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ABSTRACT In this paper, we propose a technique to recognize multiple actions in a video using deep learn-
ing. The proposed approach is concerned with interpreting the overall context of a video and transforming
it into one or more appropriate actions. In order to cope with multiple actions in a video, our proposed
technique first determines the individual segments/shots in a video using intersections of color histograms.
The segmented parts are then fed to the action recognition system comprising a combination of a Convolution
Neural Network (CNN) and a Long-Short-Term Memory (LSTM) network trained on our action vocabulary.
The segments are then labeled according to their predicted actions and a compact set of distinct actions is
produced. Using the corpus generated by the shot detection phase, which includes the location of keyframes
in shots, and start/end timestamps of a shot, we can also perform video segmentation based on an action query.
Hence, the proposed technique can be used for a number of tasks such as content censoring, on-demand scene
retrieval, video summarizing, and query-based scene/video retrieval, to name a few. The proposed technique
also stands apart from the existing approaches which either do not take into account the motion information
for action prediction or do not perform action-based video segmentation. The experimental results presented
in this paper show that the proposed technique not only finds the complete set of actions present in the video

but can also find all the relevant parts in a video based on an action query.

INDEX TERMS Action recognition, video segmentation, deep learning, transfer learning.

I. INTRODUCTION

Action recognition refers to the act of classifying an action
present in a given image or video. It is a multi-classification
problem in which the input is either an image or video, and the
output is a class label. Recognizing human actions in video
streams is one of the most challenging tasks and has received
substantial attention over the last decade by a number of
researchers. Analyzing human actions from video streams not
only involves coping with human motion and appearance, but
it also needs to address a description of a human’s intention,
emotion, and thoughts [1]. Human action recognition is prone
to errors and is affected by stress and/or high workload.
At the same time, the sheer volume of videos and images
generated these days necessitate the need for an automatic
action recognition system. Action recognition is useful in
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many applications including real-time surveillance [2], [3],
crowd behavior monitoring [4], [5], biomechanical analysis
of actions for sports and medicine [6], [7], anomaly detec-
tion [8], [9], automatic video organization/tagging [10], [11],
health care [12], [13], elder care [14], [15], child/animal
monitoring [16] and video censoring [17].

Traditional machine learning approaches for action recog-
nition based on hand crafted features suffer from varying
environmental conditions and/or are dependent on the math-
ematical models of the image features. At the same time,
they are limited to extract discriminative features from raw
video frames. These approaches rely on object detection,
pose detection, dense trajectories, or structural information.
On the other hand, deep learning based approaches are more
effective to learn complex data and a high-level represen-
tation directly from raw video data. They can discover the
intricate patterns in the complex data on the fly and are capa-
ble to build distributed representations from complex data.
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Convolutional Natural Network (CCN) [18] and Recurrent
Neural Network (RNN) [19] are two widely used deep learn-
ing frameworks for action recognition tasks. CNN networks
have been extensively used for object recognition, object
tracking, pose estimation, text detection and recognition,
visual saliency detection, action recognition, and scene label-
ing. CNN computes features from each video frame and
obtains a video-level prediction by grouping features from
all frames. An obvious limitation of this technique is that it
falls short of capturing adequate motion information. RNNs
including long short-term memory (LSTM) [20] result in a
better performance in sequence-based tasks due to their abil-
ity of long-term temporal modeling. Hence, a better technique
is to utilize LSTM to model the dynamics of frame-level
features.

Despite using LSTM networks to capture the motion infor-
mation, the redundancy of information in successive video
frames limits the action recognition performance. Hence, it is
necessary to identify only the key frames in a video that
suffice to recognize the action. A better approach is to identify
individual shots in a video and then finding the key frame of
each shot. The key frame detection itself should be robust to
various variants of shot/scene changes.

Since the efficacy of deep learning for identifying pat-
terns in complex data, such as videos, is well-established;
hence, it comes as the most suitable candidate for action
recognition in videos. Nevertheless, an inherent issue in deep
learning is to train a deep neural network from scratch which
requires ample training time and huge hardware resources.
In order to cope with this issue, transfer learning [21] can be
used to train a pre-trained network on an entirely different
task by transferring its knowledge from a previous learning
task. Experiments on transfer learning have shown that the
low-level features of a task learned by a deep neural net-
work are transferable to an entirely different task with much
less training time [22]. Hence, by freezing the weights of
low-level layers of deep neural networks which represent
the rudimentary training information, the higher-level layers
of the network can be re-trained on a new task. The action
recognition technique proposed in this paper first finds the
key frames in a video using the intersection of HSV color
histograms. The key frames are then supplied to a combi-
nation of CNN and LSTM, trained on an action vocabulary,
to predict the action(s) in the video.

The salient points of the contribution in this paper are
summarized as follows.

1) An action vocabulary is developed and the relevant

dataset is constructed from real scenarios.

2) A combination of CNN and LSTM is trained on the
action vocabulary.

3) A key frame detection algorithm is proposed to
reduce the redundancy in video information and
increase the robustness and execution time of action
recognition.

4) The proposed algorithm segments a video with respect
to the predicted actions. The proposed system is
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evaluated on a number of test scenarios to ascertain its
efficacy.
5) The proposed system is able to predict multiple actions
in a video.
The rest of the paper is structured as follows. Section II
provides an in-depth review of the existing techniques for
action recognition. Section III describes the methodology of
our proposed technique. Section IV presents the evaluation
results of the proposed technique. Finally, Section V offers
conclusions and future directions.

