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ABSTRACT Considerable effort has been devoted to the study of network structures and connectivity
patterns and their influence on network dynamics. A widely used assumption in network analysis models
is that traffic follows the shortest paths connecting pairs of nonneighboring vertices. For example, graph
centrality measures, community extraction algorithms, and core-periphery detection algorithms use this
assumption. However, this is a very restricted perspective and can be misleading as a consequence of its
focus on shortest path communications. In this work, we study the utilization of shortest paths in complex
networks in different data dissemination scenarios. We also explore whether there are general properties that
can make networks utilize shortest paths more effectively. By conducting simulations on a set of real-world
and artificial networks, we show that the utilization of shortest paths in complex networks may not be as
common as assumed. This implies that longer paths can be as important (in some cases) as the shortest
paths. Our results show that at least two factors clearly influence shortest path utilization in a network: the
structure of the network and the data dissemination algorithm. We also find that the type of a network is not
a good indicator of its shortest path utilization.

INDEX TERMS Influence maximization (IM) model, network analysis, network distance properties,
network structure, shortest paths, small-world phenomenon, susceptible–infectious–recovered (SIR) model,
vertex centrality.

I. INTRODUCTION
Networks describe the bidirectional relationships among
entities in systems, for instance, social systems, biological
systems, and the World Wide Web. In its simplest form,
a network is a set of entities and their connections. Combining
network science with the mathematical perspective of graph
theory provides a rich toolbox for analyzing and understand-
ing various complex phenomena of networks.

Mathematically, graphs are used to represent real-world
networks. A graph is represented by a set of vertices (entities
or agents) and a set of edges (relationships or connections
between vertices). Depending on the system, a graph can
be weighted or unweighted. The weight of an edge between
two vertices captures the notion of the cost required to travel
through that edge. If no edge exists between a pair of vertices,
then the two vertices may be connected by a path that consists
of a sequence of intermediate vertices. The distance of a path
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is the sum of the weights of all the edges on that path, i.e., the
total cost. A path is considered a shortest path (also called a
geodesic) if it has minimum cost.

Significant effort has been devoted to the study of net-
work structures and connectivity patterns and their influence
on a network’s dynamics [1]–[11]. A widely used assump-
tion in network analysis models is that traffic follows the
shortest paths connecting pairs of nonneighboring vertices
[11], [12]. Examples using this assumption include graph
centrality measures, which rank vertices according to their
importance based on some criteria [6], [13], [14]; commu-
nity extraction algorithms, which identify several groups of
interconnected sets [15]–[17]; and core-periphery detection
algorithms, which partition vertices into a densely connected
core and a sparsely connected periphery [18]–[20]. These
measures and models are based on the assumption that infor-
mation is passed from one vertex to another only along the
shortest paths linking them. However, this perspective is very
restricted and can be misleading as a consequence of its focus
on shortest path communications [21], [22].
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FIGURE 1. Collaboration network of physics papers highlighting the shortest paths from Newman, M. E. J. to Barabási,
A.-L. The figure was adapted from [27].

Real-life examples that contradict the assumption of short-
est path navigation can be observed in several network appli-
cations. For example, the small-world phenomenon,1 which
has been observed in a wide range of network types and forms
the basis of many network analysis models, was inspired by
an experiment that received several methodological criticisms
[23]–[25]. In 1967, Milgram [26] performed an experiment
to examine the average path lengths of social networks in the
United States. He asked a set of participants to deliver a letter
to a target address by advancing it to an acquaintance, and
found that the average path length was six. The experiment
had a high noncompletion rate [23] and the relevance of
indirect contact chains of different degrees of separation is
questionable [25].

The second example is related to relationship formation
through shortest paths. Newman analyzed scientists’ collab-
oration networks using bibliometrics information. He found
that scientists were more likely to collaborate if they had a
common collaborator [27]. However, the role that interme-
diate scientists played in connecting other noncollaborating
scientists was not clear, i.e., Did the existence of shortest
paths between nonneighboring author pairs suggest future
collaborations? In Fig. 1, which appeared in [27], although
the distance between Newman, M. E. J. and Moro, E. was
two, these scientists have never collaborated. Similarly, with
respect to publishing together, Watts, D. J. and Sneppen K.,
Garrahan J. P. and Lauritsen, K. B., and Stanley H. E. and

1The small-world property refers to the fact that in most real-world
networks, the typical geodesic distance is short, in particular, when compared
with the network size [6]. For example, people are linked through short
chains of acquaintances in a social network.

