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ABSTRACT In recent years, top referred methods on object detection like R-CNN have implemented
this task as a combination of proposal region generation and supervised classification on the proposed
bounding boxes. Although this pipeline has achieved state-of-the-art results in multiple datasets, it has
inherent limitations that make object detection a very complex and inefficient task in computational terms.
Instead of considering this standard strategy, in this paper we enhanceDetection Transformers (DETR)which
tackles object detection as a set-prediction problem directly in an end-to-end fully differentiable pipeline
without requiring priors. In particular, we incorporate Feature Pyramids (FP) to the DETR architecture
and demonstrate the effectiveness of the resulting DETR-FP approach on improving logo detection results
thanks to the improved detection of small logos. So, without requiring any domain specific prior to be fed
to the model, DETR-FP obtains competitive results on the OpenLogo and MS-COCO datasets offering a
relative improvement of up to 30%, when compared to a Faster R-CNN baseline which strongly depends on
hand-designed priors.

INDEX TERMS Object detection, transformers, logo detection, deep learning, attention.

I. INTRODUCTION
The field of object detection has improved exponentially
in recent years with the advent of R-CNN [1] and its sev-
eral improvements, which eventually became the standard
for object detection in the Machine Learning and Computer
Vision communities. The key strategy of R-CNN is to com-
bine proposal region generation with a supervised classifica-
tion applied on those proposed bounding boxes. As a result,
different variations of the R-CNN framework were proposed,
resulting in a multitude of different approaches that can be
considered to belong to the same family of one-stage object
detectors: YOLO [2]–[4], CenterNet [5], SSD [6], RetinaNet
[7], FoveaBox [8], Anchor Pruning [9], EfficientDet [10]
to name a few. Without going into details about the differ-
ences in performances in terms of precision and speed of
each model, it is safe to say that they all performed really
well across different object detection benchmarks at the time
of their publication. However all of these approaches are
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constrained to the same limitations that are intrinsic to object
detection when implemented as a supervised classification on
proposed regions.

A. OBJECT DETECTION LIMITATIONS
The best-known object detection approaches mentioned
above are very complex, they contain hundreds of hyper-
parameters, lots of caveats and post processing steps. But,
why is all of this required? Object detection is indeed
a set-prediction problem in itself, where there exists an
unordered set of bounding boxes that should be associated
with a category label, and any detector is tasked with pre-
dicting said set. However, since neural networks exceed at
classification and regression tasks, object detection problem
has been treated as a box-classification problem.

So let us denote C as the set of possible classes, with the
addition of 0 as the background class, and the set of boxes as
B in an image I ∈ I. Then the problem involves learning a
mapping (f : I→ 0, . . . ,C |B|) that correctly classifies each
box as a background or object class. However, the number of
boxes in an image belonging to a class 0, . . . ,C is infinite,
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so this box-classification modeling decision brings about a
series of inherent limitations that we will now discuss.

1) TOO MANY BOXES
As previously mentioned, the first problem is that there are
infinite possible boxes in the image space. A solution is to
approximate (quantize) this infinite space into a set of rep-
resentative boxes. However, this approximation introduces a
quantization error so the classification might be correct but
the localization inaccurate. To address this, a new regression
task is usually introduced: this regressor is responsible for
predicting any quantization error and transforming inaccurate
quantized boxes into better approximations, see Figure 1.
Thus, in the end there is a switch to a proxy problem that
now involves both a classification and a regression task.

FIGURE 1. The quantization error that arises from quantizing the set of
possible boxes (left) and its solution as a regression problem (right).

2) CLASSIFICATION RULE
Notice how the classification rule defined above (f : I →
0, . . . ,C |B|), assumes that the model is able to predict the
ground truth box perfectly. However it is extremely unlikely
that the ground truth box will be within the set of quantized
boxes. So, the classification rule is no longer defined for
such quantized boxes, but instead a label assignment rule
must be defined (e.g., IoU thresholds, centeredness, contain-
ment), like: if the quantized box has an IoU > 0.5 with
the ground-truth bounding box, then it is not considered
background.

3) REDUNDANT OUTPUTS
The implication of the previously defined assignment rule
is that in fact now there may be many highly-overlapping
boxes that will meet such criteria, leading to redundant detec-
tions. A set-level operation is then required to resolve this
redundancy. The standard solution to this is decades old,
it involves clustering this overlapping detections into a single
one: typically Non-Maximum suppression (NMS) is used to
this end.

