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ABSTRACT Some airports construct several buildings in city centre to offer check in and other services,
denoted as city air terminals, which help passengers to check in and drop off luggage closer to their
residences. Multi-objective location optimization methods play an important role in planning the locations
of city air terminals. The objectives are to improve passenger experience and enhance the competitiveness
of air transportation. A mathematical model of this problem is introduced. The model takes three factors
into accounted as the optimization objectives, including the average path length from passengers to city air
terminals, the maximum tolerable distance of passengers, and the service capacity of a station. Secondly,
an efficient hybrid evolutionary method is presented for efficiently optimizing the locations of city air
terminals, which includes an improved ripple-spreading algorithm for solving the many-to-many path
optimization problem and a genetic algorithm for optimizing the facility location problem. Finally, a case
study based on a large city in China is performed to test the proposed method for locating city air terminals
in urban area and to show its effectiveness and efficiency.

INDEX TERMS Evolutionary computation, genetic algorithm, transportation, ripple spreading algorithm.

I. INTRODUCTION
The concept of city air terminal (CAT) is put forward to
provide the air passenger services in urban area of a large
city [1]. Generally, a CAT corresponds to a public facility
providing a convenient one-stop departure service for airline
check-in, immigration clearance, as well as non-stop limou-
sine bus service to the airport. After dropping off luggage
and taking a shuttle, the passengers can go through an expe-
dited entry once at the airport, which would greatly reduce
the waiting time at airport terminal. The initial objective of
CAT is to increase the convenience of the airport by offering
airline check-in facilities in city centre.Moreover, the concept
of CAT promotes the coordinated development of vehicles,
metros, railways, and aviation. For now, the establishment of
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airport groups in large metropolitans has become the main
trend of urban development. The CATs are the important
transportation hubs connecting these airports, which help
passengers to check in and drop off luggage closer to their
residences.

Since 1999, the countries with a high population and a high
demand for air transportation started the massive construc-
tions of CATs. Especially in Asia, China, Japan, South Korea,
and Malaysia have constructed many CATs, connecting the
urban areas and the airports [2]–[4]. For instance, the first
CAT in China was built in Shanghai in 2012. And now
more than 100 CATs have built in China [5], as illustrated
in Fig. 1. Most CATs are constructed in the cities with large
populations. According to the CAT development in China,
the recent 20 years can be divided into three stages: I. Initial
stage (2002-2007): Some airports began to study the new
concept of CAT and put it into applications. II. Second stage
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(2007-2010): Some problems appeared during the operation
of CATs. Thus, several CATs were closed for various reasons,
such as the unreasonable layout of CATs and the limited num-
ber of CATs in city centre, leading to a poor service quality.
III. Third stage (after 2010): The researchers begin to study
the methods for improving the development of CAT. The
construction of city air terminals no longer simply pursues
the quantity, but pays more attention to the rationality of the
CAT layout [5].

Recently, researchers have shown an increased interest in
studying the operation mode of intermodal transportation
hubs and the location optimization of CATs. The Trans-
portation Research Board (TRB) published two reports about
the measures used by some major airports, presenting the
urban terminal facilities [6], [7]. Vergin and Rogers [8]
applied a simple heuristic for locating economic facilities.
In 2011, Goswami et al. [9] studied the methods for opti-
mizing off-site passenger service facilities. The optimization
of CAT locations is similar to a multiple facility loca-
tion problem (MFLP) [10] and the best routes between
passengers and CATs should be found, which corresponds
to a many-to-many path optimization problem [11]. For
solving a large-scale problem, heuristic or meta-heuristics
algorithms should be adopted. Zhang et al. [12] applied a
two-phase heuristics algorithm for solving the facility loca-
tion problem. Liu et al. [13] applied Dijkstra in a kNN
research based on multi-source query points on road net-
works. Mei et al. [14] utilized a genetic algorithm for find-
ing effective evacuation routes in metro stations. Pour and
Nosraty [15] described a heuristic algorithm for solving
the plant/facility location problem by applying ant-colony
algorithm.