Il. RELATED WORK

The existing techniques on action recognition can be clas-
sified into two categories: (i) based on hand-crafted image
features, and (ii) based on deep learning. The techniques
based on hand-crafted image features require a priori model
of the image features to be learned. Whereas, deep learning
does not require any mathematical model of the features;
it rather discovers the underlying features during training.
Traditional techniques of action recognition are based on
different types of feature descriptors, detectors and feature
trajectories. In past years, various types of feature descriptors
and detectors for action recognition have been proposed.
These include cuboid descriptors [23], Scale Invariant Fea-
ture Transform (SIFT) [24] and its extension 3D-SIFT [25],
Histogram of Oriented Gradients (HOG) [26], HOG3D [25],
Extended Speeded Up Robust Features (SURF) [27], Motion
Boundary Histogram (MBH) [28], Local Binary Pattern
(LBP) [29], Local Ternary Pattern (LTP) [30], and shape
and motion based feature descriptors [31]-[33]. In addition
to this, Efros et al. [34] introduced a novel motion descrip-
tor to recognize human actions at distance. In this work,
action recognition was done only on tracking a bounding
box without using any information about the movements.
Laptev and Perez [35] used local space time features with
an SVM classifier to classify human actions. They evaluated
their results with a video database containing 2391 sequences
of six human actions performed by 25 people in four different
scenarios.

The action recognition using Spatio-temporal words by
finding space-time interest points [36], HOG/HOF fea-
tures [37], bag of words (SIFT, HOG and HOF) features [38]
and combination of multiple features (HOG and HOF) [39]
achieved significant results on the datasets of KTH, Skating,
HOHA, and HOHA1. However, these approaches have sev-
eral limitations. They fail to distinguish similar actions, are
unable to capture temporal information, and are less efficient
in recognizing the overall context. In addition, these tech-
niques express actions literally and lack exact timing align-
ment and correspondence with real actions. Apart from this,
these techniques generally suffer from varying environmental
conditions, are dependent on the mathematical models of
the image features, and are limited to extract discriminative
features from raw video frames.

Action recognition using deep learning is gaining increas-
ing attention. These techniques generally use CNNs, single
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stream networks, two-stream networks, two streams fusion
networks, 3D-CNN networks to process videos, and RNN
networks, particularly LSTM networks. Some more recent
architectures [40], [41] have focused on using attention mech-
anisms for detecting salient parts of a video. The main idea
behind these approaches is to capture long-term temporal
information between video frames to correctly recognize the
actions.

The major breakthrough in deep learning was intro-
duced by Krizhevsky et al. [42] for the image classifica-
tion problem. The objective was to employ an efficient
method to train a model with 1.2 million high-resolution
images to classify new images in 1000 different classes.
This approach was based on a deep convolutional neural
network. Later on, Karpathy er al. [43] explored the idea of
fusing temporal information from consecutive video frames
using a 2D pre-trained convolution network. The learned
Spatio-temporal features did not capture motion features due
to the limited diversity of the dataset. Learning detailed fea-
tures turned out to be tough and the results were signifi-
cantly inferior as compared to the algorithms based on the
hand-crafted features.

Jietal. developed a 3D CNN model that can capture
the motion information in adjacent frames [44]. This model
extracts both spatial and temporal features by using 3D
convolutions. Tran et al. [45] used video level 3D convolu-
tions. A 3D convolution-based network was trained on the
SportsIM1 dataset for feature extraction. The long-range
temporal modeling was still a problem and training such huge
networks was computationally expensive. Yang et al. [46]
proposed asymmetric, one-directional 3D convolutions to
approximate the traditional 3D convolution. The asymmetric
3D convolution decreases parameters, significantly reduces
the computational cost and outperforms traditional 3D-CNN
models with respect to both effectiveness and efficiency.

The performance of a single-stream network was improved
by using a two-stream network in order to capture local tem-
poral information. In two-stream networks, separate spatial
and temporal recognition streams based on ConvNets were
used. In these approaches, Wang et al. [47] used Tempo-
ral Segment Networks (TSN), Carreira and Zisserman [48]
used inflated 3D networks (I3D), Diba et al. [49] used Tem-
poral 3D networks (T3D), and Zhu eral. [50] proposed
Deep networks with Temporal Pyramid Pooling (DTPP)
which was an end-to-end video-level representation learning
approach. These approaches achieved significant accuracy on
various datasets; however, the long-term temporal informa-
tion was still a major issue in these approaches.

Donahue ef al. [51] designed a deep recurrent network
by cascading a CNN with an RNN. CNN computed frame
features were then fed to the LSTM for feature sequence mod-
eling so that the video-level representation could be learned
in both temporal and spatial dimensions. Ng et al. [52] inte-
grated the architecture of temporal feature pooling with an
LSTM to enable the model to work with arbitrary length
frames.
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Majid et al. [53] used C2LSTM to capture motion as well
as spatial features and time dependencies. The network was
evaluated on two well-known benchmarks: UCF101 and
HMDBS51. The results confirmed the efficacy of C2LSTM to
capture motion as well as spatial features and time depen-
dencies. Li et al. [40] developed a spatio-temporal atten-
tion (STA) model, Dai et al. [41] developed a two-stream
attention-based LSTM architecture for action recognition
in videos, and Zhang ef al. [54] proposed a Knowledge
Integration Network (KINet) for action recognition. These
approaches achieved significant accuracy on the datasets of
UCF-1011, HMDB512, Kinetics-4003.

