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ABSTRACT This paper presents a short-term decision-making model for an electricity retailer with
battery energy storage system (BESS) and virtual bidding through a two-stage stochastic optimization
framework. In the first stage, the retailer determines the amount of power to be purchased in the day-ahead
wholesalemarket and the optimal incremental and decremental virtual bidding strategies. In the second stage,
the optimal energy storage decisions and the retailer’s involvement in the real-time market are determined.
The proposed model minimizes the retailer’s expected procurement cost and generates the optimal power
and virtual bidding curves in the day-ahead market. Two types of Conditional Value at Risk (CVaR) are
integrated in the proposed model to manage the retailer’s hourly and daily risks, respectively. Case studies
with real-world data are performed to verify the retailer’s cost reduction obtained with the integration of
BESS and virtual bidding and to study how the hourly and daily risk-management strategies affect the
retailer’s procurement cost distribution for different risk-aversion levels.

INDEX TERMS Conditional value-at-risk (CVaR), electricity retailer, energy storage, stochastic optimiza-
tion, virtual bidding.

NOMENCLATURE
Indices and Sets
t Index for time periods,

running from 1 to T .
ω Index for scenarios, running

from 1 to �.
Constants and
Parameters
πω Probability of scenario ω.
M Large auxiliary constant.
PVmaxt Maximum virtual bidding

capacity at time t [MW].
α Per-unit confidence level.
β Risk-aversion degree ranging

from 0 to 1.
γt Conversion efficiency of the

battery energy storage system
(BESS) at time t .

Emin Minimum state of charge
of the BESS [MWh].

The associate editor coordinating the review of this manuscript and

approving it for publication was Amedeo Andreotti .

Emax Maximum state of charge
of the BESS [MWh].

PST+t,ω Maximum charging active
power for the BESS at time t and
scenario ω [MW].

PST−t,ω Maximum discharging active
power for the BESS at time t and
scenario ω [MW].

Decision Variables
Et,ω State of charge of the BESS at time

t and scenario ω [MWh].
PDAt,ω Total power purchased in the

day-ahead market at time t and
scenario ω [MW].

PRTt,ω Total power purchased in the
real-time market at time t and
scenario ω [MW].

PVIt,ω Power sold in the day-ahead
market when an incremental
virtual bidding curve is used at
time t and scenario ω [MW].

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 106181

https://orcid.org/0000-0003-1420-1762
https://orcid.org/0000-0002-3174-8578
https://orcid.org/0000-0002-6514-6807


J. Campos Do Prado, U. Chikezie: Decision Model for Electricity Retailer With Energy Storage and Virtual Bidding

PVDt,ω Power bought in the day-ahead
market when a decremental virtual
bidding curve is used at time t and
scenario ω [MW].

PST+t,ω Charging active power for the
BESS at time t and scenario
ω [MW].

PST−t,ω Discharging active power for the
BESS at time t and scenario ω
[MW].

ζ, η Auxiliary variables used to
compute the CVaR.

zt Binary variable used to determine
the virtual bidding strategy at time
t . It is equal to 1 if an incremental
virtual curve is generated and is
equal to 0 if a decremental
virtual bidding curve is generated.

uSTt,ω Binary variable used to determine
the charging or discharging status
of the energy storage system at
time t and scenario ω. It is equal to
1 if the BESS is charged and is
equal to 0 if the BESS is
discharged.

Random Variables
λDAt,ω Day-ahead electricity price at time

t and scenario ω [$/MWh].
λRTt,ω Real-time electricity price at time

t and scenario ω [$/MWh].
PNt,ω Net power demand from retail’s

customers at time t and scenario
ω [MW].

PREt,ω Actual renewable energy
production at time t and scenario
ω [MWh].

