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ABSTRACT Quantum state tomography (QST) is the task of statistically constructing the density matrix
of an unknown quantum state by measuring its several copies. The presence of noise in the QST setup can
considerably degrade the fidelity between the constructed density matrix and the actual state. We consider
a noisy QST setup with depolarizing noise and attempt to mitigate the effects of noise by quantum error
mitigation (QEM). We compare the performance of different QEM methods with the same resources and
find that the measurement error mitigation and zero noise extrapolation provide the best performance in
terms of maximizing the fidelity between the state and its density matrix.

INDEX TERMS Least square error mitigation, measurement error mitigation, neural network error
mitigation, quantum depolarizing channel, quantum error mitigation, quantum state tomography, zero noise
extrapolation.

I. INTRODUCTION
Quantum state tomography (QST) is an important task in
quantum information processing to identify an unknown but
physically available quantum state [1], [2]. The two key steps
in QST are the measurement of an ensemble of identically
prepared quantum systems and the reconstruction of quan-
tum states from the measurement results. The first method
developed to reconstruct a quantum state was the linear inver-
sion introduced in [3]. However, due to the experimental
noise, the reconstructed states may not be a physical one.
This problem of unphysical constructed states was solved
in the maximum likelihood QST [4]–[6]. Another method
that additionally uses prior information regarding the quan-
tum states is the Bayesian tomography [7]–[9]. The linear
regression (LR) method was also developed to accelerate the
QST process [10], [11]. Recently, machine learning methods
are actively being used to improve the accuracy of QST since
its robustness to noise [12]–[15].

These methods of QST rely entirely on the statistics from
the state measurements. Despite the significant progress in
the methods of QST, noise in the state evolution before mea-
surement and in the measurement device itself may provide
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measurement statistics that are not representative of the actual
state. These corrupted statistics then lead to low fidelity
estimates of the actual quantum state [16], [17] and the high
fidelity states cannot be reconstructed even though the copies
of the unknown state are measured [18], [19].

Quantum error mitigation (QEM) is a recently pro-
posed method that reduces errors caused by noisy quantum
devices/environments. QEMmethods aim to recover the ideal
measurement probabilities or expectation values from the
noisy ones. Many QEM methods have been developed in
the past few years. For example, [20]–[23] mitigates the
errors by using the Richardson’s extrapolation method. This
method has been experimentally implemented in [24]–[26].
Other methods of QEM include the measurement error mit-
igation [27], [28], QEM based on least square fitting [29],
and machine learning-based QEM [30]–[33]. Since the
QST can be recast as estimating the expectation values of
the measurement operators over the unknown quantum state,
QEM seems a viable method to mitigate the effects of noise in
noisy QST.

Here, we implement the aforementioned QEM methods
to mitigate the effect of noise in a QST setup affected
by the depolarizing noise. We utilize the LR QST and
compare the performance of measurement error mitiga-
tion (MEM), zero noise extrapolation (ZNE), least square
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error mitigation (LSEM) and neural networks-based QEM
(NNEM). We perform numerical simulations to demon-
strate the performance of these QEM methods in cor-
recting the measurement errors and find the best method
for reconstructing noise-free quantum states with limited
resources.

Our main focus in this work is to compare the performance
of different QEM schemes in a similar noisy environment
and with equivalent resource utilization. To this end, we fix
the noise to be of depolarizing form due to its simplicity,
common occurrence in many quantum information process-
ing tasks, and the possibility of transforming other chan-
nel models into a depolarizing channel via twirling [28].
The main contributions of this paper can be summarized as
follows

1) We demonstrate the applicability of different QEM
schemes for the task of QST. This applicability enables
the reconstruction of high fidelity estimated quantum
state in a noisy QST setting.

2) We perform the numerical experiments for differ-
ent QEM schemes and compare their performances
on reconstructing the density matrix of the unknown
states. For a proper comparison, each QEM scheme
utilizes the same amount of total resources for perform-
ing the tomography measurement and the QEM tasks.
By utilizing the same amount of resources, we found
that the MEM and the ZNE give the best performance
among other QEM methods under study.