Garrahan J. P., with distances of 2, 3, and 4, respectively, have
never published together.2

Here, in an attempt to investigate the shortest path com-
munication assumption, we study the utilization of shortest
paths in networks in different data dissemination scenarios.
Moreover, we explore whether there are general properties
that canmake networks utilize shortest pathsmore effectively.
By conducting a number of simulations on a set of real-world
and artificial networks, we show that the utilization of short-
est paths in complex networks may not be as common as
assumed. This implies that longer paths can be as important
(in some cases) as the shortest paths. Our results show that at
least two factors clearly influence shortest path utilization in
a network: the network structure and the data dissemination
algorithm. We also find that the network type is not a good
indicator of its shortest path utilization.

Research has increasingly focused on how the structure of
networks affects their dynamics and evolution. For instance,
network structure was shown to have a significant impact
on spreading processes; however, a specific characteriza-
tion of the interplay involved is yet to be presented. Our
results are expected to have profound implications for how
we understand diffusion dynamics and relationship forma-
tion in complex networks. Such an understanding could,
for instance, increase preparedness against emerging dis-
eases for which limited epidemiological data are available.
It could also guide the creation of network evolution mod-
els that provide a more realistic characterization of human
communication.

2The profiles of all listed authors were examined up to the publication date
of this paper.
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TABLE 1. This table summarizes notation used frequently throughout this work.

The rest of this paper is organized as follows. In Section II,
we briefly introduce preliminary concepts that will be used
throughout this work. Section III presents relevant related
work. In Section IV, we describe the network datasets used in
this work. Sections V, VI, and VII present the method, results,
and a discussion, respectively. Finally, SectionVIII concludes
this work.

II. PRELIMINARIES
In this section, we review a number of relevant graph theory
concepts and definitions. A summary of all notation is pro-
vided in Table 1.

A graph G = (V ,E) is an ordered pair (V ,E), where V is
the set of vertices and E ⊆ V 2 is the set of edges. We use
|V | = n to denote the number of vertices and |E| = m
to denote the number of edges in G. We define the size of
the graph, denoted by size(G), as the sum of the number of
vertices and the number of edges, i.e., size(G) = |V | + |E|.
Depending on the system being modeled, a graph can be

directed or undirected. Similarly, a graph can be weighted or
unweighted. When G is weighted, each edge between two
vertices u and v is assigned a weight value euv. When the
graph is unweighted, the value of the weight will be binary
(1 and 0 are often used to indicate the existence or the lack
of an edge, respectively). When an edge exists between two
vertices u, v ∈ V , then the two vertices are called neighbors.
A pair of nonneighboring vertices u and v may be connected
by a path that includes the sequence of all intermediate ver-
tices between u and v. All graphs in this work are undirected
and unweighted.

A path P of length k between two vertices u and v is a
sequence of adjacent vertices u0, u1, . . . , uk , where u0 = u
and uk = v, and a shortest path (geodesic) from u to v,
denoted by ρ(u, v), is a path that minimizes the length of this
path. Note that multiple shortest paths may exist between a
pair of vertices. The distance of a path ρ(u, v), denoted by
d(u, v), is the sum of the weights of all the edges on that path,
i.e., the total cost. A path ρ(u, v) is considered a shortest path
if it is a path with minimum cost.

Three key distance properties are related to the struc-
ture of a graph: its average path length, diameter, and

small-worldness. The average path length l(G) represents
the average shortest path length averaged over all pairs of
vertices. That is, l(G) = 1

n(̇n−1)

∑̇
u∈V

∑
v∈V d(u, v). The

diameter of a given graph G is the length of the longest
shortest path between any pair of vertices u and v in the graph.
That is, diam(G) = max d(u, v).

The small-world property refers to the fact that in most
real-world networks, the typical geodesic distance is short,
in particular, when compared with the network size [6].
A graph is said to exhibit the small-world property if its
diameter is bounded by the logarithm of its size (diam(G) ≤
log2(size(G))) [28].
The eccentricity of a vertex u ∈ V (ecc(u)) is the dis-

tance between u and a vertex farthest from u, i.e., ecc(u) =
maxv∈V {d(u, v)}. Vertex eccentricity is a measure of how
close a vertex is to every other vertex in the network. The
value of the minimum eccentricity is known as the radius
rad(G) of the graph: rad(G) = minu∈V {ecc(u)}. The cen-
ter of a graph C(G) constitutes all vertices with minimum
eccentricity (C(G) = {u ∈ V : ecc(u) = rad(G)}).

III. RELATED WORK
Many studies have examined the relationship dynamics in
online social networks as an important aspect of their evo-
lution. Wilson et al. [29] explored the relationship between
social links and real user interactions. Studying user interac-
tions in the Facebook network, the authors observed lower
levels of small-world properties. That is, user interactions
were more frequent between users who were not directly con-
nected. In [30], the authors explored the connection between a
network’s structural properties and its dynamics. Specifically,
they investigated the relationship between the shortest paths
and the lengths of spreading paths. Using stochastic simula-
tions and vertex sampling, they concluded that the spreading
paths and shortest paths in complex networks coincided to a
great extent.