Khan et al. [55] proposed a deep learning based algo-
rithm for movie tags prediction and segmentation. In this
work, the authors constructed a tag vocabulary and cre-
ated a dataset for the vocabulary. They further proposed an
efficient shot detection algorithm to find keyframes in the
movie. However, their technique does not take into account
the motion information in the video which is more effi-
cient to consider for action recognition. Sargano et al. [56]
proposed a method for recognizing human actions using a
pre-trained deep CNN architecture and SVM-KNN hybrid
classifier. They achieved a higher accuracy on UCF sports and
KTH datasets as compared to the hand-crafted feature-based
methods. Rafiq er al. [57] proposed a technique for sports
video scene classification using a pre-trained AlexNet con-
volutional neural network with emphasis on video summa-
rization. They evaluated their results on cricket videos and
compared their technique with various deep-learning mod-
els. Elharrouss et al. [58] proposed an approach for multiple
human action detection, recognition and summarization in
videos using Histogram of Oriented Gradients (HOGs) of the
frames in each shot. In this approach, the actions are rec-
ognized by performing a comparison between the generated
HOG and the existing HOGs in the training phase.

From the literature review, it is evident that a plethora
of research has been directed towards action recognition;
however, some issues still pertain such as background clutter
and/or fast irregular motion, occlusion, viewpoint changes,
high computational complexity, and sensitivity to illumina-
tion changes. CNNs were initially used for action recognition
on frame-by-frame basis and found to show superior perfor-
mance than that of hand-crafted features based techniques.
Later, 3D CNNs showed even better performance by process-
ing multiple frames simultaneously. In some recent architec-
tures, CNNs have been combined with RNNs to incorporate
motion information. Nevertheless, the existing techniques do
not deliver a promising performance. A short summary of
approaches for action recognition presented in this literature
review is shown in Table 1.

The action recognition technique proposed in this paper
considers the limitations of the existing techniques by com-
bining a CNN with an LSTM, and processing only the key
frames of a video to eliminate redundancy and decrease com-
putational complexity. Another striking feature of this work
is to segment the video based on the predicted actions. This is
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TABLE 1. Summary of literature review.

Technique

Pros

Cons

A motion descriptor to recognize human
actions [34]

Can be used to classify actions,
transfer 2D/3D skeletons, and
synthesize novel action sequences.

Action recognition done only
by tracking a bounding box without
using any motion information

A SVM classifier for human action
recognition using local space-time
features [35]

High recognition performance as
compared to other related approaches

Some categories can be confused with
others. Local features performs better than
others

Multiple types of feature
descriptors, detectors and feature
trajectories to recognize actions
[36]-(39]

Not class-specific

Fails to distinguish similar actions, unable
to capture temporal information, less
efficient in recognizing the overall context,
lacks exact timing alignment, may suffer
from environmental variations.

A 3D convolutional
networks as a feature extractor [45]

An organized study to find the best
temporal kernel length for 3D ConvNets.

The long-range temporal modeling,
computationally expensive

A 3D CNN model [44]

Captures the motion information
encoded in adjacent frames

Computation-intensive, higher storage cost,
difficult to learn, labeling of data required.

Asymmetric, 3D convolutions
to approximate the traditional
3D convolution [46]

Decreases parameters, significantly
reduces the computational cost, outperforms
traditional 3D-CNN models

Computation-intensive, higher storage cost,
difficult to learn, labeling of data required.

A two-stream network to
capture local temporal information [47]-[50]

Higher accuracy on various
benchmark datasets

Long-term temporal information is
the main issue

LSTM networks to capture local
temporal information [51], [52]

Higher accuracy on various
benchmark datasets

Long-term temporal information is
the main issue

C2LSTM to capture motion
as well as spatial features and time
dependencies [53]

Efficient to capture motion as well as
spatial features and time dependencies

Long-term temporal information is
the main issue

Attention mechanisms for detecting
salient parts of a video [40], [41]

Captures long term temporal information
among video frames to correctly recognize
the actions.

Generally more complex architectures
for action recognition

A Knowledge Integration
Network (KINet) [54]

Higher accuracy on the datasets of UCF-
1011, HMDBS512, Kinetics-4003.

Generally more complex architectures
for action recognition

particularly important for a number of tasks such as content
censoring, on-demand scene retrieval, video summarizing,
and query based scene/video retrieval.

ill. METHODOLOGY

Our proposed action recognition system involves two main
steps: (i) detection of shot boundaries and their respective key
frames, and (ii) applying the action recognition network on
the individual key frames. The shot boundaries are detected
using the intersection of the color histogram of successive
video frames. Afterwards, the middle frame of each shot is
selected as its key frame. The key frames are then fed to the
action recognition system. The predicted actions belonging
to the same class are merged together to create a composite
action. Finally, the shots are split based on the predicted
actions. Once these steps are applied on the video, as shown
in Figure 1, the system also retrieves a particular action based
on an action query. In addition, the system also generates a
summary of the video with the start/end frames times corre-
sponding to each action. The following sections discuss these
steps in detail.