3) For each QEM considered in our paper, we consider
different resource allocation schemes for the tomog-
raphy measurement and the post-processing (QEM).
In this setting, we determine the best resource alloca-
tion for each QEM-QST scheme.

The remainder of this paper is organized as follows.
In Section II, we provide the basic concepts of LR QST and
the aforementioned QEM schemes. The numerical simula-
tion results are provided in Section III and we conclude in
Section IV. Notations and symbols used in this paper are
summarized in Table 1.

II. QEM FOR QUANTUM STATE TOMOGRAPHY
The state of a quantum system is represented by a den-
sity operator, i.e., positive operator with a unit trace. Since
the density operator itself is not an observable, we cannot
readily obtain its matrix representation. Then, we have to
measure several copies of the state of interest and construct
the matrix representation from the statistics of the measure-
ment outcomes. For reconstruction of a d-dimensional ρ,
at least d2 − 1 measurement settings are required. Here,
we used Gell-Mann bases measurement to simulate tomog-
raphy measurements. Gell-Mann bases measurement is the
generalization of Pauli measurements which consists of Pauli
matrices {σx, σy, σz}.
In the following, we briefly explain the LRQST. LetMn be

the measurement operator such as M0 = I , tr(Mn) = 0 and
tr(MmM

†
n) = 2δmn, where δmn is the Kronecker function.

TABLE 1. Notation and symbols.

The ρ can be expressed as a linear combination ofMn as [34]

ρ = I/d +
d2−1∑
n=1

rnMn, (1)

where rn = tr(Mnρ)/2. Suppose eigenvectors of Mn are
denoted as |un,i〉 with its eigenvalues an,i, then Mn can be
expressed in its spectral decomposition form as

Mn =

d∑
i=1

an,i|un,i〉〈un,i|, (2)

where
∑d

i |un,i〉〈un,i| = I . We can further write

|un,i〉〈un,i| = I/d +
d2−1∑
k=1

ψ i
k,nMk , (3)
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FIGURE 1. Illustration of QST without (left panel) and with (right panel) QEM implementation. When
performing the QST without the QEM in a noisy environment, the reconstructed state will be close to the
noisy state hence leads to low fidelity reconstructed state. In QST with QEM implementation, the noisy
measurement statistics are mitigated to the noise-free statistics. The mitigated measurement statistics are
then used to reconstruct the unknown quantum state.

where ψ i
k,n = tr

(
|un,i〉〈un,i|Mk

)
/2. The ideal probability of

obtaining a measurement result an,i when measuringMn is

pn,i = tr
(
|un,i〉〈un,i|ρ

)
= tr

I/d + d2−1∑
k=1

ψ i
k,nMk

 ρ


=
1
d
tr (ρ)+ tr

d2−1∑
k=1

ψ i
k,nMkρ


=

1
d
+

d2−1∑
k=1

φik,nrk =
1
d
+ φn,ir (4)

where φik,n = tr
(
|un,i〉〈un,i|Mk

)
and rk is the coefficient

in (1). We can write (4) for all measurement results in the
matrix form as

Y = 8r, (5)

where the column vector Y =
[
p1,1 − 1

d , · · · , pn,d −
1
d

]T
and matrix 8 =

[
φ1,1, · · · ,φn,d

]T .
Once we measure eachMn and obtain estimates p̂n,i of the

probabilities pn,i, we can obtain an estimate Ŷ of Y . Then,
r is estimated by,

r̂ =
(
8T8

)−1
8T Ŷ .