4) FOREGROUND-BACKGROUND IMBALANCE
The last challenge is independent from the previous three,
and it has to do with the inherent imbalance nature of the
classification task at hand. Before quantization, detection is
infinitely imbalanced, since there are infinite background
boxes and only a few object boxes. And after quantization,

this problem is no longer intractable, since one typically ends
up with∼ 100k classification decisions per image, obviously
better than infinite, but still extremely imbalanced. This is
not only inefficient, since a system that expends a lot of
computation classifying background boxes might be need-
lessly inefficient, but most importantly it hinders the learning
process, since learning from imbalanced data is challenging.

This is usually handled with modified loss functions (e.g.,
focal loss [7]), cascade approaches (e.g., R-CNN family of
detectors) or extreme quantization as the one seen in YOLO
[2] where only 98 output boxes are possible, although this
latter approach is less common.

In summary, the fact that the object detection problem is
not usually treated as the prediction of a finite un-ordered set
of boxes, introduces these surrogates (classification, regres-
sion) taskswhich lead to several technical challenges. And the
solutions to these issues lead to complex pipelines, typically
not fully differentiable. Furthermore, the performance of said
pipelines, relies heavily on domain specific priors introduced
to guide the object detection process (e.g., anchors, labeling
heuristics, NMS).

All the aforementioned issues are what our approach based
on Detection Transformers (DETR) [11] will be trying to
solve: by changing how the object detection problem is imple-
mented, we will take advantage of a simpler, fully differen-
tiable end-to-end method, which requires no priors and no
post-processing. Since the basis of our approach is based on
DETR,wewill describe next its main properties when applied
to object detection.

B. OBJECT DETECTION TRANSFORMERS
The work presented here is based on Detection Transformers
which takes a different approach than those based on R-CNN:
the object detection problem is dealt as a set prediction prob-
lem directly, thus bypassing all the surrogate tasks mentioned
above. DETR adopts an encoder-decoder architecture based
on transformers [12], an architecture that has become very
popular for sequence prediction. Also, DETR incorporates
the transformer’s self-attention mechanism to include global
context from the image to its predictions, instead of predicting
each object individually as most methods do. Furthermore,
it helps to remove duplicate detections, since DETR explic-
itly models all pairwise interactions between elements in a
sequence (of detections). More details can be found in the
next section on related work.

Unfortunately, although the performance of DETR on large
objects is much better in comparison to Faster R-CNN, its
main limitation is that it struggles to find small objects.
This is due to the lack of low level features that can be fed
into the transformer. Therefore, in this paper we propose
a procedure to extend DETR to improve its performance
when localizing objects in quite small regions. In essence we
introduce a Feature Pyramid (FP) Network which is able to
capture the content of low level feature maps and feeds it into
the model in a higher resolution. Since feeding lower level
features to DETR will increase the complexity quadratically,
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we also propose a strategy to learn to use higher resolu-
tion feature maps for smaller objects. We next describe the
resulting architecture, called DETR-FP, which we evaluate
on the MS-COCO [13] and QMUL-OpenLogo [14] datasets
and compared to a competitive Faster R-CNN baseline.
To summarize: In this work we expand DETR to incorpo-
rate multi-level information improving its performance on
the detection of small objects and qualitative and quanti-
tative results in the MS-COCO and the QMUL-OpenLogo
benchmarks.

II. RELATED WORK
The work presented in this paper proposes a pure end-
to-end solution to object detection using transformers [11]
expanding on previous work by incorporating a Fea-
ture Pyramid (FP) network to the DETR architecture and
benefiting from bipartite matching losses for set prediction,
encoder-decoder architectures based on the transformer, par-
allel decoding, and other contributions from relevant object
detection methods as described next.

A. OBJECT DETECTION WITH PRIORS
Standard object detection methods use deep learning to
generate regions proposals and subsequently classify them,
although unifying these two tasks would be more efficient.

The first deep learning method approaching region pro-
posal and classification was R-CNN [1], which uses a selec-
tive search to generate the object proposals and a CNN on top
to extract relevant features to be later classified by an SVM.
Improvements of this architecture lead to the appearance of
Fast-RCNN [15], where region proposals were extracted from
features map of a CNN by applying the ROI Pooling opera-
tion and then classify each region with a fully connected net-
work. Later, Faster-RCNN [16] solved the main draw-back
of previous architectures by substituting the selective search
by a dedicated CNN called Region Proposal Network, which
learned, given a predefined set of anchor boxes, where objects
are located in an image and their shape. Finally, Mask-RCNN
[17], replaced the ROI Pooling with the ROI Align opera-
tion which removes the quantization present in the former,
improving both segmentation and detection results. This fam-
ily of RCNN detectors has been incrementally improved
with recent works such as [18], [19] which guide the region
anchors by learning where objects are likely to exist in an
image. Reference [20] improves the Faster-RCNN detector
using multi-scale convolution feature fusion to make the fea-
ture map contain more information, improving the detection
of small objects.