To continue improving the service quality, it is important
to optimize the location of CATs by considering multiple
objectives, which include:

- Reducing the average distance between themain passen-
ger sources and CATs;

- Balancing the service capacity of CAT and the passenger
demands;

- Improving the service quality and increasing the service
coverage to attract more passengers.

In this paper, an efficient evolutionary method for locat-
ing multiple CATs is proposed. Multiple objectives includ-
ing the average distance from passenger source locations
to CATs, the maximum tolerable distance of passengers,
and the service capacity of CAT are accounted for opti-
mizing the CAT locations. This paper is organized as fol-
lows. In Section 2, a mathematical model of the problem is
introduced. In Section 3, the ripple spreading algorithm is
presented. In Section 4, a genetic algorithm is applied for
finding the best CAT locations. In Section 5, the method for
creating the route network in a large city in China and the
method for conducting a survey of the passenger information
are presented. In Section 6, the reported method is tested to
show its effectiveness and efficiency. The paper ends with a
conclusion in Section 7.

FIGURE 1. Distribution of city air terminals in China [5].

II. PROBLEM DESCRIPTION
The main objective is to optimize the CAT locations in a
city. The distances between passengers and CATs should
be quantified. Thus, the optimization is based on the city
road network, in which the main roads should be included.
As illustrated in Fig. 2, the problem can be abstracted by a
mathematical model, in which a route network G(V ,L) is
assumed. In G(V ,L), V = {Vi}i∈[1,Nnode] includes all nodes
and L = {Lj}j∈[1,Nlink] includes the links between nodes. Two
indicators Nnode and Nlink refer to the total numbers of nodes
and links.

1) All nodes can be divided into 3 groups:
- S = {Sk}k∈[1,Nsource] are the passenger source loca-
tions, with Nsource the total number of passenger
sources. The numbers of passengers set off from
different passenger source locations are not the
same, and the weights {wk}k∈[1,Nsource] indicate the
degrees of aggregation to passengers.

- T = {Tl}l∈[1,Nterm] are CAT locations, with Nterm
the number of CATs. The value of Nterm is prede-
fined in planning CATs.

- The others are ordinary nodes, indicating the inter-
sections of main roads.

2) The set L corresponds to city main roads.
3) The optimal routes from passenger sources to city air

terminals are illustrated by the red lines in Fig. 2.
The corresponding route lengths are included in the
set {dk}k∈[1,Nsource]. Each element dk is the shortest
distance from Sk to its nearest city air terminal, which
is expressed by

dk = min
l∈[1,Nterm]

RSkTl , (1)

where RSkTl denotes the shortest route length from the
source Sk to the city air terminal Tl .
In this study, the average path length from passengers to
CATs, the maximum tolerable distance of passengers,
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and the service capacity of CAT are taken into account
in the optimization.
The location optimization of CATs can be described as
a minimization problem

minVOF, with VOF =
3∑
i=1

αiFi, (2)

where
- F1 is the average path length from passenger
sources to nearest CATs.

- F2 is the sum of the exceed path lengths which are
above the maximum tolerable distanceDmax. Here,
Dmax is obtained by a survey to passengers in the
airport.

- F3 is the sum of the exceed passenger numbers
above the service capacity of CAT Vmax.

- αi (i ∈ [1, 3]) are predefined.
In (2), the first criterion represents the average path
length of all sources to their nearest city air terminals,
which is expressed by

F1 =

∑Nsource
k=1 wkdk∑Nsource
k=1 wk

. (3)

Secondly, if the distance dk exceeds the maximum pas-
senger tolerance value, the willingness of passenger for
using city air terminals would decrease. The maximum
tolerable distance Dmax could be defined according to
a survey.
In order to reduce the occurrence of cases in which
dk > Dmax, the second criterion is defined as

F2 =
∑

k∈[1,Nsource]

wkPexc(k), (4)

with

Pexc(k) =

{
dk − Dmax if dk > Dmax

0 otherwise.