The importance of indirect relationships in an individual’s
social network has been investigated. New link formation
and information diffusion based on indirect ties (friends of
friends) in social networks were investigated in [31]. The
authors concluded that indirect ties could be used to predict
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TABLE 2. Network datasets.

the formation of new edges and information diffusion paths.
Indirect relationships have been observed to influence the
spread of obesity [32] and happiness [33] among individuals
in a social network.

The utilization of shortest paths among commuters in road
networks has been the subject of much research. Despite the
widely accepted assumption that people follow shortest paths,
recent findings show that commuters do not follow those
paths most of the time. For example, Zhu and Levinson [12]
studied day-to-day route choice behavior and identified a
gap between the shortest paths and observed route deci-
sions. They concluded that about two-thirds of commuters
did not use the path with the shortest travel time, and no
commuters followed the path with the shortest travel distance
unless it coincided with the one with the shortest travel
time. Similar results were reported in [34]. Tang and Levin-
son [35] evaluated routes followed by residents within the
Minneapolis–Saint Paul area and found that most commuters
used paths longer than the shortest paths. Moreover, they
found that longer-distance trips tended to deviate more from
the shortest path compared with short-distance trips.

Using real-life examples, the authors of [36] showed that
shortest paths may not be the best possible paths. In [37],
the shortest paths and empirical paths in multiple real-world
networks were compared. The authors defined empirical
paths as those determined by measurements, for example,
traceroutes over the Internet network and path estimations
in the brain network. They observed that empirical paths
were 10–30% longer on average than the shortest paths in all
networks. They explained this observation by the existence
of internal network logic (in the form of various hierarchies)
that affects the structure of the paths.

In [38], the interplay between network structure and
dynamics was investigated using multivariate networks. They
focused on network transitivity because of its role in the
redundancy in the computation of shortest paths.

IV. DATASETS
In our investigation, it was important to use network
datasets that exhibited multiple different structural features.

Therefore, we based our analysis on a set of real-world and
artificial network datasets with different identifiable struc-
tural properties. A summary of the basic structural properties
of each network dataset is given in Table 2 (the last three
columns show the three distance properties of each network:
diameter, average path length, and small-worldness). The
distance matrix of each network is shown in Fig. 2.

A. REAL-WORLD NETWORKS
In most real-world networks, the network diameter and its
average path length are small compared with the network’s
size. This is known as the small-world property [5], [39].
Most real-world networks are also scale-free. A network is
scale-free when its vertex degrees exhibit a power-law distri-
bution (i.e., the majority of vertices have small degrees and
only very few vertices have higher degree) [3], [40].

We examined four widely used and publicly available
social networks. The KarateClub network [41] captures the
social ties between the members of a university karate club.
The Email network [42] represents the email interchanges
between members of the University of Rovira i Virgili, Tar-
ragona. The DutchElite network [43] is a network dataset of
the administrative elite in The Netherlands, where vertices
represent individuals and organizations that are most impor-
tant to the Dutch government (a two-mode network), and an
edge connects two vertices if the individual vertex belongs
to the organization vertex. The Facebook network [44] repre-
sents ego networks (the network of friendship among a user’s
friends) of 10 individuals; two vertices (users) are connected
if they are Facebook friends.

B. WATTS–STROGATZ NETWORKS
The Watts–Strogatz network generation model [2] creates
small-world networks with small average path lengths and
high clustering coefficients. To generate such a network,
a ring over n vertices is first created. Second, each vertex is
connected with its k nearest neighbors. Then, some edges are
rewired to create shortcuts with probability p. We generated
three Watts–Strogatz networks each with 2500 vertices and
with rewiring probabilities 0.3, 0.5, and 0.7, respectively.
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FIGURE 2. Network distance matrices.

C. BARABASI–ALBERT NETWORKS
The Barabasi–Albert model [45] generates scale-free net-
works with power-law degree distributions. A Barabasi–
Albert network with n vertices is generated by adding new
vertices one at a time and attaching each new incoming vertex
to m existing vertices with high degrees. We generated three
Barabasi–Albert networks, each with 2500 vertices and with
m values of 3, 5, and 7, where m is the number of existing
vertices to which a new vertex will attach.

D. ERDŐS–RÉNYI NETWORKS
In an Erdős–Rényi graph with n vertices, each pair of vertices
is independently connected with probability p. Smaller values
of p (1/n < p < log(n)/n) result in very sparse graphs.
By contrast, larger p values yield dense graphs with very
small diameters. We generated three Erdős–Rényi graphs,
each with 2500 vertices and with p values of 1.6/n, 2/n,
and 8/n.