List of Abbreviations
and Acronyms
BESS Battery energy storage system
DR Demand response
h-CVaR Hourly Conditional Value-at-Risk
NREL National Renewable Energy

Laboratory
SARIMA Seasonal autoregressive integrated

moving average
SOC State of charge
T-CVaR Daily Conditional Value at Risk
VaR Value-at-risk

I. INTRODUCTION
Many countries around the world have partially or fully
deregulated their electricity markets in order to promote
greater liberalization, competition, and innovation and better
quality of services [1]. In deregulated retail electricity mar-
kets, end-user consumers are able to choose from different

suppliers, energy sources and services, and still be served by
the existing poles, distribution lines, and substations, which
are maintained by one local utility company. In Europe,
nearly 30 countries have adopted deregulated retail electricity
markets [1]. In the United States, more than 20 states have
implemented full or partial retail competition, also known
as retail choice, which allow customers in the distribution
grid to choose their electricity supplier [2]. According to a
study conducted by the Federal Reserve Bank of Dallas [3],
the adoption of competitive retail electricity markets in the
United States contributed to lower electricity rates to end
customers in states with high customer participation. Fur-
thermore, the retail electricity market liberalization helped
increase market efficiency and promoted diversification of
products and services, thus enabling retail customers in many
jurisdictions to have different contract options, participate
in demand response (DR) mechanisms, and purchase energy
from different sources.

Electricity retailers are essential agents in deregulated elec-
tricity markets since they operate as intermediaries between
large power producers and end consumers without the need
of operating and maintaining physical assets in transmission
and distribution grids [4]. Retailers procure electricity mainly
from bilateral contracts, self-production, and the wholesale
electricity market, which generally incorporates uncertain-
ties on day-ahead and real-time prices and incur in addi-
tional risks in their decision-making models for electricity
procurement [5].

Several decision-making models for electricity retailers
have been recently proposed in the literature to determine
short-, medium-, and long-term strategies and decisions.
An overview of the state of the art in decision-making
models for electricity retailers was provided in [6] and [7].
Most of the existing works focused on the integration
of price-based [8]–[14] incentive-based [15]–[21], com-
bined [22] and contract-based [23], [24] DR mechanisms.
Price-based DR mechanisms assume that retail customers
manage their energy consumption according to specific pric-
ing arrangements such as time-of-use and real-time pricing.
Incentive-based DR mechanisms are based on special finan-
cial incentives not necessarily linked to a pricing scheme.
Contract-based DR mechanisms assume that DR is provided
through short-, medium-, or long-term contracts whereas
combined DR mechanisms typically combine both price-
based and incentive-based mechanisms [25].

Self-production of energy was considered in [8]–[11],
[15]–[18], and [26] while energy storage system and vir-
tual bidding were only considered in [11] and [27], respec-
tively. The determination of the retailer’s optimal power
bidding curves in the electricity market was considered
in [8]–[14], [18], [20], [22], and [28]–[31].

Among all existing risk management tools for scenario-
based decision-making models under uncertainty, CVaR
has received increased attention in decision-making models
for different electricity market participants such as genera-
tion companies, large consumers, and retailers [5]. For an
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FIGURE 1. CVaR illustration.

electricity retailer who aims to minimize its expected pro-
curement cost, the CVaR represents the retailer’s expected
cost in the worst (1− α)×100% worst scenarios. It is also
defined as the weighted average of extreme costs above the
value-at-risk (VaR) within the (1− α)% confidence interval,
as illustrated in Fig. 1. More details on CVaR can be found
in [5] and [32]. Most of the short-term decision-making mod-
els for electricity retailers considered only the CVaR over
the entire planning period T , typically one or a few days.
However, this approach, hereinafter denoted as T-CVaR, may
lead to very high procurement costs in the (1− α)×100%
worst scenarios of some hours and high expected costs over
the entire planning horizon for some risk-aversion levels in
comparison with the CVaR on an hourly basis (i.e., the CVaR
that controls the procurement cost distribution of each hour),
hereinafter denoted as h-CVaR.
This paper presents a two-stage stochastic optimization

model to determine the short-term decisions of an electricity
retailer with self-production of renewable energy, BESS, and
virtual bidding. The proposed model minimizes the retailer’s
expected procurement cost and determines the optimal bid-
ding curves to be submitted in the wholesale electricity mar-
ket. A comparison of the proposed model with the existing
short-term decision-making models for electricity retailers is
provided in Table 1.

The main contributions of this paper are described as
follows:

1) Different from previous approaches, the proposed
model integrates both BESS and virtual bidding in the
retailer’s short-term decisions.