All of the aforementioned methods are considered
two-stage detectors, the first stage being the region proposal
stage and the second one the classification and box refine-
ment stage. One-stage detectors merge these two stages into
one by directly predicting class probabilities and box position
on image grid cells, given predefined anchors.

Notice that whether the method is one or two stage,
it requires prior geometrical knowledge to be fed into the

model. Whether it be anchor boxes, their ratio and size, or a
grid of possible object centers [5], [21]. This hand-crafted,
prior information has a severe impact on model performance
as shown in [22].

The closest works to the DETR approach but using
priors are end-to-end set predictions for object detections
[23] and instance segmentation [24]–[27]. They also use
bipartite-matching losses with decode-encoder architectures,
however they are also based on autoregressive models
(RNNs).

Previous work using bipartite matching loss [2], [6], [28]
modeled the relation between different predictions using con-
volutional or fully connected layers with a hand-designed
NMS as a post processing step to improve their perfor-
mance. Some other, more recent work [5], [7], [16] use
non-unique assignment rules between ground truth and
predictions together with an NMS.

Learnable NMS methods [29], [30] and relation networks
[31] use attention to model the relationship between pre-
dictions, by using direct set losses they do not require
any post-processing steps. They do, however, require for
hand-crafted prior information to be fed into the model (e.g.,
box proposals, anchors). DETR, in contrast, removes the need
for these geometric priors or post processing steps by treating
object detection as a set prediction problem.

B. SET PREDICTION WITH PRIORS
There is no canonical deep learning model to directly predict
sets (of detected objects). The basic set prediction task is
multi-label classification some examples of this for com-
puter vision can be found in [32], [33]. However the one-
vs-rest approach proposed in the aforementioned papers is
not suitable for object detection due to the existing underlying
structure between elements (i.e near identical boxes), which
gives rise to near-duplicate detections.

Most current detectors use geometric prior knowledge to
apply some sort of post-processing step, usually non maxi-
mum suppression to remove these near-duplicates, however
set prediction is post-processing free. For constant size set
prediction one could use dense fully connected networks
[28], but given that the number of objects varies across
images the problem cannot be approached in such a way.
A general approach, suitable for variable length sets, is to
use auto-regressive sequence models such as recurrent neural
networks [34]. Whenever making set predictions the loss
should be invariant to permutation in the predictions. A good
solution is to design a loss based on the Hungarian algorithm
[35] to match predictions and ground truth, in a one-to-one
fashion, ensuring permutation-invariance.

C. DETECTION TRANSFORMERS
Transformers were introduced by Vaswani et al. [12] as a
new attention-based building block for machine translation.
Attention mechanisms [36] are neural network layers that
aggregate information from the entire input sequence. Trans-
formers implemented layers of self-attention which search
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and update every item of a sequence by aggregating informa-
tion from the entire sequence. One of the major advantages of
attention-based models is their global computations and per-
fect memory, making them more suitable on long sequences
than RNNs. In many problems transformers now replace
RNNs in natural language processing, speech processing and
computer vision [37]–[41].

Transformers were first used in auto-regressive models,
following early sequence-to-sequence models [42], generat-
ing output tokens one by one. Due to the prohibitive inference
cost (proportional to output length, and hard to batch) devel-
opment of parallel sequence generation have been proposed
in the domains of audio [43], machine translation [44],
[45], word representation learning, and more recently speech
recognition [46]. This work also combine transformers and
parallel decoding for their suitable trade-off between compu-
tational cost and the ability to perform global computations.

Based on the encoder-decoder architecture of the trans-
formers, Detection Transformers [11] were recently proposed
as a simpler, fully differentiable end-to-end method, which
requires no priors and no post-processing. In essence, for
DETRs the object detection problem is dealt as a set pre-
diction problem directly. Since the basis of our approach is
based on DETR, we will describe next its main properties
when applied to object detection.