Finally, the maximum service capacity of a city air
terminal is limited by Vmax and it is predefined. If more
passengers get to the city air terminal, the service qual-
ity is hard to guarantee and the waiting time becomes
much longer, which may result in a negative impact.
Therefore, the third criterion to be minimized is

F3 =
∑

l∈[1,Nterm]

wlVexc(l), (5)

with

Vexc(l) =

{
Wl − Vmax ifWl > Vmax

0 otherwise,

and Wl =
∑

k∈�l wk , where �l includes the indices
of all the passenger sources connected to the city air
terminal Tl . In the future study, more aspects could be
added in the mathematical model.

FIGURE 2. Mathematical model of city air terminals location optimization
problem.

III. ALGORITHM FOR CALCULATING THE SHORTEST
AVERAGE PATH LENGTH
Among the three factors in (2), F1 is most difficult to be effi-
ciently calculated. To calculate the shortest average distance
from multiple passenger locations to multiple CATs, the best
paths from all passengers to their nearest CATs should be
found. It corresponds to solve amany-to-many path optimiza-
tion problem (POP), in which thematching information of the
passengers and the stations is not pre-acquired. Two questions
need to be answered in the optimization. For each passenger,
one question is to decide to get to which CAT. The other
is to find the best path to arrive that CAT. To guarantee the
optimality, a deterministic algorithm should be applied.

One widely-used deterministic algorithm for solving the
many-to-many POP is the Dijkstra’s algorithm [16]. The
Dijkstra’s algorithm is a typical greedy algorithm, inwhich all
possible unvisited nodes should be taken into consideration
for expanding. The algorithm creates a tree of shortest paths
from the starting vertex (source) to all other points in the
network. The search continues until the shortest paths to
target nodes are determined. This method was originally used
for solving one-to-one POP. To solve many-to-many POP,
we can simply run Dijkstra’s algorithm for every source node.
However, to a large-scale network, the computational burden
would be heavy.

To solve this problem, we focus on an efficient determinist
method, which is the ripple-spreading algorithm [17]–[19].
This method is inspired by a nature phenomenon. If we throw
a stone into water, it would create a ripple and it propagates
with a constant speed in all directions. Considering a network,
several initial ripples are created at the source nodes and
these ripples propagate in all directions. When they arrive
at unvisited nodes, new ripples are generated at these nodes
and they continue to propagate. A ripple is eliminated in
the condition that all the nodes connecting to its epicentre
are visited. We can see that it imitates the propagations of
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the ripple fronts. The whole process could be regarded as a
relay race of ripples. The process is terminated when each
passenger connects to one CAT. The best path is achieved by
backtracking these ripple epicentres.

The main advantage of this method is that the many-
to-many problems could be solved by a single run of RSA.
Multiple ripples propagate simultaneously and the computa-
tion time of the optimization is reduced. Thus, RSA is applied
in this study for calculating the shortest average path length
from passengers to CATs.

IV. GENETIC ALGORITHM FOR LOCATING CITY AIR
TERMINALS
The genetic algorithm is a method based on natural selec-
tion [20]. The method repeatedly modifies a generation of
individual solutions (i.e. chromosomes). At each step, it ran-
domly selects individuals from the current population and
produces the next generation. Over successive generations,
the population evolves toward an optimal solution [21]. The
number of individuals in a generation is denoted by NI and
the total number of generations is denoted by NG.
In this work, the structure of chromosome and the genetic

operations are designed to adapt to the multiple facility loca-
tion problem. For a layout of CAT locations, Nterm positions
could be randomly chosen among Nnode network nodes. So,
each chromosome represents a layout of CAT locations, and
each gene of the chromosome corresponds to one node in
the network. In addition, by applying genetic operations,
one or many terminal locations are changed. The details to
the structure of chromosome and the genetic operations are
explained as follows.