2) To fill the existing gap in the literature, the T-CVaR
and h-CVaR are studied and compared in this paper.
Both risk-management strategies are integrated into the
proposed model and the hourly and total cost distribu-
tions and expected values are compared for different
risk-aversion levels. To the best of the authors’ knowl-
edge, no previous work has studied the impact of both
T-CVaR and h-CVaR in the decision-making model of
an electricity retailer.

The remainder parts of this paper are organized as
follows: Section II describes the main assumptions,
the decision-making framework of an electricity retailer,
and the mathematical formulation of the proposed model.
In Section III, case studies using real-world data are per-
formed, and the results are discussed. Finally, Section IV
provides some relevant conclusions.

II. MODEL DESCRIPTION
A. ASSUMPTIONS AND DECISION-MAKING FRAMEWORK
The proposed decision-making framework for an electricity
retailer is illustrated in Fig. 2. Initially, historical data from
day-ahead and real-timemarket prices, renewable energy pro-
duction, and customers’ load is collected. Then, scenarios are
generated to be used in the stochastic programming model.
The scenario generation and reduction process is described
in Section II-B. The first-stage decisions, also known as here-
and-now decisions, comprise the retailer’s involvement in the
day-ahead market by submitting a non-increasing bidding
curve to purchase energy and participate in virtual bidding
with uncertainty on market prices, self-production of renew-
able energy, and customers’ load. The retailer is assumed
to be a price-taker agent in the electricity market. Virtual
bidding, also known as convergence bidding [33], [34], is a
pure financial instrument used to explore arbitrage oppor-
tunities in multi-settlement electricity markets. Electricity
markets can participate in virtual bidding without necessarily
having physical generation or load assets. By submitting a
decremental virtual bidding curve in the day-ahead market,
an electricity retailer can purchase energy from the day-ahead
market and sell it in the real-time market at a higher price.
On the other hand, if the forecasted day-ahead price is higher
than the forecasted real-time price at specific hour, the retailer
can purchase energy from the real-time market and sell it
in the day-ahead market at a higher price. The second-stage
decisions, also known as wait-and-see decisions, comprise
the retailer’s involvement in the real-time market and the
optimal BESS charging and discharging decisions for each
scenario. The retailer’s objective is to minimize its expected
procurement cost, and the outputs of the proposed model are
the optimal power and virtual bidding curves, as illustrated
in Fig. 2.

B. SCENARIO GENERATION AND REDUCTION
Initially, a large number of scenarios are generated for day-
ahead and real-time prices, electricity demand, and renew-
able energy production using a seasonal autoregressive inte-
grated moving average (SARIMA) time series model, where
a stochastic process Y is expressed using the following math-
ematical expression [5], [35]:1−

p∑
g=1

φgB
g

(1− P∑
i=1

8iBiS
)
(1 − B)d (1− Bs)Dyt

=

(
1−

q∑
h=1

8hBh
)1−

Q∑
j=1

2iBjS

 εt (1)
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TABLE 1. A Comparison of the proposed model with previous approaches.

FIGURE 2. The proposed problem framework.

In (1), φg are the autoregressive parameters; 8h are the
moving-average parameters; 8i are the seasonal autoregres-
sive parameters;2i are the seasonal moving-average param-
eters; εt is the term that represents the error which is assumed
to be a normally distributed stochastic process; and B is the
backward shift operator. After the scenarios are generated
by the SARIMA model, a fast-forward scenario reduction
algorithm [36] is employed to reduce the number of scenarios
of each stochastic variable to ensure that themodel is tractable
and still preserves sufficient stochastic information in the
scenario set.

C. MATHEMATICAL FORMULATION
The proposed short-term decision-making model for an elec-
tricity retailer is presented as follows:

Minimize
�∑
ω=1

T∑
t=1

πω[PDAt,ωλ
DA
t,ω − P

RT
t,ωλ

RT
t,ω −

(
λDAt,ω − λ

RT
t,ω

)
×PVIt,ω −

(
λRTt,ω − λ

DA
t,ω

)
PVDt,ω]+ βCVaR(2) (2)

Subject to:

PDAt,ω − P
RT
t,ω + P

RE
t,ω + P

ST−
t,ω − P

ST+
t,ω = PNt,ω (3)