A. DATASET

One of the challenges in deep learning is the availabil-
ity and completeness of the datasets. Deep learning mod-
els can be trained and tested either on standard bench-
marks such as UCF-101 [59], UCF11 [60], HMDB-51 [61],
YouTube8M [62] and KTH [35] or they can be trained and
tested on a newly developed dataset. UCF11 action dataset
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consists of 11 action classes which contain 1600 videos cap-
tured at a frame rate of 29.97 fps. The videos in each class are
organized into 25 groups, each containing at least four videos.
The videos in each group share some common features such
as the same actors, similar backgrounds, and similar view-
points. This dataset adequately addresses a variety of factors
such as illumination conditions, object appearance and pose,
large variations in camera motion, object scale, viewpoint,
and cluttered background.

KTH is one of the standard datasets which is widely used
for comparing the performance of action recognition sys-
tems. This dataset consists of six action classes (i.e., jogging,
hand waving, boxing, running, walking and hand clapping)
in which each class contains videos involving a single
actor (people) performing single action recorded in a con-
strained environment with a static background. Each action
in the dataset is performed by 25 different actors in four
different scenarios: outdoor (s1), outdoor with scale variation
(s2), outdoor with different clothes (s3), and indoor (s4). This
dataset contains 25 x 4 x 6 = 600 videos which are captured
at a frame rate of 25fps with a resolution of 160 x 120. Each
of these 600 video clips is further dived into four segments.

A newly developed dataset usually contains classes for
a particular scenario. In this work, the proposed technique
is evaluated on a real scenario in which various actions are
performed by students, teachers and others in an educational
institute. For this purpose, first, an action vocabulary com-
prising nine actions is constructed. These action classes with
their semantic meanings are shown in Table 2.
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FIGURE 1. Proposed key frame based action recognition system.

TABLE 2. Action vocabulary.

Action Semantic meaning

A large number of people in close
proximity, throng, any group or set
of people with something common

Action of scuffling, violence or

Crowd gathering/ Rallying

Fighting Scene conflict

. Students or the employees of a company
Smoking smoking cigarettes in prohibited area
Fire Scene Incident of fire at a school, university, etc.
Explaining Teacher explaining in classroom
Writing on Board Teacher writing on board

Action of gun fire using pistols, guns,
rifles, etc.

People’s temperature being checked
with a temperature gun

Normal actions in the video representing
none of the above-mentioned scenarios.

Gun Fire Scene

Corona Temperature Check

Normal

Subsequently, the dataset is collected for each action by
obtaining the relevant features (video clips containing the
actions of interest) from a number of sources (such as
YouTube, Dailymotion, Vimeo, etc.) and our own created
videos corresponding to each action. It is pertinent to mention
that some of the actions have overlapping features, e.g., fight-
ing scenes, rallying and gunfire scene share common features,
which makes this training problem tougher than the one in
which classes share little to no features. Apart from that,
while collecting the dataset, various issues such as lighting,
contrast, orientation, image quality and perspective are also
kept in view. Ignoring these variations can drastically reduce
prediction accuracy.

Our action vocabulary and the corresponding dataset are
the first steps towards automated detection of the incidents/
events commonly occurring in an educational institute or
other organizations. These events either entail real-time
surveillance and response or require event-based archiving
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Fire Scene

Gun Fire Scene
Normal
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Writing Board

Numer of videos
&

10

test train

FIGURE 2. Partition of the dataset.

for later reference. The action vocabulary is scalable and
subject to evolution as more relevant actions are identified
and the appropriate dataset is collected. The dataset contains
810 action videos and each class in the dataset contains
90 videos of varying duration (2-15 sec). The dataset is split
into train and test datasets, containing 60 videos (i.e., 67%)
and 30 videos (i.e., 33%) pertaining to each class, respec-
tively. Moreover, when training the model, 20% of train
dataset (i.e., 12 videos) are used for validation, as shown
in Figure 2. For extracting frames from individual videos
for training, multiple options are offered based on the com-
bination of three parameters, i.e., fps (frames per second),
i and n, where the Boolean parameter fps, when set to true,
extracts frames based on the video’s frame rate, i represents
the frequency of the frames to be extracted, and n represents
the total number of frames to be extracted. A description
of the combination of these parameters is given in Table 3.
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TABLE 3. Criteria for selecting video frames for training and prediction.

Frame extraction parameters

Fps : o Description

Selecting frames based on fps, e.g.,

if fps = true, select each 25" frame
Select specified number of frames
based on fps, e.g., if fps =25,n=10,
select only 10 frames after each 251
frame (for a 25 fps video)

Select each i™ frame in the video
Select n frames after each /™ frame
Select first n frames

Select all video frames

True 0 0

True 0 >0

False | >0 | O
False | >0 | >0
False | 0 >0
False | 0 0

Corona Temp Check

Gun Fire Scene

Explaining

Writing on Board

Smoking

Fighting Scene

Rallying

Fire Scene

Normal

FIGURE 3. Some extracted video frames belonging to different classes of
the train dataset.