Finally, the estimate ρ̂ of ρ can be obtained by substituting
the elements of r̂ in (1).
The noisy evolution of quantum states is characterized by

quantum channels. Mathematically, quantum channels are

the completely positive trace-preserving maps on the set of
density matrices. We consider a noisy setup where the noise
is modeled by the quantum depolarizing channel (QDC) [35].
The QDC acts on a d-dimensional state ρ as

N (ρ) = (1− λ) ρ + λπ , (6)

where π = I/d is the d-dimensional maximally mixed state
and λ ∈

(
0, 1+ 1

(d2−1)

)
is a real parameter. It is simple to

see that the output of the QDC is the maximally mixed state
when λ = 1. In this paper, we restrict the parameter λ to be
in the interval (0, 1) such that we obtain noiseless and the
maximally mixed states at the boundaries of this interval and
hence we can think of λ as the noise strength.
The probability of obtaining measurement result of N (ρ)

corresponding to |un,i〉〈un,i| is

pnoisyn,i = tr
(
N (ρ) |un,i〉〈un,i|

)
= tr

(
(π + (1− λ) ρ) |un,i〉〈un,i|

)
=
λ

d
+ (1− λ) pn,i 6= pn,i, (7)

where pnoisyn,i denotes the elements of distribution of the noisy

measurement results. Hence, if we perform QST with pnoisyn,i ,
the reconstructed states ρ̂noisy will be less accurate than ρ̂.
To obtain the reconstructed quantum states with high fidelity
despite the noisy environment, we perform QEM to mitigate
the effects of noise in the measurement results. The illustra-
tion of QEM implementation in QST can be seen in Fig. 1.
Here we present some QEM methods to correct the noisy

VOLUME 9, 2021 107957



S. Ramadhani et al.: QEM for QST

FIGURE 2. An overview of QST with different QEM schemes. A QST measurement setup with channel noise N is shown in the center panel. The
measurement results p̂noisy are fed to one of the QEM schemes to obtain the estimation of ideal measurement results p̂ideal. The p̂ideal are then used to
reconstruct the unknown noiseless quantum state. Subfigures (a) MEM, (b) ZNE, (c) LSEM, and (d) NNEM demonstrate the main ideas of the QEM
schemes that we consider here. See Section II-A, Section II-B, Section II-C, and Section II-D, respectively, for details of each of these methods.

measurement probability results before reconstructing the
states.

Both QST and QEM need many quantum resources to per-
form well. Since each of the QEMmethods requires different
kind of resources in mitigating the errors, in this work we
define the resources as the number of quantum states utilized
either they are the unknown ρ or states other than ρ e.g. |0〉.

A. MEASUREMENT ERROR MITIGATION
Themeasurement error mitigation (MEM) [27] is used tomit-
igate the errors introduced by a noisy measurement device.
However, as we demonstrate in the following, the formalism
ofMEM can also be used tomitigate the effects of some noisy
channels, e.g., theQDC considered here. A pictorial depiction
of MEM is shown in Fig. 2(a).

Let pideal and pnoisy denote the probability vectors of mea-
surement statistics from an ideal and noisy measurement
device, respectively. The relation between pideal and pnoisy is
shown as

pnoisy = 3pideal, (8)

where 3 is a left stochastic transformation matrix.
Let us consider the example of a noisymeasurement device

that gives the correct measurement outcome with probabil-
ity 1 − λ + λ/d and randomly clicks one of the remain-
ing detectors with probability λ/d each. This specific noisy

measurement is characterized by

3=


1−λ+λ/d λ/d · · · λ/d

λ/d 1−λ+λ/d · · · λ/d
...

...
. . .

...

λ/d λ/d · · · 1−λ+λ/d

.
(9)

On the other hand, by inspecting (7), it is clear that (9)
also provides the relation between pn,i and p

noisy
n,i . Therefore,

we can use the framework of measurement errors to charac-
terize and mitigate the errors introduced by a QDC followed
by a noiseless measurement device.

Note that quantum noise (6) is generally an irre-
versible process. However, (9) represents the transforma-
tion of the measurement statistics which is a reversible
process. Thus, the mitigated measurement results can be
expressed as

p̂ideal = 3−1pnoisy. (10)

In this work, we mitigate the measurement results directly
from (7) as

p̂n,i =
1

1− λ̂

(
pnoisyn,i −

λ̂

d

)
. (11)

To this end, we first estimate the strength λ of QDC. The
estimate λ̂ is obtained by passing N|0〉 copies of |0〉 to the
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channel described in (6) and performing Z basis measurement
on the output of the channel [36]. Then, λ can be estimated
by

λ̂ = dp1, (12)

where p1 is the probability ofmeasurement result correspond-
ing to |1〉〈1|.

