Bz = 2

The results obtained by simulation calculation are as fol-
lows

Pε =
[

0.1611 −0.0677
−0.6775 3.4729

]
, K =

[
−5.9510 −0.7885

]
(35)

The weight matrix is calculated as follows

Q =
[
1.6723 2.2265
2.2265 53.0777

]
, R = 0.0201 (36)

The final calculated performance index is J = 16.61.
This chapter considers the control system conditions under

three disturbances ω(t), which are as follows:
(1) ω(t) = 0, the control variable, state variable and output

variable curve are shown in Figure 1 to Figure 3 respectively
It can be seen from Figure 1-3, when ω(t) = 0, the system

can reach asymptotic stability.
(2) ω(t) = 0.1, the curves of control variables, state

variables and output variables are shown in Figure 4 to
Figure 6 respectively.

Also it can be concluded from Figure 4-6, when ω(t) = 0,
the system has a small error, but it can still be guaranteed that
the system in Lyapunov stable.

(3) ω(t) = 0.1sin(t), the curves of control variables,
state variables and output variables are shown in Figure 7 to
Figure 9 respectively.
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FIGURE 3. Output variable when ω(t) = 0.

FIGURE 4. Control variable when ω(t) = 0.1.

FIGURE 5. State variable when ω(t) = 0.1.

FIGURE 6. Output variable when ω(t) = 0.1.

In figure 7-9, when ω(t) = 0.1sin(t), the system also
fluctuates slightly, but it can also ensure that the system in
Lyapunov stable.

FIGURE 7. Control variable when ω(t) = 0.1sin(t).

FIGURE 8. State variable when ω(t) = 0.1sin(t).

FIGURE 9. Output variable when ω(t) = 0.1sin(t).

V. CONCLUSION
This dissertation has done a certain research on the pas-
sive multi-objective optimization control problem of uncer-
tain singularly perturbed systems, and transformed it into a
standard linear quadratic performance index problem. Using
linear matrix inequalities to derive theorems and conditions
that the controller should satisfy. Finally, the global optimal
solution of the matrix inequality is solved according to the
Riccati equation. Through simulation examples, the validity
of the theory is verified. The simulation results show that
when there is uncertainty in the system, the system can also
have better output results, which further proves the correct-
ness of the theory.

At the same time, in the process of research, it was dis-
covered that this topic also contains some deeper research
content:
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(1)The time-delay phenomenon mostly exists in the actual
industrial production process, such as: signal transmission
and the controlled object itself has certain subsequent charac-
teristics, etc., especially, for uncertain singular perturbation
systems, this phenomenon will be more common, so it is
extremely important to add the analysis of time-delay vari-
ables into the research content and has considerable practical
value.

(2)For nonlinear singular perturbation systems and control
problems with more than two targets. Since there is no com-
plete linear system in actual engineering, at the same time,
with the continuous development of science and technology,
there is an increasing need to optimize the control of the three
goals and above of the system. At present, there are still few
studies on the above issues.
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