This is pertinent to mention that the same combination of
these parameters is used for action recognition when a given
video is applied to the trained network. However, there is
no significant influence of different parameter settings when
classifying an action video, as shown in Figure 1 and Figure 5.
These are frame extraction parameters that describe which
frames and how many frames are to be considered for classi-
fying a video. The rationale for offering these combinations
for both training and action prediction is two-fold: i) to allow
the user to analyze the impact of different combinations
on training/testing accuracy for a given dataset, and ii) to
analyze the impact of these parameters on the trade-off of
training/processing time and the performance in terms of
accuracy, precision and recall. Some of the labeled video
frames from the training dataset are shown in Figure 3 for
illustration.

B. SHOT BOUNDARY DETECTION

Our proposed algorithm for shot boundary detection is shown
in Figure 4. This system first extracts key frames either based
on a threshold (choice 1) or extracts the first n key frames
based on an abrupt change in the visual contents (choice 2).
If choice 1 is selected, the system computes the threshold on
the basis of the mean and standard deviation of all normalized
HSV histogram distances. This is in contrast to the technique
in [63] where the threshold is computed on the basis of

VOLUME 9, 2021

mean and standard deviation of the absolute differences in the
grey level histogram between consecutive frames. The frame
extraction rule used in choice 1 to calculate the threshold T
is mentioned as follows,

T =f x[uag+0q], wheref =1,2,3,... @))

where f is a factor to obtain the desired number of shot
boundaries and key frames, s is the mean of all distances,
and oy is the standard deviation of distances.

The value of factor f may vary from video to video depend-
ing on the type of the video. For a particular value of f,
if a large number of key frames has been extracted, then
the value of f is decreased, and vice versa. Moreover, for a
video that contains sharp or sudden transitions, a lower value
of f is used. Likewise, for a video that contains gradual or
continuous transitions, a higher value of f is used.

To detect shot boundaries, a threshold is applied to each
normalized HSV histogram distance. If the distance is greater
than the threshold 7', the frame is considered to be a key frame
and is added into the key frame list.

If choice 2 is selected, the shot detection algorithm extracts
the first n key frames based on the abrupt changes in the visual
contents. The algorithm extracts key frames by finding those
frames where consecutive frames have higher normalized
HSV histogram distances. These n key frames can be deter-
mined by first sorting normalized HSV histogram distances
in descending order. Subsequently, first n normalized HSV
histogram distances are obtained. Finally, these distances are
sorted in ascending order based on key frame IDs. Choice 2
for obtaining key frames is particularly useful when the shots
are classified by sending a smaller number of key frames
applied to the action recognition system. It removes redun-
dancy and increases the robustness and execution time of
the action recognition system. Furthermore, the number of
key frames can be reduced on certain criteria such as: (i) if
only one key frame per second is considered, and (ii) if more
than one key frames per second are considered. In the latter
case, only one key frame will be picked and others will be
removed from the key frame list. Finally, middle key frame
IDs are obtained. Using these key frame IDs, shots are built
by calculating start and end times. The system also generates
a summary of the video in terms of a number of shots present
in the video with their start/end IDs and timestamps. The steps
for extracting key frames and segmenting a video into shots
are shown in Figure 4.

1) KEY FRAME EXTRACTION
Our proposed key frame extraction method is based on HSV
color histogram. First, a normalized HSV histogram of each
video frame is calculated and then the histogram distances
of successive video frames are computed. The key frame
extraction algorithm is described in Algorithm-I.

The traditional performance metrics including Preci-
sion (P), Recall (R) and F1-Score (F) are used to evaluate the
efficacy of the proposed algorithm as follows.
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FIGURE 4. Shot detection system.

Algorithm 1 Key Frame Extraction

1: Calculate normalized HSV histogram of each frame
hist(i)

2: fori=0toN — 1do
3:  dist(i) = abs(hist(i + 1) — hist(i))
4:  totalgis = totalgig + dist (i)
5: end for
6: if choice = 1 then
7. T =f x [u(totalys) + /Var(total s )] %Threshold
g8: fori=0toN — 1do
Yoapply threshold on each distance
9: if dist(i) > th then
10: kFramelj] = frame(i)
11: end if
12:  end for
13: else

14:  Sort dist w.r.t distances in ascending order

15:  Obtain first n distances from dist in dist_n

16:  Sort dist_n w.r.t frame IDs in ascending order
17:  Obtain key frame IDs from dist_n

18: end if

19: Optimize key frame list

#correct key frames

= 2
(#correct key frames + #false key frames) @
_ #correct key frames 3)
 (#correct key frames + #missed key frames)
2PR
= @
P+R

Compression Ratio (CR) is used to evaluate the compact-
ness of the key frame sequence. It is the ratio of number of
extracted key frames to the total number of frames i.e.,

#Extracted key frames

&)