Let Nest and NQST denote the number of measurements
utilized for estimating λ and for the QST, respectively. Then,
the total number of measurements performed for the QST
with the MEM NMEM is Nest + NQST. During the QST step,
all NQST copies are equally divided among all measurement
operatorsMn.

B. ZERO-NOISE EXTRAPOLATION
Zero-noise extrapolation (ZNE) is based on Richardson’s
extrapolation method to extrapolate the noise-free expecta-
tion value of an observable M [20]. We can represent the
expectation ofM as a series in λ as [20]

M (λ) = M (0)+
n∑
k

akλk + O
(
λn+1

)
, (13)

where λ, M (λ) and ak denote noise strength, expectation
value of M with noise λ and the model-specific constants,
respectively.

ZNE order-n in noisy QST with noise parameter λ is
performed by measuring many copies of the unknown
quantum state with amplified noise strength αkλ where
{α0 < α1 < · · · < αn|α0 = 1}. It has been proved
that if the noise is invariant, one can get the measurement at
amplified noise by stretching the gate times and perform the
measurement on the output [20]. Another possible strategy is
by inserting some additional noisy gates (identity insertion) in
the quantum circuit [23], [37] and then measuring the output.

The estimation of noise-free expectation valueM (0) if the
noise is amplified by the work in [20] can be calculated as

M (0) =
α1

α1 − α0
M (λ)+

α0

α0 − α1
M (α1λ) , (14)

where we have used the linear extrapolation with one addi-
tional noise strength α1λ. Thus, the mitigated measurement
result M (0) is dependent on noisy measurement results and
amplification factors only. The illustration of ZNE order-1 is
portrayed in Fig. 2(b).

The error mitigation by ZNE is proposed and discussed
in the context of expectation value of an observable M with
respect to some state ρ, i.e., E {M}ρ = tr (Mρ). The mea-
surement outcome probabilities pn,i have exactly the same
mathematical structure, i.e., pn,i = tr

(
ρ5n,i

)
, where 5n,i =

|un,i〉〈un,i|. Therefore, we can use the ZNE error mitigation
technique as effectively for mitigating the errors in measure-
ment probabilities in the QST problem.

The total measurements needed to perform QST with ZNE
order-1 is NZNE which includes NQST and Next copies of the
unknown quantum states to obtain the noisy measurement
results at noise λ and the amplified noise α1λ, respectively.

C. LEAST SQUARE ERROR MITIGATION
The least square error mitigation (LSEM) was proposed
in [29]. The main idea of LSEM (shown in Fig. 2(c)) is
to estimate the expectation of M at multiple random noise
levels, followed by the least square fitting of these data points.
The extension (extrapolation) of this least square fitted curve
to the zero-noise value estimates the noise-free expectation
of M . The main difference between the ZNE and the LSEM
is as follows. The ZNE is performed by extrapolating an
nth order polynomial over (n + 1) data points. On the other
hand, the degree of the fitting polynomial and the number
of data points in LSEM are independent of each other. The
only consideration is that the number of data points must be
greater than the degree of polynomial we target for fitting.
By consideringmultiple data points for the least square fitting
reduces the finite sample effects and other uncertainties in the
expectation values ofM in the fitted curve.

To perform error mitigation for QST with noise parame-
ter λ1 by the least square fitting, we subject the unknown
quantum state under study to various noise strengths
(λ2, λ3, · · · , λk) where λi > λ1 and perform measurements
for each λi. The Richardson extrapolation order-n for k num-
ber of noise parameters can be written as linear equation,

P∗ = λA
M (λ1)

M (λ2)
...

M (λk)

 =

1 λ11 · · · λn1
1 λ12 · · · λn2
...

...
. . .

...

1 λ1k · · · λnk



M(0)
a1
...

an,

 (15)

where M(λi) denotes the expectation of M with noise
strength λi. The system (15) is an overdetermined set of
equations whose least square solution for A is

A = λ+P∗, (16)

where λ+ =
(
λTλ

)−1
λT is the Moore-Penrose pseudo-

inverse of λ. The mitigated measurement result will be the
first element of vector A.