E. POWER-LAW NETWORKS
In a power-law graph, the vertex degrees follow (or approx-
imate) a power-law distribution. We generated power-law
networks based on a variation of the Aiello–Chung–Lu

model [46], [47]. The degree sequence of each generated
graph was determined by a power-law with exponent β,
where β is the power parameter. Smaller β values (β < 2)
generate power-law graphs with cores that are denser and
have smaller diameters, compared to power-law graphs gen-
erated with higher β values [4]. Each power-law graph in the
network dataset PowerLaw(β) had 2500 vertices and a value
β ∈ {2.7, 2, 1.8}.

V. METHOD
This study investigated the characteristics of paths fol-
lowed by various well-known data dissemination algorithms.
The goal was to evaluate the utilization of shortest paths
in complex networks and discover the topological prop-
erties that may influence this utilization. We investigated
two algorithms: the SIR (Susceptible–Infectious–Recovered)
infection-spreading model, and multiple implementations
of the IM (Influence Maximization) model. All network
datasets and code used in this section are available at
https://github.com/halrashe/Shortest_Paths_Utilization.

A. SIR INFECTION-SPREADING MODEL
We first used the SIR infection-spreading model to examine
the utilization of shortest paths in complex networks. In a
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network system, the SIR infection-spreading model describes
the discrete-time dynamics of an infection in a closed popula-
tion. In such a system, vertices are partitioned into three com-
partments [48]: (1) susceptible, S, which represents the set
of vertices susceptible to the disease; (2) infectious, I , which
represents the set of vertices that have been infected and are
able to spread the disease to susceptible vertices; and (3)
recovered, R, which represents vertices that have recovered
and cannot be infected again. At each time step, a susceptible
vertex with an infected neighbor becomes infectious with
probability p.
We ran the SIR infection-spreading model for each net-

work in our network datasets as follows. Given a graph G =
(V ,E) and a distinguished seed vertex s, we ran the SIR
infection-spreading model for n time steps. We defined two
attributes for each vertex v ∈ V as follows.
(1) seed(v) denotes the seed vertex that passed the infection

to vertex v (directly or indirectly): direct infection occurs
when a susceptible vertex v is a neighbor of seed vertex s,
and indirect infection occurs when a susceptible vertex v is
not a neighbor of seed vertex s.
(2) π(v) denotes the number of infected vertices on the path

from s to v (i.e., the number of vertices that are infected before
passing the infection to vertex v); if v is susceptible at the end
of the simulation, then both seed(v) and π (v) will be equal
to φ.
At the end of each implementation, the total number of

utilized shortest paths was computed as follows. Let d(s, v)
be the distance of a shortest path connecting vertices s and
v. A shortest path ρ(s, v) connecting a seed vertex s to an
infectious or recovered vertex v is considered to be utilized
if d(s, v) = π (v), where seed(v) = s.

B. IM MODEL
Given a graph G = (V ,E), the IM problem deals with
identifying a small set of seed vertices S ⊆ V that result in
the greatest spread of influence to other vertices in G, where
|S| = k � |V |. This problem has two main components:
(1) seed selection, which involves identifying the subset of
seed vertices S; and (2) influence diffusion, which describes
the process by which influence is disseminated throughout
the network over time. A number of algorithms have been
proposed to solve the seed selection problem, including the
following algorithms.
• The randommodel, which selects a set of k seed vertices
uniformly at random.

• Centrality heuristics, which rank all vertices according
to some centrality measure, then select the top k vertices
as seed vertices. A commonly used centrality measure
is degree centrality, which selects a set of k vertices
with the highest degrees (i.e., the largest number of
connections). Closeness centrality has been also used
to select seed vertices. Closeness centrality is based on
the assumption that vertices with shorter paths to other
network vertices have a higher probability of spreading
influence.

Each vertex is assigned one of two states: active and
inactive. All vertices start as inactive except for the seed
vertices. When the influence reaches a vertex, it becomes
active. An active vertex u influences an inactive vertex v
with probability puv. A number of algorithms have been pro-
posed to model the diffusion process, including the following
algorithms.

• Linear Threshold Model: Each vertex v has an assigned
threshold θv chosen uniformly at random from [0, 1].
Every active neighbor vertex of an inactive vertex v
contributes a certain weight, and if their sum exceeds the
threshold value of vertex v, then v becomes active. That
is, v is influenced by its neighbors when the fraction of
its neighbors that are active is at least θv (

∑
u∈N (v) puv ≥

θv, where N (v) is the set of neighbors of vertex v).
• Independent Cascade (IC) Model: At each time step,
each active vertex u has a single chance of acti-
vating each of its inactive neighbor vertices with
probability p.