~ Total number of frames
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Similarly, fidelity can be used to measure the correlation
degrees between frames in a shot and the extracted key
frames. Fidelity is a Semi-Hausdoff distance between the
key frame set and the shot frame set where Semi-Hausdoff
distance is the maximum of minimum distances between the
set of key frames of a shot and its corresponding frames. If we
have a set of shot S = {s1, 52, ..., s,} and a set of key frames
K = lki,kp, ..., k,}, then Semi-Hausdoff distance dy, is
computed as follows,

dgy =max(dj), 1<i=<N (6)

where d; is the minimum distance between the set of key
frames of a shot and its corresponding frames which is com-
puted as follows,

di = min(d(kj, s;)), 1 <i<N, 1<j<K (N

C. ACTION RECOGNITION

A CNN-RNN deep learning architecture is used to predict
actions in the proposed technique. This architecture involves
two separate CNN and RNN networks. In the first step,
a Conv-2D model is trained on the dataset to extract spatial
features. In the second step, an RNN model is trained on these
spatial features with one or more hidden layers of LSTM cells
to classify action sequences. This action recognition system
is shown in Figure 5. For an input video, the system first
generates frames on the basis of whether we need frames after
every second or every frame, and the number of frames to be
extracted. Once these frames are extracted, they are fed to the
CNN network. The features obtained from CNN are added to
the feature list. When these features are equal to the required
number of frames, they are combined to create a sequence.
This sequence of CNN features is fed to an RNN network for
final prediction.

1) TRAINING DEEP NETWORKS

The following sections describe the steps of training our
deep learning models for action recognition. In order to build
and train a CNN, four different types of CNN networks are
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FIGURE 5. Action recognition system.

trained, i.e., Inception-V3 [64], Xception [65], Resnet50 [66]
and VGG19 [67] on our action vocabulary. These pre-trained
networks have been trained on 1.2 million high resolution
images to classify new images in 1000 different classes.
Training a new deep learning model from scratch requires a
huge amount of data, high computational resources in terms
of a number of GPUs and memory, and a long duration which,
in some cases, may span several weeks. Therefore, instead of
creating and training network from scratch, a network that
has been already trained on a large dataset is utilized. This
concept is called transfer learning. Transfer learning refers to
transferring the knowledge gained through a learning tasks
to an entirely different task with much less training time and
computational power. This is in contrast to parameter loading
which results in small performance improvement of a neural
network by varying its hyper parameters such as learning rate
and method of parameter initialization. Parameter loading is
generally used when the training dataset is large and similar
to the dataset on which the pre-trained model was trained.

The type of pre-trained network, number of custom lay-
ers used, type of optimization algorithm, and other param-
eters used during training are given in Table 4. The
hyper-parameters, as mentioned in Table 4 have been selected
experimentally by applying different settings and analyzing
their effects on the efficacy of the trained model. The four
CNN networks based on four different types of pre-trained
networks have been used in this work. The layer-wise struc-
ture of the Inception-V3 based CNN network is shown
in Figure 6.

The RNN model is trained on the spatial features obtained
from the pooling layer of the CNN model. This model con-
tains one or more hidden layers of LSTM cells to classify
action sequences. In this work, four types of RNN models are
trained: wide, wider, deep and deeper, where wide and wider
LSTM networks are single-layered LSTM networks with the
capacity of 128 and 512 neurons, respectively. On the other
hand, deep and deeper LSTM networks are multi-layered
networks with two and three LSTM cells, respectively.
The layer wise structure of the wide LSTM RNN network
is shown in Figure 7.
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TABLE 4. Training parameters.

CNN Parameter Description
Base CNN model InceptionV3, pre-trained on 1000
classes of ImageNet
Final layer modified and re-trained
Modifications Addition of a dropout layer as penultimate layer
Discarding the output of 20% neurons
No of layers 318

Types of custom
layers used

Convolution, batch_normalization, dropout,
global_average_pooling2d, fully connected,
softmax

Input image size

299x299

Stochastic gradient descent
(Ir=0.01, decay=1e-6, momentum=0.9)
Rectified Linear Units (ReLu)

Learning algorithm

Activation function

Error estimate Cross Entropy
Training epochs 50
Steps per epoch 263 (i.e. Batches)
Batch size 32
Input (None, 299, 299, 3)
Inception_312_layers: Model
Output (None, 8, 8, 2048)
Global_average_pooling2d_10 Input (None, 8, 8, 2048)
GlobalAvera.gePoolingzb Output (None, 2048)
Input (None, 2048)
Dense_26: Dense
Output (None, 1024)
Input (None, 1024)
Droupout_14: Dropout
Output (None, 1024)
Input (None, 1024)
Dense_27: Dense
Output (None, 256)
Input (None, 256)
Dropout_15: Dropout
Output (None, 256)
Input (None, 256)
Dense_26: Dense
Output (None, 9)

FIGURE 6. Layer-wise structure of Inception-V3 network.

The hardware/software setup used for our experiments is
described in Table 5. Using this setup, CNN takes 3.75 hours
for training 50 epochs; whereas, RNN takes 20 minutes for
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Input (None, None, 2048)
Lstm_2_input: Input Layer
Output (None, None, 2048)
Input (None, None, 2048)
Lstm_2: LSTM
Output (None, 128)
Input (None, 128)
Dense_2: Dense
Output (None, 512)
Input (None, 512)
Dropout_4: Dropout
Output (None, 512)
Input (None, 512)
Dense_3: Dense
Output (None, 9)

FIGURE 7. Layer-wise structure of wide LSTM RNN network.

TABLE 5. Experimental setup.

