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ABSTRACT As one of the key components of smart grid, advanced metering infrastructure (AMI) provides
an immense number of data, making technologies such as data mining more suitable for electricity theft
detection. However, due to the unbalanced dataset in the field of electricity theft, many AI-based methods
such as deep learning are prone to under-fitting. To evade this problem and to detect as many types of
theft attacks as possible, an outlier detection method based on clustering and local outlier factor (LOF)
is proposed in this study. We firstly analyze the load profiles with k-means. Then, customers whose load
profiles are far from the cluster centers are selected as outlier candidates. After that, the LOF is utilized to
calculate the anomaly degrees of outlier candidates. Corresponding framework for practical application is
then designed. Finally, numerical experiments based on realistic dataset show the good performance of the
presented method.

INDEX TERMS Clustering, data mining, electricity theft detection, local outlier factor.

NOMENCLATURE
SETS
A Set of all users in an area.
B Set of benign users in the area.
C Set of fraudulent users in the area.
D A dataset.
Dj The j-th cluster of dataset D.
O Set of outlier candidates for D.
Oj Set of outlier candidates for Dj.

INDICES
t Index of time interval.
i Index of user and data sample.
j Index of cluster.
d Index of day.

VARIABLES AND PARAMETERS
ui,t Ground truth load for user i at time interval t.
ũi,t Recorded load for user i at time interval t.
ũi Recorded load vector for user i.

The associate editor coordinating the review of this manuscript and
approving it for publication was Dwarkadas Pralhaddas Kothari.

ũ∗i Normalized recorded load vector for user i.
ũ∗i,d Normalized recorded load vector for user i on

day d.
m Number of load profiles for each user.
x A data sample in dataset D.
y A data sample in dataset D.
xj Center of cluster j in dataset D.
n Number of nearest samples to x.
k Number of clusters.
ε Ratio of outliers account in D.
d jc Cut-off distance of cluster j.
LOFi,d Value of LOF for user i on day d.
ranki,d Rank of user i on day d based on descending

order of LOFi,d
ranki Average rank of user i during m-days.

FUNCTIONS
|·| Size of a set.
f (·) Attack function.
dist(·, ·) Euclidean distance between two data samples
distn(·) The n-th nearest distance of a data sample.
Nn(·) The n-nearest objects of a data sample.
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Rd(·, ·) Reachability distance between two data samples.
ρn(·) Local reachability density of a data sample.
σ (·) Standard deviation of a vector.
mean(·) Arithmetic average of a vector.

I. INTRODUCTION
Electricity theft in power system is that customers adopt
certain techniques and devices to illegally tamper with the
meters or intrude into the information flow of grid, resulting
in the electricity consumption or the bills being lower than
the actual amount [1] Electricity theft seriously damages
the economic benefits of power utilities and also lays down
potential safety hazards such as power outages, equipment
damage, and casualties. According to the report conducted by
Northeast Group, the annual cost caused by electricity theft in
the USA had reached $10 billion in 2017 [2]. In China, State
Grid Corporation has also retrieved the theft bills of nearly
13 billion yuan in the past three years.

With the establishment of Advanced Metering Infrastruc-
ture (AMI) and application of smart meter, the massive
amounts of electricity consumption data they provide make
data mining technologies more suitable for electricity theft
detection [3]. However, the software and communication
technologies applied in AMI make it possible for malicious
users to tamper with the smart meters and intrude into the
information flow of grid via cyberattacks. Corresponding
high-tech electricity theft cases were reported in Fujian Daily
of China [4]. Unlike traditional physical attacks such as
meter-bypassed or meter-tampered, cyberattacks modify the
data in a more random way and leave little physical trace,
making them more difficult to be detected. Because of such
increasingly severe situation, corresponding detection meth-
ods become urgently needed to address the problems of elec-
tricity theft in AMI.

Current data-driven electricity theft detection meth-
ods (ETDMs) can be divided into three categories [3], as
follows.

A. GAME THEORY BASED
In this type of methods [5], [6], electricity theft is described
as a game between power suppliers and customers. The game
equilibrium theory can be used to derive the difference in
the distribution of electricity consumption between normal
customers and abnormal ones. The game theory-based meth-
ods are useful for understanding the potential strategies and
interactions among different players, but are hard to formulate
a practically applicable model to involve all the players.

B. SYSTEM STATE BASED
[7]–[10] The methods based on system state utilize the fact
of data inconsistency caused by data tempering of fraudulent
customers to realize theft detection. The physical model of a
power network indicates that the system variables should sat-
isfy certain mathematical equations, which derives the con-
sistency of the variables. But the data tempering of fraudulent

users will destroy this consistency and cause some anomalies
such as non-technical loss (NTL) and voltage limit viola-
tion. Works [7], [8] on this direction perform distribution
system state estimation to realize the detection for electricity
theft detection. However, the state-estimation-based methods
need precise information of network topology and parameter,
which are not available at the end-user level. Thus, the prac-
tical applicability is limited in this situation.