1) Chromosome: The objective of optimization is to
achieve the optimal CAT locations. As illustrated
in Fig. 3, one chromosome corresponds to a solution
and each gene records a node, which is chosen as
CAT location. The length of the chromosome is the
predefined number of CATs, which is denoted as Nterm.
The fitness of a chromosome is defined as

Ffit =
1
VOF

. (6)

2) Genetic operations:

a) Mutation: By applying this operation, a chromo-
some is randomly chosen in a population. The
possibility for applying this operation is pm. Then,
one position (or one gene) is chosen to apply
the mutation operation. As illustrated in Fig. 4,
the CAT location recorded in the second gene is
mutated. The new location node number of CAT
is 9 after applying the mutation.
In addition, when we choose one gene, we can
define an available area. This gene can bemutated
by another node number in this area. As illus-
trated in Fig. 5, the green area corresponds to the
available area for mutation. By varying the area

FIGURE 3. Structure of chromosome.

FIGURE 4. Mutation operation.

size, we can adjust the capacity of jumping out
the local optimum.

b) Crossover: Two parent chromosomes are ran-
domly chosen. Then, a random crossover point
is selected and the tails of its two parents are
swapped to get new off-springs, as illustrated
in Fig. 6. The possibility for applying this oper-
ation is pc.

c) Inheritance: In each generation, the chromosomes
are sorted based on the fitness values. The best
chromosome is directly inherited to the next gen-
eration. The possibility for applying this opera-
tion is pi.

d) Random re-initialization: some chromosomes are
randomly generated. The possibility for applying
this operation is prg.

e) Random inheritance: The rest chromosomes are
obtained by randomly inheriting chromosomes
from the previous generation.

By applying a genetic algorithm with the aforemen-
tioned operations, the locations of multiple CATs could
be efficiently optimized.

V. MATHEMATICAL MODEL IN THE CASE OF TIANJIN
Tianjin is the second largest metropolis in northern China
with a total population of 14 million. Tianjin borders Bei-
jing municipality and Hebei province. In this area located
four large airports, whose total annual air passenger volume
reached 350 million. Therefore, there is a strong competition
between Tianjin airport and other airports. In order to improve
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FIGURE 5. Mutation operation with a predefined available area.

FIGURE 6. Crossover operation.

the competitiveness of the airport and the convenience of pas-
sengers, it is of great significance to plan and construct several
city air terminals in the city centre of Tianjin. In this section,
based on the urban route network of Tianjin and a survey on
passenger sources in Tianjin airport, a mathematical model to
this case study is set up.

A. ROUTE NETWORK OF TIANJIN
The route network based on a real urban city map of Tianjin
(Fig. 7a) is established. The commonly-used transport modes
from passengers’ dwellings to city air terminals are bus, Uber,
and taxi. The trunk roads correspond to the main routes of
buses and the routes commonly chosen by taxi drivers. The
zoomed network of trunk roads in Tianjin is plotted in Fig. 7b.
The locations of the intersections and the turning points of
roads are numbered. They form the nodes in the network.
The network is created based on the realistic information,
as illustrated in Fig. 7c. The total number of nodes is Nnode =

601 and the number of links is Nlink = 929. The entire
network of Tianjin is plotted in Fig. 7d.

B. A SURVEY TO PASSENGERS IN TIANJIN AIRPORT
To get a sample of passenger sources, a questionnaire survey
to the passengers in the waiting hall of Tianjin airport was
carried out. The questionnaire concerns how passengers get

TABLE 1. Results of per(β) and average computation time.

to airport, e.g., where they live, by which transport mode,
duration to the airport, and their opinions about airport shut-
tle stop locations. Because the survey lasted two days, 210
passengers in total completed and returned the survey forms.
The size of survey is relatively small, so here an informa-
tion diffusion method is applied, as introduced in [1], [20].
The number of the passengers after information diffusion is
Np = 525. The network with weights of passengers is shown
in Fig. 8. The weights indicate the degrees of aggregation to
passengers. Higher the value is, more passengers set off from
the corresponding node. The sum of weights in the network
is Wtot = 602.5.
In addition, we asked the passenger opinion about the max-

imum tolerable distance from their dwellings to CAT. Among
210 passengers, as illustrated in Fig. 9, 130 passengers chose
1−3 km, 45 passengers chose 3−5 km, 21 passengers chose
5−7 km, and the rests (14 passengers) chose more than 7 km.
Thus, in order to balance the passenger convenience and the
operational cost of CAT, the maximum tolerable distance
Dmax is set to 5 km. By setting this value, 83% inquired
passengers are satisfied.