For each network G = (V ,E) in our network datasets we
identified a set of seed vertices S using three baseline seed
selection algorithms: random, degree centrality, and close-
ness centrality. Then we ran the IC diffusion model several
times for each network (one for each seed set). We defined
two attributes for each vertex v ∈ V as follows.

(1) seed(v) denotes the seed vertex that influenced vertex v
(directly or indirectly).

(2) π (v) denotes the number of influenced vertices on the
path from seed(v) to v (i.e., the number of vertices that are
influenced before in turn influencing vertex v).

At the end of each implementation, the total number of
utilized shortest paths was computed as follows. Let d(s, v)
be the distance of a shortest path connecting vertices s and v.
A shortest path ρ(s, v) connecting a seed vertex s to an active
vertex v is considered to be utilized if d(s, v) = π (v).

VI. RESULTS
We applied various data dissemination scenarios to our net-
work datasets to investigate shortest path utilization. During
the SIR simulations, we defined an infection path as the path
connecting a seed vertex s and an infectious (or recovered)
vertex v. Similarly, we defined an influence path as the path
connecting a seed vertex s and an active vertex v during IM
simulations. We also took the following into consideration
during our analyses.

• Shortest paths were identified by distance (not by unique
paths). If the distance of an infection path or an influence
path was equal to the shortest path between two vertices,
then the shortest path was considered to be utilized.
That is, given an infected (or influenced) vertex v and
a seed vertex s such that seed(v) = s, a shortest path
between s and vwas considered to be utilized if d(s, v) =
π (v). This is important because more than one shortest
path may exist between each pair of vertices in a given
network.
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FIGURE 3. Distance differences between infection paths and shortest paths during SIR simulations.

• We focused our analyses on vertex pairs. That is, we only
considered a single shortest path between each pair of
vertices.

We also investigated the structural properties that could
affect shortest path utilization. We focused on three dis-
tance properties of complex networks: diameter, average
path length, and small-worldness (measured as the difference
between a network size and its diameter).

A. SIR INFECTION-SPREADING MODEL
For each network in our network datasets, we replicated
100 SIR epidemic simulations (each starting from a randomly
selected infected seed vertex), averaging the total fraction of
infected vertices and infection paths throughout each sim-
ulation run. Each simulation run was 100 time steps long.
During all simulations, the infection rate was 0.5 and the
recovery rate was 0.1. These values were selected to guaran-
tee transmission to all vertices within the specified simulation
period. The average outbreak size (total number of infectious
or recovered vertices) at the end of all simulations exceeded
90% in all networks.

Then, the lengths of the infection paths and the shortest
paths were compared. The results are shown in Fig. 3.3 For
each infectious or recovered vertex v, π (v)−d(v, s) = 0 if the
infection path is equal to one of the shortest paths between the
two vertices v and s (where s is the seed vertex that passed
the infection to vertex v). Generally, π (s)−d(v, s) = k , where
k is the difference between the length of the infection path and
the shortest path.

Fig. 3 shows the percent of unutilized shortest paths
in each network. For example, the SIR algorithm did
not utilize 48% of the shortest paths in the Email net-
work or about 70% of the shortest paths in the Face-
book network. In the majority of networks, 50% or more
of the shortest paths were not utilized (Facebook: Watts–
Strogatz(0.3), Watts–Strogatz(0.5), Watts–Strogatz(0.7),
Barabasi–Albert(3), Barabasi–Albert(5), Barabasi–Albert(7),
Erdos–Renyi(1.6), Erdos–Renyi(2), Erdos–Renyi(8), Power-
Law(2)). The exceptions were the Erdos–Renyi(1.6), Erdos–
Renyi(2), and PowerLaw(2.7) networks. Notably, these three

3For comparison, a second implementation of this algorithm with a differ-
ent infection rate value is included in Appendix A.
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FIGURE 4. Lengths of unutilized shortest paths between vertex pairs in each network. In each panel, the x-axis ranges from zero to the network diameter
(maximum distance).

networks had very large diameters compared with the net-
work size (Table 2). When diam(G) ≥ size(G), where
size(G) = |V | + |E|, this is an indication of the deviation
of the network from the small-world structure.

Fig. 3 also shows the differences between the lengths of
the infection paths and the shortest paths during each SIR
simulation. In the Email network, 42% of the infection paths
were one unit longer than the shortest paths, and 10% were
two units longer than the shortest paths. The maximum dif-
ference between an infection path and a shortest path in the
Email network was four. In the Watts–Strogatz(0.3) network,
the percentages of infection paths with differences (compared
with shortest paths) of one, two, three, four, five, and six
were 24%, 18%, 12%, 7%, 3%, and 1%, respectively. The
maximum difference between an infection path and a shortest
path in the Watts–Strogatz(0.3) network was nine.