DETR predicts all objects at once, and is trained in an
end-to-end fashion, with a set loss function which per-
forms bipartite matching between predicted and ground-truth
objects. DETR does not require any hand-designed
components that encode geometrical priors, such as nonmax-
imum suppression or spatial anchors. In addition, it does not
require any custom layers (ROIAlign, ROIPool), thus making
it reproducible in any deep learning framework, without the
need to write custom GPU/CPU kernels for these custom
layers to maximize performance. Finally, previous work on
set-prediction was focused on autoregressive decoding with
RNNs [23]–[27]. In contrast DETR matching function is
permutation invariant, so is the transformer architecture in
itself, thus allowing (non-autoregressive) parallel decoding
[37], [44], [45], [47] of the predictions.

D. TOWARDS SMALL OBJECTS: LOGO DETECTION
The problem of logo recognition itself has a rich history
of research. It is a challenging problem since logos are
usually small and tiny differences in text or shape can rep-
resent widely different logos. In the 1990s, the question
was explored primarily in the field of information retrieval
use-cases. An image descriptor was developed with affine
Transformations and stored in the Retrieval database [48].
There were also several methods focused on the neural net-
works [49], [50] but neither the networks were as deep nor
the results were as impressive as in recent work.

In the 2000’s, improved image descriptors became feasible
with the introduction of SIFT and similar methods [51]–[53].
These methodologies were used to better represent images
for recognizing logos [54]–[58]. Apart from SIFT, Other

approaches have also been explored by the community,metric
learning [59], [60], using min-hashing [61] and bundling
features for improved search [62]. Most of those approaches
required complex pipelines for preprocessing images.

Recent work in logo recognition utilizes deep neural
networks that offer superior performance with end-to-end
automation of the pipeline. Broadly speaking, the following
approach is prevalent: an image is fed into a convolutional
neural network and a classifier predicts [14], [63]–[68].
All the aforementioned works require the use of prior
information.

To the best of our knowledge, Detection Transformers had
not been applied yet to logo detection due to their problems
in detecting small objects. In order to solve this, we next
describe the proposed method in order to extend the DETR
architecture for logo detection without the use of geometrical
priors, such as non maximum suppression or spatial anchors.

III. METHODOLOGY
In this work we improve the DETR architecture for small
objects with the use of a Feature Pyramid Network, thus
addressing one of the main drawbacks of the DETR architec-
ture. In this section we will describe the basic DETR architec-
ture, the criterion used for training, and the improvements we
made in order to improve the performance for small objects.

A. PREDICTION OF SETS
One of the main challenges addressed in DETR is to
treat object detection as a set-prediction problem in a
non-autoregressive manner. In order to do this DETR predicts
a pre-defined fixed-size of N predictions per image and pads
the ground truth labels with as many ø(no object) as necessary
to reach N labels.
Let us denote ŷ as the set of prediction and y as the set

of padded ground truth. Then to find a bipartite matching
between these two sets we need to search for a permutation
of N elements with the lowest cost:

σ̂ = argmin
σ∈N

N∑
i

Lmatch(yi, ŷσ (i)) (1)

where Lmatch(yi, ŷσ (i)) is a pair-wise matching cost between
ground truth yi and a prediction with index σ (i). This function
minima is computed efficiently finding an optimal matching
using the Hungarian algorithm [35]. The matching also takes
into account the similarity of the predicted and ground truth
boxes. We can view ŷ as a vector that contains a class label
c and a bounding box b. For an index prediction σ (i) the
probability class is defined as p̂σ (i)(ci) and the predicted box
as b̂σ (i). Thus ∀ci 6∈ ø Lmatch(yi, ŷσ (i)) can be defined as:

Lmatch(yi, ŷσ (i)) = p̂σ (i)(ci)+ Lbox(bi, b̂σ (i)) (2)

After the optimal matching is computed, the next step is
to compute the actual loss for all pairs matched in Eq. (1).
The loss is defined as a linear combination of negative
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log-likelihood for class prediction and a box loss:

LHungarian(y, ŷ) =
N∑
i=1

− log p̂σ̂ (i)(ci)+ Lbox(bi, b̂σ (i)) (3)

where σ̂ is the optimal assignment computed in Eq. (1).When
ci ∈ ø The log probability term is down weighted by a factor
of 10 to alleviate class imbalance.