VI. NUMERICAL EXPERIENCE FOR CONFIGURING CITY
AIR TERMINALS
Based on the network presented in the previous section,
the following parameters are defined: The total number of
CAT Nterm = 3, the maximum tolerable distance Dmax =

5 km, and the service capacity of CAT Vmax = 210. Here,
Vmax is around Wtot/Nterm, providing an even distribution of
service.

The GA parameters include the size of population NI,
the total generation number NG, the possibility of mutation
pm, the possibility of crossover pc, the possibility of inher-
itance pi and the possibility of random re-initialization prg.
The objective is to test the reported method for configuring
CATs and find proper parameters to achieve a good balance
between solution quality and convergence speed.

A. TESTS OF POPULATION NI
The operation possibilities are unchanged, and the cases with
different population NI are tested. The operation possibilities
are pd = 0.1, pm = 0.2, pc = 0.6, and prg = 0.1. Different
NI values 100, 200, 300, 400, 500 are chosen, respectively.

To avoid randomness, we run Ntest = 50 tests and record
the average value. For one single test p ∈ [1,Ntest], the min-
imum objective function value at the final generation NG is
represented by

V final
OF (p) = min

ni∈[1,NI]
VOF(NG, ni). (7)
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FIGURE 7. Creation process of the network in Tianjin.

TABLE 2. Different combinations of pm and pc.

These values to Ntest tests may not be the same. The best
one is denoted as

V final
BOF = min

p∈[1,Ntest]
V final
OF (p). (8)

The percentage per(β) of V final
OF (p), which is smaller than

(1+ β)V final
BOF is an important indicator of convergence.

The results and the computation times are recorded
in Table 1 and the values of per(β) are illustrated in Fig. 10.
In this test, β are chosen as 5%, 10% and 20%. In Cases 1-1
and 1-2, per(β) are small, which means that the optimization
results in Ntest tests are obviously differed. This is mainly
because NI is not large enough, which makes it hard to

achieve a best solution. In Cases 1-3, 1-4, and 1-5, per(β)
are all close to 100%, which implies that GA has well con-
verged to the optimal solution at the end of evolutionary
process. It is observed in Fig. 10 that the curves are gently
changed with NI ≥ 400. On the other hand, the computation
time is almost proportional to NI. Considering these two
aspects, NI ≥ 400 could be an appropriate choice, which
can achieve good solutions with a reasonable computational
time.

B. TESTS OF GENETIC OPERATIONS POSSIBILITIES
Different possibilities of genetic operations in GA havemajor
impacts on the optimization results and convergence speed,
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TABLE 3. Percentage per(β) of objective function values which are smaller than (1 + β)V final
BOF and convergence generation Ncg.

FIGURE 8. Urban network with passenger sources according to a survey
in the airport.

FIGURE 9. The maximum tolerable distances based on a survey to
passengers.

especially the possibility of mutation pm and the possibility
of crossover pc.

In this experiment, different parameters combinations are
tested. The possibility of elite inheritance is fixed to 5%,
and the possibility of random re-initialization is 10%. The
combinations of pm and pc are presented in Table 2, while
the rest corresponds to the random inheritance operation.
The range of pm is from 0.1 to 0.4, spacing 0.05, and the range
of pc is from 0.1 to 0.7, spacing 0.1.

FIGURE 10. Illustration of percentage per(β) of objective function values
which are smaller than (1 + β)V final

BOF , with β = 5%, 10%, 20%.