Fig. 4 shows the distances between vertex pairs for which
the shortest path was not utilized. For example, in the Karate-
Club network, the majority of unutilized shortest paths (about
50%) were of distance two. In most networks, shorter shortest
paths were less utilized compared with longer shortest paths.
For example, in all networks, all shortest paths with distances

equal to the network diameter were utilized. The results
also show that the SIR algorithm was more likely to follow
shortest paths when the distance between the vertex pair was
too small.

Fig. 5 shows the eccentricities of the vertices (infectious
or recovered) that exist at one end of an unutilized shortest
path. In the Facebook network, 2% of infectious or recovered
vertices that represented an end of an unutilized shortest path
had eccentricity one, 63% had eccentricity two, 29% had
eccentricity three, and 5% had eccentricity four. It is clear
from the results shown in Fig. 5 that vertex eccentricities
affect shortest path utilization. Specifically, the higher the
eccentricity of a vertex v, the higher the probability of a
shortest path that includes v as one of its endpoints not being
utilized.

B. THE IM MODEL
For each network in our network datasets, we performed
100 IM simulations using one of the three baseline seed
selection algorithms discussed above (random, degree cen-
trality, and closeness centrality) and the IC influence diffusion
model. The results of each simulation, including the fractions
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FIGURE 5. Eccentricities of vertices at endpoints of unutilized shortest paths in each network.

of influenced vertices and influence paths, were averaged
throughout each simulation run. Each simulation run was
100 time steps long. During all simulations, the influence
probability was 0.25 and the number of initial seed vertices
represented 1% of the total number of vertices in the network.
These values were selected to guarantee influence spread to
the majority of other vertices within the specified simulation
period. The results are summarized in Fig. 6.4

The first column in Fig. 6 shows the number of unuti-
lized shortest paths in each network for each seed selec-
tion algorithm. Similar patterns could be observed to those
seen in the case of the SIR algorithm. The main dif-
ference between the SIR and the IM algorithms is that,
unlike the SIR algorithm, the IC algorithm gives each active
vertex a single chance of activating each of its inactive
neighboring vertices. As shown in Fig. 6, in some net-
works, 50% or more of the shortest paths were not utilized.
These networks included the KarateClub, Email, Face-
book, Barabasi–Albert(3), and Erdos–Renyi(8) networks.
In other networks, 20% or more of the shortest paths
were not utilized. These included the DutchElite, Watts–
Strogatz(0.5), Watts–Strogatz(0.7), Barabasi–Albert(5), and
Barabasi–Albert(7) networks. Between 1.2% and 18.4% of
the shortest paths were utilized in the remaining networks

4For comparison, a second implementation of this algorithm with a differ-
ent initial seed set size is included in Appendix B.

(Watts–Strogatz(0.3), Erdos–Renyi(2), PowerLaw(2), and
PowerLaw(2.7)). All IM algorithms were able to utilize all
the shortest paths in one single network (Erdos–Renyi(1.6)).

In addition, as shown in the Fig. 6, more shortest paths
were utilized when the degree centrality or the closeness
centrality was used for seed selection in the majority of
the networks. On the other hand, random seed selection
seemed to result in the highest shortest path unutilization.
According to [8], influence spread is not very sensitive to the
choice of algorithm when the value of p is large. However,
the results in the second column in Fig. 6 suggest that the seed
selection algorithm did have an impact on the outbreak size
in some networks (KarateClub, DutchElite, Watts–Strogatz,
Erdos–Renyi(1.6), Erdos–Renyi(2), PowerLaw(2), and
PowerLaw(2.7)).

The third column in Fig. 6 shows the distribution of the
differences between the influence paths and the shortest paths
in each network (differences of one or more are shown in
the figure). For example, using the random seed selection
algorithm in the KarateClub network, 50% of influence paths
were one unit longer than the shortest paths, 25% of influ-
ence paths were two units longer than the shortest paths,
and 25% of influence paths were three units longer than
the shortest paths. Using the degree centrality seed selec-
tion algorithm, 50%, 33%, and 16% of influence paths were
one unit, two units, and three units longer than the shortest
paths, respectively. The closeness centrality seed selection
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FIGURE 6. IM simulation results for each network using three seed selection algorithms: R (random seed selection algorithm), D (degree centrality seed
selection algorithm), and C (closeness centrality seed selection algorithm).

algorithm achieved similar results to the degree centrality
algorithm. Under the random and degree centrality seed
selection algorithms, the maximum difference between an
influence path and a shortest path was 14 (achieved by the
Watts–Strogatz(0.7) network). With the closeness centrality
seed selection algorithm, the maximum difference between
an influence path and a shortest path was 10 (achieved by the
Erdos–Renyi(8) network).