The QST with LSEM needs to perform NLS measurements
to measure quantum resources consists of NQST and Next
copies of quantum states under study to generate vector P∗

and Nest copies of |0〉 to estimate k number of λ.

D. NEURAL NETWORK BASED ERROR MITIGATION
Previous work on reducing state-preparation-and-
measurements (SPAM) errors in QST by implementing a
deep neural network (DNN) was proposed in [15]. The
neural network was trained to discover the patterns of the
true measurement probabilities and the experimental results.
Suppose pnoisy and pideal denotes the noisy and the ideal true
probability vectors corresponding toM . We want to learn the
relationship between pnoisy and pideal through neural network.
For d = 6, the neural network has 36 input parameters which
are the noisy measurement probability results, and 36 output
parameters which are the ideal measurements probability
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from symmetric informationally complete [38] measure-
ment, 400 nodes for the first hidden layer and 200 nodes
for the second hidden layer. The network is trained with
RMSprop optimizer and the loss function to be minimized
during the training process is theKullback-Leibler divergence
(KLD). The hidden layer and output layer nodes possess
rectified linear unit and softmax function, respectively. After
the network is well trained, we can use the model to get the
estimation of idealmeasurement probabilities from new noisy
measurement data.

In this work, we use Gell-Mann bases measurement as we
stated in the previous section. Rather than feeding the network
with measurement results from all measurement operators,
we train the network for each measurement operator. For
example, for the Mn and d = 2, the pnoisyn,1 or pnoisyn,2 is
used as the training input of the network. Therefore the input
layer and output layer will have one node each. The hidden
layer and output layer nodes possess rectified linear unit and
linear activation function, respectively. We train the network
with stochastic gradient descent (SGD) optimizer and the loss
function to be minimized during the training process is the
mean absolute error. If the channel is depolarizing channel,
we can train the network for one measurement operator only
and use the model obtained to estimate the probability of
other measurement operators.

For NN based error mitigation, we need to perform
NNN measurements to measure Ntrain number of resources
for the NN training process and NQST copies of unknown
quantum states to collect information regarding the states.

Before moving to the numerical examples, we remark
that it is possible to transform any other noise model,
e.g., amplitude damping or phase damping, into a depolariz-
ing channel by twirling [28]. Furthermore, all the considered
QEM schemes have been demonstrated for different noise
models. For example, the MEM has been shown to work
for Pauli and generalized Pauli channels in [39]. In [20],
the ZNE has been demonstrated on the depolarizing, ampli-
tude damping, and phase damping channels. The LSEM has
been demonstrated for the amplitude damping and the phase
damping channels in [29]. In summary, it is possible to utilize
these QEM schemes for the task of QST even if the noise
is not of the depolarizing form. If twirling is utilized for
their application, the performance of the QST will be exactly
the same as discussed here since the effective channel will
of depolarizing form. However, the exact analysis without
twirling can be a topic of some future studies.

III. NUMERICAL EXAMPLES
In this section, we provide numerical examples of the
aforementioned QEM schemes for QST. We assume that
the state ρ generated from the unknown source is subject
to QDC N of strength λ. Then, we perform the measure-
ment of N (ρ) and attempt to recover the original state ρ
from the noisy measurement results. The scheme of our
work can be seen in Fig. 1 and the scheme for each QEM
method is illustrated in Fig. 2. Since different QEM methods

require different resources, it is difficult to directly com-
pare them in terms of resources. For example if N copies
of ρ are available, MEM can utilize all of these copies for
the QST while requiring Nest copies of some known state,
e.g., |0〉 to characterize the transformation matrix 3. This is
in contrast with the ZNE method where we have to split the
N copies of ρ into NQST and Next for the error mitigation to
be possible. This makes it challenging to properly compare
the different QEM methods. For the sake of comparison,
we count the total number of times we have to measure any
state in the setup as the resource. That is, we count the total
number of quantum states—known, e.g., |0〉 or unknown ρ—
as our resource. Then, we fix the total number of resources
for each QEM method and compare their performance.