The second part of the matching cost and the Hungarian
loss is the box loss. These boxes are predicted directly in
contrast with many other detectors that make the predictions
with respect to some initial guesses. This, however, gives rise
to the problem of the relative scaling of the loss, since the
`1 loss will have different scales for small and large boxes,
even if their relative error is similar. In DETR this problem is
mitigated by linearly combining the aforementioned `1 loss
and the generalized IoU loss [32] that is scale invariant. Thus
the box loss Lbox(bi, b̂σ (i)) is defined as:

Lbox(bi, b̂σ (i)) = λiouLiou(bi, b̂σ (i))+ λL1
∥∥∥bi − b̂σ (i)∥∥∥

1
(4)

where λiou and λL1 are hyperparameters that control the
weight of each term in the loss, and Liou(bi, b̂σ (i)) is the
generalized IoU loss defined as:

Liou(bi, b̂σ (i))=1−
(
|bσ (i) ∩ b̂i|

|bσ (i) ∪ b̂i|
−
|B(bσ (i), bi)\bσ (i) ∪ b̂i|

|B(bσ (i), b̂i)|

)
(5)

where |.| means ‘‘area’’, B(bσ (i), bi) means the largest box
containing bσ (i), bi. The areas are computer based on min /
max of linear functions of the box coordinates and the union
and intersection of box coordinates are used as shorthands for
the boxes themselves.

B. THE CORE DETR ARCHITECTURE
The DETR architecture is rather simple, therefore, unlike
many modern detectors, it can be implemented in any deep
learning framework in just a few hundred lines, without
the need for huge configuration files such as those seen in
Detectron2 [69] and without the need to implement custom
layers.

The DETR architecture is mainly composed of 3 compo-
nents. A conventional CNN backbone that given the initial
image and yields an activation map f ∈ RC×H×W . This fea-
ture map is then fed to a 1× 1 convolution in order to reduce
the channel dimension from C to d creating a new feature
map z0 ∈ Rd×H×W . Since the encoder expects a sequence
the z0 activation map spatial dimensions are collapsed into
one, thus resulting in a d×HW feature map. The transformer
architecture, however, is permutation invariant, so this feature
map input must be added to positional embeddings [40], [70],
which are basically sine waves at different frequencies. This
is the same trick used in the original transformer paper [12]
but adapted to images. Each encoder layer has a standard
architecture and consists of a multi-head attention module
and a feed forward network (FFN).

The decoder follows the standard architecture of the trans-
former. It uses self-attention and encoder-decoder attention
mechanisms to transform N embeddings of size d . These
embeddings are called object queries, which are learned posi-
tional embeddings that are tasked with looking at different
regions in the feature map to find objects. These embeddings
are transformed by the decoder and then decoded indepen-
dently into a set of box coordinates and class labels by small
feed forward network, resulting inN final predictions. Notice
how, the DETR transformer is extremely similar to the stan-
dard transformer architecture.

This unique ability that the transformer has, making use of
these self- and encoder-decoder attentionmechanisms, allows
the model to reason globally about all the objects, while being
able to use the whole image as context.

C. FEATURE PYRAMID NETWORKS + DETR
As we briefly mentioned in the introduction one of the flaws
of DETR is that it while exceeding on localizing large objects,
it struggles to find small ones. This is due to the lack of
low level features that can be fed into the transformer. This
problem is addressed by adding a feature pyramid (FP) net-
work [71] that allows us to capture the content of low level
featuremaps and feeds it into themodel in a higher resolution.
However, using low level features in this architecture is very
computationally expensive, so a design decision must be
made, as described next.

Let us denote the feature map of the last level of an FPN
as f ∈ RC×H×W . This feature map is then projected into
d dimensions using a 1 × 1 convolution and flattened into
d × HW in order to be fed into the transformer. Notice
that the complexity of the self-attention of the encoder is
O(d2HW + d(HW )2), while O(d(HW )2) is the complexity
of computing attention weights for only one head. Feeding
lower level features to themodel will increase this complexity
quadratically, since a feature map from the second to last level
of the FPN has a size of C × 2H × 2W .

In order to alleviate this cost, we take the approach shown
in Figure 2.Where we crop the second to last level of the FPN
into four equally sized C × H × W patches and feed them
all into the transformer. The object queries learn to query
higher resolution feature maps for smaller objects. It is worth
mentioning that this approach can be repeated for every level
in the pyramid at the cost of a considerable memory increase
due to the increase in size in the computational graph needed
for backward propagation. In this work we only use the last
two levels of the pyramid.