Hardware/Software Specifications
Microprocessor Intel Core i7
Random Access Memory 8GB

Graphical Processing Unit (GPU)
Deep Learning Framwork
Operating System

NVIDIA GTX 750
Tensorflow 2.3.0, Keras 2.2.4
UBUNTU 16.04

Python 3.5 with OpenCV 3.0,
Matplotlib, Pandas

Programming Languages/Libraries

150 epochs. An image size of 299 x 299 and a batch size
of 32 are used in the experiments.

IV. EXPERIMENTAL RESULTS

CNN and RNN models are trained according to the data
spilt shown in Figure 2. The training-validation accuracy
and training-validation loss of CNN and RNN models are
shown in Figure 8 and Figure 9. It is evident that these
models successfully learn the features of the training data and
generalize well. The inception-V3 based CNN model learns
faster than other models and achieves a training accuracy of
around 100% after 30 epochs, and a maximum validation
accuracy equal to 86% after 43 epochs. It can also be seen
that this model shows no over-fitting. The RNN models are
trained on 150 epochs with a batch size of 32 and a dropout
of 0.2. The wide RNN model achieves a maximum validation
accuracy of 95%. However, it can be seen that the model starts
over-fitting after 140 epochs.

The performance of an action recognition architecture
(i.e., CNN-RNN) on the test dataset is described by a con-
fusion matrix as shown in Figure 10. This matrix visualizes
the accuracy of a classifier by comparing the actual and
predicted classes. For example in our case, for gun fire class,
out of 30 samples, 29 samples are correctly classified as gun
fire scene, while 1 sample is mis-classified as fighting scene.
Also, 1 sample of Smoking class, 1 sample of Corona Temp
Check and 2 samples of fighting scene class are classified as
gun fire scene. The prediction accuracy of the gun fire class
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TABLE 6. Classification report.

Action Precision | Recall | F1-Score
Corona Temp Check | 1.00 0.85 0.92
Fighting Scene 0.82 1.00 0.90
‘Writing Board 0.88 0.96 0.92
Gun Fire Scene 0.90 0.90 0.90
Rallying 0.95 1.00 0.98
Fire Scene 1.00 1.00 1.00
Explaining 0.97 0.90 0.93
Smoking 1.00 0.93 0.96
Normal 1.00 1.00 1.00
Average/Mean 0.96 0.95 0.95

is 97%. The average prediction accuracy of our proposed
system is 94%. The precision, recall and F1-Score of each
class are shown in Table 6. The average precision, recall and
F1-score are around 95% which shows the efficacy of our
proposed action recognition system. The precision, recall and
F1-Score of each class are shown in Table 6. The average
precision, recall and Fl-score is around 95% which shows
the efficacy of our proposed action recognition system.

The performance of the proposed technique is also eval-
uated in terms of Receiver Operating Characteristic (ROC)
curves, as shown in Figure 11. A ROC curve shows the true
positive rates against the false positive rate at various thresh-
old settings. Figure 11 shows that the model has higher value
of Area Under Curve (AUC) which represents the degree of
separability. All the curves on the ROC graph are clustered at
the top-left corner which indicates a high prediction accuracy.
In order to ascertain how well the model performs on unseen
data and to assess the effectiveness of the model, a 5-fold
cross validation technique is used. In this case, the dataset is
divided into 5 equal partitions or folds. The model is trained
5 times. Each time, it uses 1 different fold for the testing set
(i-e., 20% of a dataset comprising 18 videos in each class)
and union of four other folds as the training set (i.e., 80%
of a dataset comprising 72 videos in each class), as shown
in Figure 12. The accuracy of each fold and the average
accuracy is also shown in Figure 12.

The performance of the proposed CNN 4 RNN architec-
ture is also evaluated using the same experimental setup as
given in Table 5 on two benchmark datasets: UCF11 and
KTH. No optical flow images (i.e., a single stream of images)
are used and very little parameter tuning is performed.
UCF11 dataset is split into a train (80%) and test (20%)
datasets based on their annotations [60], each of which con-
tains action videos of different groups. The performance on
this dataset is evaluated by calculating the average accuracy
over all classes. Similarly, the KTH dataset is split into train,
validation and test datasets according to people ID [35] which
contains action videos performed by 8, 8 and 9 different peo-
ple, respectively. The performance on this dataset is measured
in terms of average accuracy over all action classes.

The accuracy of each class of the UCF11 dataset is shown
in Figure 13a, and the accuracy of each class of the KTH
dataset is shown in Figure 13b. From Figure 13b, it can
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FIGURE 9. Training-validation accuracy and loss of RNN network.

be seen that only two classes, i.e., jogging and running
have less than 90% accuracy because these contain similar
actions. Therefore, the trained model fails to distinguish the
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actions of these classes. 17% of actions of jogging class are
mis-classified as running class, and 28% actions of running
class are mis-classified as jogging class. Average accuracy
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TABLE 7. Evaluation results of the key frame extraction.

Precision | Recall | F1-Score

Test video Factor | #Frames | # Key frames Extracted Compression Ratio (%)
(%) (%) (%)

acrobacia! 1 175 11 90.90 83.33 86.96 6.28

kylie? 2 204 8 87.5 100 93.33 3.92

Boris Sends a Spike > | 3 1980 22 95.45 80.77 87.50 1.11

test_scene” 2 1062 12 100.00 100.00 | 100.00 1.13

TABLE 8. Corpus generated by the key frame extraction and action recognition algorithms.