For each combination of pm and pc,Ntest = 50 tests are per-
formed to avoid the randomness. To illustrate the evolution
in terms of generations, the cases with pm = 0.25 are plotted
in Fig. 11, where each blue line illustrates the evolution of
Vmin
OF (ng) = minni∈[1,NI] VOF(ng, ni) in terms of generation
ng ∈ [1,NG].
In all, there are Ntest blue lines and the evolution of the

average values for all tests is illustrated by the red line. The
average values of Vmin

OF decrease along with generations.
The results are recorded in Table 3, and per(β) values with

β = 5%, 10%, 20% are listed. The curves of per(β) are
plotted in Fig. 12. Different colours correspond to different
mutation possibilities, and the x-axis represents crossover
possibilities. In general, for pc in [0, 0.6], the solutions
become better when pc increases. A higher crossover pos-
sibility helps to converge efficiently towards the optimal
solution. When pc = 0.7, it corresponds to 2 special cases:
Case 2-7 and Case 3-7. The values of pm are 0.1 and 0.15,
respectively. The results are not as good as the ones with
pc = 0.6 and the percentages decrease. This is because in
these two cases, the capability of jumping out of local optimal
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FIGURE 11. Cases with pm = 0.25: Objective function value curves for Ntest tests in blue, the average objective function value in red,
the number of generations needed for convergence Ncg represented by the green dotted line.

areas is not satisfactory. And Case 5-6 with pm = 0.25,
pc = 0.6 and Case 8-4 with pm = 0.4, pc = 0.4 give the
best results.

Another important performance indicator is the number
of generations needed for convergence, denoted as Ncg.
It represents the generation index after which 90% of the
objective function values {V final

OF (ng)}ng∈[1,Ntest] are smaller
than (1 + 10%)V final

BOF . Different to per(β), Ncg mainly

reflects the convergence speed. In fact, these two indicators
are related to each other. In general, the larger per(β) is,
the smaller Ncg is. In Fig. 11, the green vertical dotted lines
indicate the values ofNcg for the cases with pm = 0.25. For all
the cases, Ncg values are listed in Table 3, and the symbol ‘–’
means Ncg > NG = 200 (i.e., in NG generations, the criterion
ofNcg is not satisfied). Only Cases 2-4, 3-6, 4-6, 5-5, 5-6, 6-4,
7-3, 7-4, and 8-4 satisfyNcg < NG. The value ofNcg indicates
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FIGURE 12. Curves of the percentages per(β) with different β values.

the convergence speed and the capability of jumping out of
local optimal areas. Case 5-6 with pm = 0.25 and pc = 0.6
achieves the best result.

To sum up, the combination with pm = 0.25 and pc = 0.6
is the best choice for optimizing the configuration of CATs.
The locations of city air terminals optimized with these GA

FIGURE 13. Optimized locations of CATs (represented by the yellow
circles) with pm = 0.25 and pc = 0.6.

parameters are plotted in Fig. 13. The minimum objective
function value is 2.85 with F1 = 2.70, F2 = 0.15, F3 = 0.
It means that the average distance between passenger sources
and city air terminals is 2.70 km. There are a few sources
of which the distances exceed Dmax = 5 km. The exceeded
distances are no more than 0.15 km. And the number of
passengers to each terminal is within the service capacity. The
reported method shows its efficiency in solving the optimiza-
tion problem of CAT configuration.

VII. CONCLUSION
By accounting three aspects as optimization objectives,
an efficient genetic algorithm combined with the ripple
spreading algorithm is proposed for optimizing the locations
of city air terminals. Firstly, a new mathematical model of
the problem is established based on the information diffu-
sion theory. Three aspects including the average distance
from passengers to city air terminals, the maximum toler-
able distance, and the service capacity are considered in
the optimization objective function. Then, an evolutionary
method for solving the problem is developed. In the hybrid
method, the ripple-spreading algorithm is applied for solving
the many-to-many path optimization problem and a genetic
algorithm is used for determining the locations of city air
terminals. In the case study, the route network of Tianjin,
China is used, and the passenger source locations are obtained
by a survey carried out at Tianjin airport. The reportedmethod
is tested for configuring CATs in Tianjin. The results prove
that the method exhibits obvious advantages in terms of
effectiveness and efficiency.
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