IV. EXPERIMENTS
We compare the performance of DETR-FP against a strong
Faster-RCNN baseline in the task of Logo detection, con-
cretely in the QMUL-Openlogo benchmark [14]. The dataset
is comprised of 27,083 images from 352 logo classes,
built by aggregating and refining seven other logo datasets
[55], [63], [64], [68], [72]–[74]. We use weights from
ImageNet and MS-COCO [13] in different experiments for
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FIGURE 2. The DETR-FP approach to improve the localization of small objects. We introduce a feature pyramid and split the second to last level of the
pyramid into four patches of the same size as the smallest feature map in the pyramid. This is all fed into the DETR pipeline and the predictions of each
query for each feature map are concatenated.

both architectures. The QMUL-OpenLogo dataset has three
different settings in order to reproduce the aforementioned
real world scenario situation, where new classes constantly
have to be learned. There are three settings, but only the first
one is fully supervised, where every logo classes contains
70% of training split and 30% of evaluation split. Note that
this data split is enforced by the challenge organizers in order
to compare each method in the benchmark fairly.

All the experiments are run on eight GeForce GTX 1080 TI
GPUs, using Distributed Data Parallel from PyTorch [75].

The DETR-FP pipeline is extended from the original
DETR work. All of the DETR-FP models are trained using
AdamW [76] with improved weight decay handling, set to
10−4, gradient clipping is applied with a maximal gradient
norm of 0.1 in order to stabilize training. All models were
trained with N = 100 object queries.

1) BACKBONE AND TRANSFORMER
We use the same ResNet-50 backbone from Torchvision
for all experiments, with weights from either ImageNet or
MS-COCO, depending on the setting and a batch size of
one image per GPU. Backbone batch normalization weights
and statistics are frozen during training as it has been widely
adopted in object detection. Two separate learning rates are
used for the backbone and the transformer, 5−06 and 5−05

respectively. The transformer weights are initialized with
Xavier initialization [77].

2) FASTER-RCNN BASELINE
We take a Faster-RCNN model, provided by the Detectron2
framework [69] with weights from either ImageNet or
Ms-COCO depending on the setting, and fine tune it on the
OpenLogo dataset. For this Faster-RCNN baseline we use the
same data augmentation techniques as in the DETR and use
a training schedule of with 3x iterations (around 40 epochs).
We use a batch size of two images per GPU and a learning rate
of 0.02 with cosine annealing [78]. The rest of the settings are
those set by default in the Detectron2 model zoo [69].

3) POSITIONAL ENCODING
The positional encoding is used to represent the association
between encoder activations and their corresponding image
features. The one used in DETR-FP adopts a generalization

of the encoding in the original Transformer [12], but adapted
to the 2D case [40]. Specifically, for a feature map f ∈
Rd×H×W , d2 sine and cosine functions with different frequen-
cies are used for both spatial coordinates of each embedding
independently. These embeddings are then concatenated to
get the final d × H ×W channel positional encoding which
is added to the input features.

4) OBJECT QUERIES
The object queries are learned embeddings tasked with look-
ing at different regions of the input feature map and querying
it for boxes of different sizes and shapes. One can think of
them as learned anchors, that can generalize to objects of
different shapes and sizes. As a result, each query specializes
on certain areas and box sizes.

V. RESULTS
We show qualitative and quantitative results of DETR in both
MS-COCO [13] and OpenLogo [14] along with a comparison
against a Faster-RCNN baseline. We first provide a deeper
analysis into the results obtained for small objects using the
original DETR architecture, and subsequently by decompos-
ing the performance of each model into different types of
errors using TIDE [79]. This will allows us to get a deeper
insight into DETR performance based on the self-attention
feature map for the encoder and the decoder around points
of interest. In addition, these results will justify the use of
Feature Pyramids, as a proper, coherent extension of DETR.

A. DETR VS. FASTER-RCNN
There are several differences between the training setting of
DETR and the one used in Faster-RCNN. Transformers are
usually trained with very long training schedules and with
AdamorAdagrad optimizers. In the case of DETR themodels
are trained for 500 epochs with AdamW optimizer [76].
Faster-RCNN, however has a much shorter training schedule
and is trained with SGD.

Despite these differences we use a Faster-RCNN baseline
for comparison. Localizing small objects is a challenge, but
it can be alleviated by replacing the 2 × 2 stride in the
last group of the ResNet backbone with dilated convolution,
resulting in a larger feature map. This is a standard practice
in object detection. Table 1 shows how DETR matches the
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TABLE 1. Comparison with Faster-RCNN using a ResNet-50 on MS-COCO validation set. The + sign indicates an extended training schedule
(∼ 108 epochs) and DC5 indicate a dilated backbone. The dilated DETR model outperforms the rest, specially on large objects, however its performance
on small objects is not as good as a Faster-RCNN model. (numerical results taken from [11]).