Predicted Action Start ID | End ID | Start Time | End Time | Shot Duration (sec) | Action Duration (sec) % age #Shots
.. 000 096 000 3.27 3.27
Explaining =7 =79 219 3606 187 5.14 14.50% | 2
s 97 199 3.27 6.71 3.44
Fighting Scene =30 379 36.06 97 334 6.77 19.10% | 2
Fire Scene 200 273 6.71 9.18 2.47 2.47 0697% | 1
Rallying 274 364 9.18 12.25 3.07 3.07 08.66% | 1
Smoking 366 474 12.25 15.88 3.64 3.64 10.27% | 1
Writing Board 475 574 15.88 19.22 3.34 3.34 09.42% | 1
Corona Temp Check | 575 619 19.22 20.72 1.50 1.50 04.23% | 1
. 620 723 20.72 24.19 3.47
Gun Fire Scene 330 T061 397 3544 504 9.51 26.83% | 2
Video length: 35.44 sec
Confusion Matrix Receiver Operating Characteristic (ROC) Curve
GunFireScene g 0 0 0 0 0D O 1 X La
WritingBoard {0 &2 0 1 01 0 0 =5 e
Normal /0 OEEo 0 0 0 0 0 -
T Smoking {1 0 1EJ0 0001 20 08 f = micro-average ROC curve (area = 1.00)
E Explaining o2 00Kloo0O0O0 15 u macre-average ROC curve (area = 1.00)
o Rallyi 0000 OERID O O & * ROC curve of class 0 (area = 0.99)
& atying 101200 o1 10 H 0.6 * ROC curve of class 1 (area = 1.00)
Corana Terr'.p Check Doo0O0O0O DEAD T * ROC curve of class 2 {area = 1.00)
Fire Scene S Emmm T 5 % 04 * ROC curve of class 3 (area = 0.99)
Fighting Scene 1= = = - = - -~ ° o g ROC curve of class 4 {area = 1.00)
LPpFIDEX LU L= ROC curve of class 5 (area = 1.00)
UEEEEsZg g 02 e ROC curve of class & (area = 1.00)
"é' - E 2Eh E o "/" ++++ ROC curve of class 7 (area = 1.00)
= g Ei S L +==+ ROC curve of class 8 (area = 0.99)
£ = =5 0o+ . . . ;
o e i 0.0 0.2 0.4 0.6 0.8 10
E False Positive Rate
(=]

Pradicted lab

o

FIGURE 10. Confusion matrix.

of 95% on the UCF11 dataset and 89% on the KTH dataset
is achieved.

The number of key frames extracted from various test
videos along with their histogram distances and threshold
values are shown in Figure 14. For example, only 12 key
frames were extracted from test video as shown in Figure 14d,
which is composed of 1062 frames portioned into 12 shots.
The extracted key frames do not have any overlapping or
similarity even in a very short-duration video. This shows that
our algorithm extracts distinct (non-redundant) information
from videos which can be sent to the recognition system.

The performance of the proposed key frame extraction
algorithm is evaluated using different evaluation metrics,
as shown in Table 7. In the first step, shot boundaries in each
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FIGURE 11. Receiver operating characteristics (ROC) curves.

. Dataset Accuracy
Train (80%) Test(20%) | (%)
Fold#1 Test Train 95.3
Fold#2 Train Test Train 93.8
Fold#3 Train Test Train 922
Fold#4 Train Test Train 94.1
Fold#5 Train Test 95.0
Average Accuracy 94.1

FIGURE 12. 5-Fold cross validation results.

video are found by watching all the test videos and noting
down the start and end time stamps of each shot. This ground
truth is used to compare the shot boundaries with the ones
found by our key frame extraction algorithm. Table 7 shows
the evaluation results of our key frame extraction algorithm
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FIGURE 15. Action prediction for each extracted shot.

(g) Temperature check

(d) Rallying

(h) Fighting

The action prediction corresponding to each shot is shown
in Figure 15. The adjacent shots which belong to the same
class are merged into a single composite shot. The system

for various test videos of varying lengths. It is evident that our
key frame extraction algorithm has a reasonable compression
ratio and F1-score.
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also generates a summary of the actions present in the video,
as shown in Table 8. This table shows the actions performed
in a video, their start/end times, length of each shot, and
percentage of each action with respect to the video length.

V. CONCLUSION AND FUTURE WORK

In this paper, an action recognition technique to predict
actions in videos and segment the videos accordingly has
been proposed. A CNN + RNN network is trained on a
carefully constructed action vocabulary. Furthermore, a key
frame extraction algorithm is also proposed which finds the
shot boundaries in a video and suggests the most important
frames in a video to be fed to the CNN 4 RNN network.
This not only eliminates redundancy in information process-
ing and improves prediction accuracy, but also alleviates
computational complexity. The corpus generated by the key
frame detection and recognition system is further used for
segmenting the video with respect to the predicted actions.
In this way, the proposed system can be used for query
based contents retrieval from a videos, contents censorship,
efficient archiving, classification, automatic tags generation,
and video summarizing.

In the future, we aim to enhance the action vocabulary
and the action dataset to incorporate more actions. In the
same way, we also aim to use more complex networks to
better capture the intricate features of each action. In addition,
we are also investigating the potential of audio information on
the efficacy of action recognition.
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