0 ≤ PVIt,ω ≤ P
Vmax ; ∀t, ω (4)

0 ≤ PVDt,ω ≤ P
Vmax ; ∀t, ω (5)

PDAt,ω = PDAt,ω′; ∀t, ω, ω
′
: λDAt,ω = λ

DA
t,ω′ (6)

PVIt,ω = PVIt,ω′; ∀t, ω, ω
′
: λDAt,ω = λ

DA
t,ω′ (7)

PVDt,ω = PVDt,ω′; ∀t, ω, ω
′
: λDAt,ω = λ

DA
t,ω′ (8)(

λDAt,ω − λ
DA
t,ω′

) (
PDAt,ω − P

DA
t,ω′

)
≤ 0; ∀t, ω (9)(

λDAt,ω − λ
DA
t,ω′

) (
PVDt,ω − P

VD
t,ω′

)
≤ 0; ∀t, ω (10)(

λDAt,ω − λ
DA
t,ω′

) (
PVIt,ω − P

VI
t,ω′

)
≥ 0; ∀t, ω (11)

�∑
ω=1

PVIt,ω ≤ Mtzt ; ∀t (12)

�∑
ω=1

PVDt,ω ≤ Mt (1− zt) ; ∀t (13)

zt ∈ {0, 1} ; ∀t (14)
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Et,ω = Et−1,ω + γtPST+t,ω −

(
1
γt
PST−t,ω

)
; ∀t, ω (15)

Emin ≤ E t,ω ≤ E
max

∀t, ω (16)

E1,ω = E24,ω ∀ω (17)

0 ≤ PST+t,ω ≤ P
¯ST+

t,ω uSTt,ω ∀t, ω (18)

0 ≤ PST−t,ω ≤ P
¯ST−

t,ω

(
1− uSTt,ω

)
∀t, ω (19)

PDAt,ω ≥ 0 ∀t, ω (20)

The objective function (2) to be minimized is com-
prised of two terms: 1) the expected retailer’s procurement
cost (i.e., the costs from purchasing power in the day-
ahead and real-time markets minus the revenues obtained
in the real-time market from positive energy deviations,
and the revenues from virtual bidding participation); and
2) the retailer’s CVaR multiplied by its risk-aversion level β.
Two types of CVaR measures are studied in this paper,
which are presented in detail in Section II-D. All renew-
able energy units are assumed to operate with zero marginal
cost [15].

Constraint (3) represents the retailer’s energy balance.
It ensures that the total available energy (i.e., the net energy
purchased in the wholesale market along with the self-
production of renewable energy and available stored energy)
is equal to the demand of retail customers at each time
and scenario. Constraints (4) and (5) limit the incremental
and decremental virtual bidding capacities, respectively. Con-
straints (6)-(8) ensure the same power and virtual bidding
capacities in the scenarios with the same DA prices. Con-
straints (9) and (10) enforce a decreasing bidding curve for
power and decremental virtual bidding trading in the DA
market, respectively. Constraint (11) enforce an increasing
curve for incremental virtual bidding. In the electricitymarket
considered in this paper, the retailer is allowed to submit
either an incremental or decremental virtual bidding curve
for each hour of the operating day as ensured by Constraints
(12)-(14). Note that Mt is a sufficiently large constant and
zt is an auxiliary binary variable. The BESS constraints are
formulated in (15)-(19). More specifically, Constraint (15)
determines the state-of-charge of the BESS which is limited
by its minimum and maximum values in (16). Constraint (17)
ensures that the final state of charge (SOC) at the end of
the operation day is equal to the SOC at the beginning of
the operating day for the next-day use. Constraints (18) and
(19) represent the charging and discharging power limits of
the BESS, respectively. Note that the binary variable uSTt.ω is
introduced to enforce that the BESS is not charged and dis-
charged at the same time. Finally, Constraint (20) constitutes
non-negative variable declarations.