FIGURE 3. Visualization of DETR encoder and decoder attention in a random instance of the MS-COCO validation set. The decoder looks at corners in the
objects in order to localize them properly while the encoder isolates each instance of an object individually, even when the bounding boxes of these
objects are overlapped. When an object is very small in an image the DETR encoder fails to properly isolate it. This is the case for the car in the top left
corner of the image.

performance of the baseline in MS-COCO, with less opera-
tions (GFLOPS) and less parameters. Furthermore, using a
transformer architecture allows us to visualize the attention
maps and gain an insight into what each part of the model is
trying to do. In the case of DETR the encoder seems to encode
each instance of every object in an image in order to separate
them, while the decoder focuses on localizing each of these

instances in order to identify them. This behaviour is clearly
illustrated in Figure 3.

Logo detection is a rather difficult problem for DETR.
Logos are usually small, and this is precisely the main
weakness of this approach. Dilation can help alleviate this
problem as evidenced above, however it is very expensive
to do in DETR, computationally and memory-wise, due to
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TABLE 2. The Faster-RCNN model without dilation or FPN falls clearly behind of DETR with the same conditions. The DC5 model has a comparable
performance with DETR, while the FPN model outperforms the rest, except for large objects, where DETR excels.

FIGURE 4. Visualization of DETR encoder and decoder attention in a random instance of the OpenLogo validation set. The decoder looks at
corners in the objects in order to localize them properly while the encoder isolates each instance of an object individually. When the
objects are small, the encoder fails to isolate them and the self-attention is blurred and unfocused. Even when this happens, most of the
time, the decoder manages to localize the object and the model detects it correctly.

the increase in complexity (see section III-C). This is not
possible to do with our hardware, so we do not do dilate the
backbone in our experiments. Table 2 shows the results of
both Faster-RCNN in DETR in the OpenLogo benchmark.

It is clear that without a dilated backbone Faster-RCNN
struggles considerably in comparison with DETR. However,
with the addition of an FPN or by dilating the backbone,
the performance is very similar. Also notice that DETR needs
MS-COCO weights in order to perform well due to the
absence of priors and the complex relations that the trans-
former has to learn, it becomes impossible to train the model

in a reasonable amount of time with a small dataset such as
OpenLogo. We visualize the attention maps for the encoder
and decoder for some instances in the OpenLogo dataset
(see Figure 4). Notice that in spite of the encoder struggling
to separate instances of small objects, the decoder localizes
them correctly.

B. HYPERPARAMETER SEARCH
There are a fair number of parameters to set in DETR,
the weight for each different criteria, the background coef-
ficient, learning rates, to name a few. In an attempt to find
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FIGURE 5. Parallel plot indicating the values selected by random search for each experiment and the resulting mAP. Each line represents one run. The
greener the line, the higher the mAP, the opposite is true for blue lines. It seems that a high learning rate and a low weight for the no object class
(eof_loss_coef) influence the mAP in a positive way. Keep in mind that in order to find optimal hyperparameters, more experiments over a greater
range of values need to be run.

FIGURE 6. Importance of each parameter and it’s correlation with the mAP. Red and green indicate negative and positive correlation respectively. The
importance and correlations values confirm that the learning rate and the relative classification weight of the no-object class (eof_loss_coef) are the
hyperparameters that influence the performance of the model the most.

the optimal values for these parameters for the OpenLogo
benchmark. We conducted random search over all of them,
during 50 epochs (for time purposes). The results can be best
visualized using a parallel plot (see Figure 5). Clearly the
values of the parameters vary the results significantly, but it
is hard to tell which one is more important.

In order to establish the importance of each parame-
ter one can use correlation between each hyperparameter
and the metric we are trying the maximize. However cor-
relation cannot capture second order interactions between
inputs and it can behave poorly when comparing inputs with
wildly different ranges. This importance can be obtained
by training a random forest classifier with the hyperpa-
rameters as inputs and the metric one is trying to maxi-
mize as target and report the feature importance values for

the random forest classifier [80]. The importance of each
parameter and their correlation with the mAP, is shown
in Figure 6.