We use the infidelity between actual state ρ and recon-
structed state ρ̂ to quantify the performance of QSTwith error
mitigation. Infidelity is defined as

1− F
(
ρ, ρ̂

)
= 1− tr

(√
√
ρρ̂
√
ρ

)
(17)

where F
(
ρ, ρ̂

)
denotes the fidelity between ρ and ρ̂.

We perform numerical simulations to compare the perfor-
mance of various error mitigation methods in QST by using
the 105 resources for each QEM method. We plot the per-
formance plots by averaging the infidelity at each point
over 104 random Bures mixed state.
Fig. 3 shows the average infidelity of the mixed

states mitigated with MEM as a function of λ and
rQST = NQST/

(
NQST + Nest

)
for d = 2. For example, if the

ratio of NQST and Nest is 0.3 : 0.7, 30, 000 copies of ρ are
used to collecting the information of the states and
70, 000 copies of |0〉 are used to estimate the λ. Since we used
the Gell-Mann bases measurement, the expectation value of
each measurement operator

(
σx , σy, σz

)
is obtained by per-

forming 10, 000
(
NQST/3

)
measurements for each operator.

From the Fig. 3, we observe that the NQST : Nest = 0.8 : 0.2
and NQST : Nest = 0.7 : 0.3 have the similar performance in

FIGURE 3. Performance of MEM. Average infidelity of reconstructed and
actual quantum states as a function of rQST = NQST/

(
NQST + Nest

)
and

λ by using NMEM = 105 resources for d = 2.

107960 VOLUME 9, 2021



S. Ramadhani et al.: QEM for QST

mitigating the error in noisy measurement result. However,
the NQST : Nest = 0.8 : 0.2 gives a more better result
for really small noise than the NQST : Nest = 0.7 : 0.3
since it uses more resources to perform the QST. On the other
side, whenNest is allocated a substantial amount of resources,
it cannot perform better than the other allocation schemes.
If we allocate most of the available resources to infer λ, then
we will get a reconstructed state with low fidelity.

Fig. 4(a) shows the average infidelity of QST with ZNE
order-1 as a function of λ for mixed states with d = 2 and
α1 = 5 for 0 ≤ λ ≤ 0.2 and 1

λ
for 0.2 < λ ≤ 1.

We observe that allocating 70% of the resources to QST
and the rest to obtain data points for the extrapolation is the
best resources allocation scheme to reconstruct the noise-free
quantum states with ZNE. To demonstrate the effect
of α1 in QST performances, we plot the infidelity for different
α1 in Fig. 4(b) with NQST = Next = 5 × 104. From the

FIGURE 4. Performance of ZNE. Average infidelity of reconstructed and
actual quantum states by using NZNE = 105 resources for d = 2 as a
function of λ for (a) α1 = 5 and various NQST and Next ratio and
(b) various α1 with NQST : Next = 0.5 : 0.5.

simulation result, we can see that if we make the circuit
noisier, the QST with ZNE is giving a similar result with
MEM in Fig. 3.

FIGURE 5. Performance of LSEM. Average infidelity of reconstructed and
actual quantum states as a function of λ with LSEM for k = 5,40
random λi and various resources allocation ratios.

Fig. 5 shows the infidelity of QST with LSEM for dif-
ferent number of random noise parameters k and different
resource allocation scheme LSEM1,LSEM2,LSEM3. The
LSEM{1,2,3} refers to resources allocation scheme where
the ratio of Nest = 0.7, 0.5, 0.2 respectively. The rest of
the resources are divided equally among all measurement
operators and k to construct the vector P∗. For example, if we
use scheme 1 and k = 5, 70% of the resources are used to
estimate five λi and the rest are used to measure the ρ for
five λi. Thus, to mitigate the noisy measurement result of
one measurement operator 2, 000 (30, 000/ (3× 5)) copies
of the unknown states are needed to obtain the elements of P∗

and 14, 000 copies of |0〉 are used to estimate λi. It can be
observed that scheme 3with k = 5 gives the best performance
among all schemes.
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Fig. 6 shows the average infidelity of QST with neural
network based QEM for d = 2 where the hidden layer
of the neural network has 20 nodes. We divided the avail-
able 105 resources into NQST : Ntrain = 0.1 : 0.9 thus
3, 333 (10, 000/3) copies are used to obtain the measurement
results of ρ under study and L = 27 random quantum
states are used for generating the training data set where
3, 333 copies of each random states are used to obtain the
statistics of eachMn. The more the copies are used to obtain
information about the ρ, the less the sample L can be used in
the neural network training process.