D. RISK MANAGEMENT
Two types of CVaR measures are studied in this paper. The
daily CVaR, T-CVaR, considers the management of risks over
the entire planning horizon (i.e., one day). For this risk mea-
sure, the CVaR function in (2) and the associated constraints

FIGURE 3. Scenario arrangement considered in the case studies.

are presented as follows:

T − CVaR = ζ −
1

1− α

�∑
ω=1

πωηω (21)

ζ −

T∑
t=1

[PNt,ωλ
R
t + P

RT
t,ωλ

RT
t,ω − P

DA
t,ωλ

DA
t,ω

+

(
λDAt,ω − λ

RT
t,ω

)
PVIt,ω +

(
λRTt,ω − λ

DA
t,ω

)
PVDt,ω]

≤ ηω; ∀ω (22)

ηω ≥ 0; ∀ω (23)

Since the CVaR expressions in (21)-(23) are associ-
ated with the risks in the entire horizon, there might be
time periods with significant losses in some scenarios.
In order to increase the retailer’s flexibility on its risk
management, a time dependent CVaR, denoted as h-CVaR,
is also considered to control the retailer’s risk in each
hour of the planning horizon. The h-CVaR is modeled as
follows:

h− CVaR =
T∑
t=1

(ζt −
1

1− α

�∑
ω=1

πωηt,ω) (24)

ζt − PNt,ωλ
R
t + P

RT
t,ωλ

RT
t,ω − P

DA
t,ωλ

DA
t,ω

+

(
λDAt,ω − λ

RT
t,ω

)
PVIt,ω +

(
λRTt,ω − λ

DA
t,ω

)
PVDt,ω

≤ ηt,ω; ∀t, ω (25)

ηt,ω ≥ 0; ∀t, ω (26)

Note that in (2), the CVaR is multiplied by a weighting
factor β that represents the risk aversion level of the retailer
that ranges from 0 to 1. If T-CVaR is used in (2), the retailer’s
risk aversion over the entire optimization period is consid-
ered. On the other hand, if h-CVaR is used in (2), the retailer’s
risk aversion over each hour considered.

The proposed model considering T-CVaR, given by
(2)-(20) and (21)-(23), or h-CVaR, given by (2)-(20) and
(24)-(26) is a mixed-integer linear programming problem that
can be solved by commercial solvers.
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FIGURE 4. Expected values of the uncertain variables at each hour of the
planning horizon.

III. CASE STUDIES
A. DATA
The effectiveness of the proposed model is illustrated through
case studies with real-world data considering the T-CVaR and
the h-CVaR, respectively. An electricity retailer with self-
production of solar energy and BESS in the PJM market
is considered. The solar power capacity is assumed to be
50 MW and a 2MW/10MWh BESS with a conversion effi-
ciency of 0.94 is considered. The scenarios related to day-
ahead and real-time prices and customers’ load are generated
based on PJM historical data [37]. The scenarios related to the
solar power production are generated based on historical data
from the National Renewable Energy Laboratory (NREL)
website [38]. Initially, 500 scenarios were generated for each
stochastic variable using a SARIMA model in the MATLAB
econometrics toolbox [39]. Then, the original scenarios of
day-ahead prices, real-time prices, solar power production,
and customers’ load were reduced to 5, 5, 5, and 3, respec-
tively, using the fast-forward scenario reduction algorithm
in [36] in MATLAB, resulting in a total of (5)3(3)= 375 sce-
narios. Fig. 3 illustrates the scenario arrangement considered
in the case studies. Each period t corresponds to one hour
such that the total planning horizon T comprises an entire day
(i.e., 24 hours). The expected values of all uncertain variables
at each hour of the planning horizon are shown in Fig. 4. The
proposed optimization model is modeled using Yalmip [40]
and solved with Gurorbi 9.0 inMATLAB. The computer used
for simulation studies has a 4.60-Ghz, 4-core CPU and a
16-GB RAM.

B. CASE I – T-CVaR
In this case, the T-CVaR is used to manage the risks of the
retailer. Initially, the virtual bidding capacity is set to 30 MW
and the confidence level is α = 0.95. Fig. 5 shows the
retailer’s expected cost versus the CVaR for different risk-
aversion levels β from 0.1 to 0.9. It turns out that, as the risk
aversion increases, the expected cost also increases and the
CVaR decreases. From β = 0.1 to β = 0.9, the expected
cost increased nearly 10% and the CVaR increased about 8%.
In order to study the impact of considering BESS and dif-
ferent virtual bidding capacities on the proposed model,

FIGURE 5. Expected cost versus CVaR for Case I.