C. DECOMPOSING THE PERFORMANCE
The standard metric used today for object detection is mean
average precision (mAP). A complicated term that involves
integrating over precision-recall curve and averaging over
several criteria. There are many sources of errors that affect
mAP, and yet, all we have to analyze the performance of
our model is this number. Therefore it is hard to analyze
which sources of error (e.g, classification, duplicate detec-
tions, localization, misses) is contributing the most to the
errors our model is making. TIDE [79] breaks down the
missing mAP into six types of errors, that fully explain
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FIGURE 7. Performance of different models with MS-COCO weights, fine tuned on the OpenLogo dataset. As one can see the
Faster-RCNN model makes far more classification mistakes than the rest, due to the lack of dilation or an FPN. Furthermore all
of the Faster-RCNN models suffer from a high background and miss detection errors, while DETR-FP suffer mostly from
classification error.

FIGURE 8. DETR-FP Results for one image of the OpenLogo validation set. Notice how the queries have learned to look for small objects on
the different crops of the second level of the pyramid and how despite the localization in the encoder does not seem useful or accurate,
the decoder is capable of finding the object. However, we can observe some duplicate predictions due to the fact that the same object can
be found in different levels of the feature pyramid.

where the model is losing performance. Let us denote
IoUmax to denote the maximum IoU overlap of a false
positive with a ground truth of the given category, tf as
the foreground IoU threshold and tb as the background
IoU threshold. Then, the six error types are defined as
follows:

1) Classification error: IoUmax ≥ tf for GT of the
incorrect class (i.e., localized correctly, but classified
incorrectly)

2) Localization error: tb ≤ IoUmax ≤ tf for GT of
the correct class (i.e., classified correctly, but localized
incorrectly).
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TABLE 3. Quantitative results of each model in the OpenLogo validation set. It is clear that without dilation or low level feature information models make
a lot of classification mistakes. Cls, Loc, Dupe Bkg, Miss stand for the six types of errors described previously, while FP, FN stand for false positive and
false negative.

FIGURE 9. Qualitative results of DETR-FP applied to logo detection. Note that logos are correctly detected on quite small regions.

3) Classification and Localization error: tb ≤

IoUmax ≤ tf for GT of the incorrect class. (i.e.,
classified and localized incorrectly).

4) Duplicate detection error: IoUmax ≥ tf for GT of the
correct class, after a higher-scoring detection already
matched that GT.

5) Background error: IoUmax ≤ tb for all GT (i.e.,
detected background as foreground)

6) Missed GT error: All undetected GT (false negatives)
not already covered by classification and localization
error.

Using these metrics we can decompose the error of our
models, and get an insight into what can be improved in
order to boost their performance. As seen in Figure 7,
the Faster-RCNN model struggles with the classification of
objects and detects a lot of background as foreground. The
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former is alleviated by the addition of dilation in the backbone
or an FP, but the latter remains present across all of the
Faster-RCNN models, along with a high number of miss
detections. In contrast the DETR-FP improves over DETR
with the addition of the feature pyramid (FP).

We also provide the exact numbers for the missing mAP
decomposition, shown in Figure 7, these can be found
in Table 3. Looking at the table it becomes clear that the
performance of the model with dilation and FP are very
similar, but the Faster-RCNN model falls clearly behind.

D. DETR-FP
In this section we provide some extra qualitative results on
the OpenLogo validation set, by visualizing the detections
for DETR-FP along with the attention of the transformer.
Figure 8 shows DETR-FP predictions for one image of the
OpenLogo validation set. The figure shows how the queries
in DETR-FP learn to query different crops of the lower levels
of the feature pyramid for objects that are small or in the
background. It is worth noticing that the model learns in
which level to look for small, medium or large objects without
any extra supervision.

Finally, we show in Figure 9 examples of small logo detec-
tions of DETR-FP, thanks to the Feature Pyramid.

VI. CONCLUSION
In this paper we extend DETR, a new fully differentiable end-
to-end solution for object detection that requires no geometric
priors and no post processing, for small object detection.
We improved its performance by feeding multi level informa-
tion using a Feature Pyramid (FP) and compared its results
with a strong Faster-RCNN baseline in the MS-COCO and
OpenLogo benchmarks where we obtain up to a 30% relative
improvement. There is, howevermuch room for improvement
in the DETR-FP approach. It’s considerable computational
cost prevents us from using the lower levels of the feature
pyramid. Furthermore the introduction of different feature
maps for the object queries to analyse, increases the amount
of duplicate detections, since the same object can be detected
in different levels of the pyramid. The direction of our future
work moves towards addressing these issues in order to make
DETR-FP performance a total improvement over the strong
baselines that make use of several geometric priors.
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