The fourth column in Fig. 6 shows the lengths of the unuti-
lized shortest paths in each network. These results answer the
following question: what is the shortest path distance between
a vertex pair for which an influence path is longer than the
shortest path? The lengths of most unutilized shortest paths
were short (compared with the network diameter). For exam-
ple, in the Facebook network, the majority of the unutilized
shortest paths were of length one or two (68% using random
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FIGURE 7. Distance differences between infection paths and shortest paths during SIR simulations.

seed selection, 89% using degree centrality seed selection,
and 75% using closeness centrality seed selection).

The last column in Fig. 6 shows the eccentricity of vertices
activated through an influence path that was not equal to
the shortest path (i.e., vertices at an end point of an unuti-
lized shortest path). In most networks, the majority of these
vertices had medium eccentricities (with respect to the net-
work radius). For example, in the Facebook network with
the random seed selection algorithm, the majority of the
vertices at an end point of an unutilized shortest path (63%)
had eccentricities that were two units larger than the radius.
Similarly, vertices with eccentricities that were one unit larger
than the radius represented the majority of vertices existing
at end points of unutilized shortest paths in the Facebook net-
work with the degree and closeness centrality seed selection
algorithms (70% and 66%, respectively). Moreover, as shown
in Fig. 6, the seed selection algorithm did not affect the
maximum eccentricity value in most networks (for example,
the Email, Facebook, and Erdos–Renyi(8) networks).

C. THE ROLE OF NETWORK STRUCTURE
Table 3 shows the results of our investigation of the role of
network structure in the utilization of shortest paths during

the selected data dissemination algorithms. We focused on a
network’s distance properties (average path length, diameter,
and small-worldness). Table 3 includes results for two imple-
mentations of each data dissemination algorithm. In the first
and second SIR implementations, the infection rates were set
to 0.5 and 0.25, respectively (both with 0.1 recovery rate).
In the first and second IM implementations, the seed set sizes
were set to 25% and 1% of the total number of vertices in each
network, respectively (both with 0.25 influence rate). The IM
results in Table 3 include the highest percentages of unuti-
lized shortest paths achieved by any of the three algorithms
(random, degree centrality, and closeness centrality) and their
corresponding maximum difference values.

The networks in Table 3 were ordered according to their
small-worldness (column 4), defined as the logarithmic dif-
ference between a network’s diameter and its size. The greater
this difference, the stronger the small-world property of the
network. According to their small-worldness, the network
datasets were partitioned into two classes: small-world and
non-small-world (a threshold of zero was selected for this
partitioning).

We defined 1e as the maximum difference between an
infection path and a shortest path in a given network.
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FIGURE 8. Lengths of unutilized shortest paths between vertex pairs in each network. In each panel, the x-axis ranges from zero to the network diameter
(maximum distance).

TABLE 3. Utilization of shortest paths in the network datasets using two data dissemination models: the SIR (susceptible–infectious–recovered) model
and the IM (influence maximization) model. 1e denotes the maximum difference between an infection path and a shortest path in a given network. 1l
denotes the maximum difference between an influence path and a shortest path in a given network. Inf, influence; sh, shortest.

Similarly, we defined1l as the maximum difference between
an influence path and a shortest path in a given network.
Two observations can be made based on the results shown
in Table 3. First, there was a positive correlation between

a network’s average path length and each of its 1e and 1l
values. Second, the unutilization of shortest paths was lower
among non-small-world networks in most implementations.
Moreover, the difference between the length of an infection
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FIGURE 9. Eccentricities of vertices at endpoints of unutilized shortest paths in each network.

path and that of a shortest path was larger among non-
small-world networks. The difference between the length of
an influence path and that of a shortest path was smaller
among non-small-world networks.

With the SIR model, the value of 1e seemed to cor-
relate with the network diameter in all networks despite
small-worldness (a network is small-world if the logarith-
mic difference between its size and its diameter is positive).
The exceptions were the PowerLaw(2) and PowerLaw(2.7)
networks. In addition, networks that did not exhibit the
small-world property (DutchElite, Erdos–Renyi(1.6), Erdos–
Renyi(2), PowerLaw(2), and PowerLaw(2.7)) achieved per-
fect (or almost perfect) shortest path utilization under one of
the IM algorithms.

From a vertex perspective, our results show that vertex
position and local properties play a part in shortest path
utilization. Specifically, vertices with medium eccentricities
seemed to be more likely to be at one end of an infection path
(Fig. 5) or an influence path (last column in Fig. 6). Given
a network G with radius rad(G) and a diameter diam(G),
a vertex v ∈ V (G) with an eccentricity ecc(v) is considered
to have medium eccentricity if rad(G) < ecc(v) < diam(G).
Vertex eccentricity is a measure of how close a vertex is to
every other vertex in the network. Accordingly, our results
indicate that a vertex v that is too close to or too far from every
other vertex tends to be influenced through the expected path
(the shortest path that connects v to the source vertex).