FIGURE 6. Reduced costs considering BESS and different virtual bidding
capacities for Case I.

the retailer’s reduced costs and CVaRs for different risk-
aversion levels are shown in Fig. 6 and Fig. 7, respectively.
It turns out that, the retailer’s reduced costs and CVaRs
are higher for larger virtual bidding capacities and are both
very sensitive to the risk-aversion level. As β increases,
the reduced costs decrease and the reduced CVaRs increase
significantly. For a virtual bidding capacity of 60 MW, for
example, the cost reduction varied from $6,000 to approxi-
mately $4,000 (i.e., 33%) and the CVaR reduction varied from
approximately $480 to $4000 (i.e., 733%). The integration of
BESS also contributed to the reduction of the retailer’s cost
and CVaR, but with a lower sensitivity to the risk-aversion
level.

C. CASE II–h-CVaR
In this case, the h-CVaR is used to manage the risks of the
retailer. Initially, the virtual bidding capacity is set to 30 MW
and the confidence level is α = 0.95. The retailer’s expected
cost versus the sum of the hourly CVaRs for different risk-
aversion levels β from 0.1 to 0.9 is shown in Fig. 8. As in
the previous case, the retailer’s expected cost increased and
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FIGURE 7. Reduced CVaR considering BESS and different virtual bidding
capacities.

FIGURE 8. Expected cost versus the sum of hourly CVaRs for Case II.

the CVaR decreased for high risk-aversion levels. However,
the sum of the hourly CVaRs in Fig. 8 is slightly higher than
the total CVaR of Case I (see Fig. 5) for each risk-aversion
level. The impact of considering BESS and different virtual
bidding capacities on the proposed model with h-CVaR is
shown in Fig. 9. Similar to the previous case, the integra-
tion of virtual bidding and BESS help the retailer reduce its
expected procurement cost. However, the cost reduction due
to virtual bidding and BESS in this case was more sensitive
to the risk-aversion level than in Case I, especially for values
of β greater than 0.5.

D. COMPARING THE COSTS WITH T-CVaR AND h-CVaR
In this section, the retailer’s total and hourly costs with
T-CVaR and h-CVaR are compared for different risk-aversion
levels. Fig. 10 shows the total expected costs with both risk-
measurement measures for β from 0.1 to 0.9. It turns out that,
the h-CVaR results in lower total costs for most risk-aversion
levels, especially for β between 0.4 and 0.7. The retailer’s
total cost distribution (i.e., the distribution of the 375 cost sce-
narios) using both risk-measurement measures for β = 0.3
and β = 0.6 is shown in the histograms of Fig. 11. Note that,

FIGURE 9. Reduced costs considering BESS and different virtual bidding
capacities for Case II.

FIGURE 10. Total expected costs using T-CVaR and h-CVaR for different
risk-aversion levels.

for β = 0.3, the T-CVaR provides a slightly better cost dis-
tribution, moving some cost scenarios between $40,000 and
$50,000 to the lower range between $30,000 and $40,000, and
reducing the retailer’s total expected cost, as shown in Fig. 10.
On the other hand, for β = 0.6, the h-CVaR moved a
large portion of the high-cost scenarios between $60,000 and
$70,000 to lower-cost ranges, but slightly increased the right-
most tail, adding one cost scenario between $110,000 and
$120,000. For β = 0.6, the h-CVaR provided a 2.5% lower
expected cost and a 1.7% higher CVaR in comparison with
the T-CVaR.

Fig. 12 shows the (1 − α) × 100% worst cost scenarios
in the 23rd hour, when the T-CVaR and h-CVaR are used
for β = 0.3 and β = 0.9, respectively. For a lower risk-
aversion level (i.e., β = 0.3), the worst cost scenarios
using T-CVaR are significantly higher than the ones using
h-CVaR. On the other hand, for a higher risk-aversion level
(i.e., β = 0.9), this difference is reduced. For β = 0.3,
the h-CVaR provided a 3.9% lower expected cost and a
6.1% lower CVaR in comparison with the T-CVaR in the
23rd hour.
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FIGURE 11. Cost distributions using T-CVaR and h-CVaR for β = 0.3 and β = 0.6.