FIGURE 6. Performance of NNEM. Average infidelity of reconstructed
quantum states as a function of λ mitigated with NN for d = 2.

To compare the performance of all QEM methods we
have simulated, we plot the best result of each QEM method
in Fig. 7. The MEM plotted is the one with NQST : Nest =

0.8 : 0.2 where NQST = 80, 000 and Nest = 20, 000 copies.
The best result observed for ZNE is NQST : Next = 0.7 : 0.3

FIGURE 7. Comparison of different QEM schemes with optimal resource
allocation. Average infidelity of reconstructed states as a function of the
depolarizing noise strength λ for the best implementations of different
QEM methods.

with α1 = 7. For QST and extrapolation part, the copies
of ρ used are 70, 000 and 30, 000 copies, respectively. For
LSEM, we plotted the scheme 3 where k = 5. For neural
network based error mitigation, the resource allocation ratio
used is NQST : Ntrain = 0.1 : 0.9. The parameter values
for Fig. 7 are given in Table 2 where Nρ,N|0〉,Nrand denote
the copies of ρ, copies of |0〉 and copies of random quantum
states, respectively. From the picture, we can see that MEM
and ZNE give similar performance in mitigating the error in
noisymeasurement results, while LSEM andNN have similar
results but the NN has a higher variance than LSEM.

To see the performance of each error mitigation method
if we use the same number of NQST, we perform simulation
where λ = 0.4 and N{X ,Y ,Z } = Nc = 102, 103, 104, 105

and plot the result in Fig. 8(a). The ratio of resources for
QSTmeasurement and QEM is based on the simulation result

FIGURE 8. Comparison of different QEM schemes with the fixed number
of total resources. (a) Average infidelity of reconstructed mitigated
quantum states for different QEM methods by using the same number of
NQST but different individually optimal resources for each scheme and
(b) with the same number of NQST and total resources where λ = 0.4.

107962 VOLUME 9, 2021



S. Ramadhani et al.: QEM for QST

TABLE 2. Details of resource allocation for QST and QEM.

in Fig. 7, thus the number of total resources of QEMmethods
are different (NMEM 6= NZNE 6= NLS 6= NNN). From the fig-
ure, we can see that if we do not perform QEM in QST, even
though we increase the NQST, we cannot increase the fidelity
of the reconstructed states as shown by the dashed black line.
The NN outperforms the other QEMmethods whenNc < 104

but shows no big improvement when we increase the Nc.
Despite using more resources than MEM and ZNE, LSEM
cannot give better fidelity than both methods. Fig. 8(b) shows
the infidelity of reconstructed and actual states where NQST
and total resources are the same for each QEM method. The
total resources used are 9 × 102, 9 × 103, 9 × 104, 9 × 105.
We report the parameter values used in Fig. 8 (for NQST =

3 × 103) in Table 2. We can see that by using the same total
resources and QST measurement number, MEM and ZNE
gives the best result among other QEM methods under study.

IV. CONCLUSION
We have demonstrated the efficacy of QEM schemes for
the task of QST in the presence of noise. We provided the
implementation of different QEM methods for noisy QST
where the noise is modeled as the depolarizing channel. With
the help of QEM, we were able to reduce the errors caused by
the noisy environment, thus improving the fidelity between
the obtained density matrix and the true quantum state. Our
considered scenario reveals the MEM and the ZNE to be the
most effective QEM methods, recovering almost the original
fidelities for small noise values. Future worksmay include the
QEM for process tomography and other quantum information
processing tasks.
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