In our IM simulations, we explored how the position of the
initial seed vertices influenced the whole network’s dynam-
ics. In general, our results (see Fig. 6) show that a lack of
shortest path utilization is not affected by the positions of the
initial seed vertices. This suggests that the stochasticity of the
model is a stronger determinant of a network’s dynamics than
its structure.

VII. DISCUSSION
Many network analysis problems deal with identifying how
information progresses from one vertex to another throughout
a given network, for instance, disease spreading, influence
maximization, facility location problems, routing proto-
col design, and relationship formation. A widely adopted
assumption in most network analysis models is that data
exchange processes trace the shortest paths in complex net-
works. This assumption has been the underlying concept
of many network-analysis-based solutions. For example,
the facility location problem, in which the goal is to deter-
mine the optimal location for a new facility (e.g., a hospital,
a school, or a station) according to some defined criteria,
depends on minimizing the distances traveled from each of
the other vertices to the facility. Accordingly, centrality mea-
sures based on shortest paths are used to solve such problems.

Using a wide range of network structures, we investi-
gated the utilization of shortest paths using several spreading
processes. Our network datasets included four real-world
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FIGURE 10. IM simulation results for each network using three seed selection algorithms: R (random seed selection algorithm), D (degree centrality
seed selection algorithm), and C (closeness centrality seed selection algorithm).

social networks and four types of artificial networks, Watts–
Strogatz, Barabasi–Albert, Erdos–Renyi, and PowerLaw. All
networks of a certain type have some common features. How-
ever, they may exhibit slightly different topological proper-
ties. For example, real-world social networks are known to be
small-world and scale-free; however, the DutchElite network
did not seem to be small-world. Moreover, the topological
properties of each artificial network are governed by its
selected generation parameter or parameters. For example,

one of the PowerLaw networks was small-world, whereas
the other two were not. Those topological properties seem to
affect a network’s shortest path utilization. That is, the short-
est path utilization of a network cannot be determined by the
network type alone.

Our simulation results show that the utilization of short-
est paths in complex networks may not be as common as
assumed. This implies that longer paths can be as important
(in some cases) as shortest paths. Our results show that at least
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two factors clearly influence the shortest path utilization in
a network: the network structure and the data dissemination
algorithm. These results will affect thewaywe think about the
role of vertices in data dissemination processes. For instance,
the assignment of vertex importance may not need to depend
on classic vertex-ranking measures such as degree, between-
ness, closeness, or eccentricity centralities.

However, the findings of this work were subject to several
limitations. First, the experiments were limited to a specific
set of network types. More network types, as well as more
variations of each network type, would need to be included
to enhance the accuracy of our findings. Moreover, in our
analyses, we focused on two data dissemination algorithms.
It would be interesting to include other types of data dissemi-
nation algorithms to obtain a better overview of how networks
behave. The analyses conducted in this work represent only
the beginning of research in this direction. Further analy-
ses should investigate more network structures and vertex
properties.

VIII. CONCLUSION
The study of networks enables understanding of their statis-
tics, structures, and dynamics. A network’s structure has
been found to highly influence its dynamics, including data
dissemination between vertices, pathogen spread throughout
a network, and relationship formation. A very widely used
assumption in most network analysis models is that traffic
follows the shortest paths connecting pairs of nonneighbor-
ing vertices. Accordingly, network analysis models are often
based on the idea that information is passed from one vertex
to another only along these shortest paths, for example, graph
centrality measures, community extraction algorithms, and
core-periphery detection algorithms. However, this perspec-
tive is very restricted and can be misleading as a consequence
of its focus on shortest path communications. In this work,
we investigated shortest path utilization in real and artificial
networks using a set of simulations. Although our analysis
methodologywas general in nature, we focused on simulating
two data dissemination algorithms: the SIR model and the IM
model.

We conclude that the shortest path utilization in a network
is influenced by a combination of factors that are related to its
structure and the data dissemination algorithm.We also found
that network typewas not a good indicator of shortest path uti-
lization. Our results have significant implications for network
analysis, network modeling, and network generation.

Future research in this direction should investigate more
data dissemination models and scenarios. Future analysis
should also include more network types and examine more
network structural properties, for example, the clustering
coefficient of a given network.

APPENDIX A
In the SIR implementation, the infection rate was set to
0.25 and the recovery rate was set to 0.1. See Figs. 7, 8, and 9
for the results.

APPENDIX B
In the IM implementation, the seed set size was set to 25% of
the total number of vertices in each network. The influence
rate used was 0.25. See Fig. 10 for the results.
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