FIGURE 12. The (1− α)× 100% worst cost scenarios in the 23rd hour.

It turns out that, depending on the retailer’s risk aver-
sion level, the h-CVaR may provide a lower total expected
cost with a small increase in the total CVaR in com-
parison with the T-CVaR. The h-CVaR may also slightly
increase the expected cost and significantly reduce the
CVaR in some hours. The tradeoff between expected
cost and CVaR should be carefully considered by the
retailer.

TABLE 2. Day-ahead and real-time price scenarios ($/MWh).

E. COMPARING THE VIRTUAL BIDDING CURVES WITH
T-CVaR AND h-CVaR
In this section, the hourly bidding curves with T-CVaR and
h-CVaR are analyzed and compared for hours 13 and
23 whose price scenarios are shown in Table 2. The virtual
bidding capacity is kept at 30 MW.

Initially, the hour 13 is selected and analyzed. In this hour,
the expected day-ahead market price is $19.73/MWh, and
the expected real-time market price is $22.50/MWh. The
retailer’s power bidding and virtual bidding curves generated
with the proposed model with T-CVaR and h-CVaR for a risk-
neutral and a risk-averse retailer are shown in Fig. 13. In this
hour, a decremental virtual bidding curve is submitted to the
wholesale market since the expected day-ahead market price
is lower than the expected real-time market price. Therefore,
the retailer purchases power in the day-ahead market to resell
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FIGURE 13. Power and virtual bidding curves at hour 13 for β = 0.3 and β = 0.9.

FIGURE 14. Power and virtual bidding curves at hour 23 for β = 0.3 and β = 0.9.
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it at a higher price in the real-time market. For β = 0.3,
the retailer is willing to purchase power in the day-ahead
market for all price scenarios, except for the highest price
scenario (i.e., $27.98/MWh), when using either the T-CVaR
and the h-CVaR. For β = 0.9, the model with T-CVaR
generates a vertical power bidding curve and a vertical vir-
tual bidding curve while the model with h-CVaR generates
more conservative power and virtual bidding curves with less
power being purchased at the highest day-ahead price.

In the hour 23, the expected day-ahead market price is
$14.41/MWh, and the expected real-time market price is
$12.99/MWh. The retailer’s power bidding and virtual bid-
ding curves generated with the proposed model with T-CVaR
and h-CVaR are shown in Fig. 14. In this hour, an incremental
virtual bidding curve is submitted to the wholesale market
since the expected day-ahead market price is higher than
the expected real-time market price. Therefore, the retailer
purchases power in the real-time market to resell it at a higher
price in the day-ahead market. For β = 0.3, the retailer is
less willing to purchase power in the day-ahead market for
most price scenarios, especially when the T-CVaR is used. For
β = 0.9, the T-CVaR and h-CVaR generate the same power
and virtual bidding curves. A risk-averse retailer purchases
power in the day-aheadmarket at lower prices and sells power
in the day-ahead market through incremental virtual bidding
only at the highest price scenario.

IV. CONCLUSION
This paper presented a short-term decision model for an
electricity retailer through a two-stage stochastic optimiza-
tion framework. The proposed model minimizes the retailer’s
expected procurement while considering the optimal deci-
sions in the day-ahead and real-time markets, self-production
of renewable energy, BESS, and virtual bidding. Two types
of CVaR, namely T-CVaR and h-CVaR, were integrated in
the proposed model to study how daily and hourly risk
management strategies affect the retailer’s cost distribution
and the expected cost. Case studies using real-world data
were conducted to show the retailer’s cost improvement when
virtual bidding and BESS are integrated into the model and
to compare the retailer’s cost and the bidding curves using
T-CVaR and h-CVaR for different risk-aversion levels. It turns
out that, both risk-management tools are useful to control the
risks of the retailer. However, depending on the risk-aversion
level, the model with h-CVaR can provide lower daily and
hourly costs and improve the retailer’s cost distribution in
comparison with the model with T-CVaR. Further research
will be conducted to investigate the risk-management of the
retailer’s cost and the virtual bidding profits as separate risk
portfolios. The development of a hybrid T-CVaR and h-CVaR
risk-management mechanism and the interactions of multiple
retailers can also be investigated in a future work.
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