C. POWER CONSUMPTION PATTERN BASED
It is widely believed that the consumption patterns of fraudu-
lent users differ from those of benign users. Based on such
characteristics, this type of ETDM utilizes logistic regres-
sion [11], [12] or artificial intelligence such as classifica-
tion [13]–[16] and clustering [17]–[21] to analyze the load
profiles of customers for electricity theft detection. Specif-
ically, classification methods usually involve vast labeled
historical electricity usage data to train the detection mod-
els. Examples including support vector machines (SVM)
[13], convolutional neural networks (CNNs) [14] and other
artificial neural networks [15], [16] have been tested in
literature. In contrast, unsupervised methods like clustering,
focus on the information without labels. For example, [17]
adopted the density-based spatial clustering of applications
with noise (DBSCAN) to calculate the anomaly degrees of
users.

The existing data-driven ETDMs have some limitations.
First, the game theory -based methods mainly focus on theo-
retical analysis with strong assumptions, thus are not compe-
tent in engineering practicality. Second, supervised methods
need vast reliable theft samples to train the detection models.
But the small proportion of theft users and the data poison-
ing (the false labeled samples) [18] limited their accuracies.
Worse yet, theymight not distinguish between electricity theft
and non-malicious activities like meter reinstallation.

Since the amounts of fraudulent users account for a very
little proportion in reality and their consumption patterns
deviate from the normal ones, it’s quite suitable for outlier
detection methods [19] to be utilized in electricity theft detec-
tion. However, traditional outlier detection methods such as
local outlier factor (LOF) can’t detect the overlapping out-
liers. To handle this problem and to detect as many types of
theft attack as possible, an improved outlier detection method
based on clustering and local density is proposed in this study.
This method adopts k-means to analyze the load profiles of
users. And then, customers whose load profiles are far from
their cluster centers are selected as outlier candidates. After
that, the LOF is utilized to calculate the anomaly degrees of
the outlier candidates. The main contributions of this paper
are as follows.

1) New techniques: Combining k-means and LOF for
electricity detection, which not only evade the problem of
unbalanced dataset but also realize the detection for overlap-
ping outliers.

2) Extensive experiments: We have conducted extensive
and comprehensive experiments based on a realistic dataset.

VOLUME 9, 2021 107251



Y. Peng et al.: Electricity Theft Detection in AMI Based on CLOF

The comparisons with some other detection methods validate
the effectiveness and superiority of our method.

The rest of this paper is organized as follows. In Section II,
we review the literature related to electricity theft detection
in AMI. In Section III, the AMI model and the attack func-
tions are pointed out. Section IV presents the theory of the
two techniques and the framework of the detection method.
Numerical experiments are conducted and evaluation results
are shown in Section V. Finally, we conclude this paper in
Section VI.

II. RELATED WORK
In this section we review existing data-driven ETDMs
in literature. One direction for electricity theft detection
is game-theory-based techniques. Cárdenas et al. [5] and
Amin et al. [6] studied the use of game theory in energy
theft behaviors. In [6], electricity theft and combat losses
are modeled as non-zero sum Stakelberg game. The distri-
bution deploy AMI to maximize the likelihood of detecting
energy thieves, while the attackers schedule their electricity
theft behaviors so that the probability of being caught is
minimized.

Another solution for electricity theft pinpointing is state
estimation. Leite and Sanches Mantovani [7], adopted a state
estimator to monitor the bias between the estimated and
measured voltages. Once the bias is detected, the sources of
NTL are located by a pathfinding procedure based on the
A-Star algorithm. Their method, however, is only effective
when precise information of network topology and parameter
is available. If this is not the case, Salinas et al. [9] introduced
a peer-to-peer ETDM. In their approach, a central meter is
deployed in each neighborhood to measure the NTL of this
area at each time instance. By solving the sparsest solution of
a group of underdetermined linear equations between NTL
and load vectors, the fraudulent users can be found. But the
algorithms to get a solution of low percentage of sparsity are
still in their infancy. To handle this problem, Zheng et al. [10]
adopted the maximum information coefficient (MIX) to mea-
sure the correlation between NTL and load data of users.
The stronger the correlation, the more suspicious the user is.
Nevertheless, this correlation-based method could but detect
linear false data injection.

Recently, with the booming of artificial intelligence (AI),
techniques such as classification and clustering are utilized
to analyze the load profiles of customers for energy thieve
locating. For example, Jokar et al. [13] summarized several
modes of FDI to artificially generate fraudulent consumption
data. Then, a support vector machine (SVM) was trained to
detect whether a new sample of load profiles is normal or not.
In [14], it was observed that the load curves of abnormal users
have poor periodicity compared with those of normal users.
And a conventional neural networks (CNNs) was trained to
detect such abnormal users. However, these classification-
based methods only can work if verified cases of theft sam-
ples are available. If this is not the case, then the unsupervised
clustering which do not use electricity theft labels, must

be used. Examples include fuzzy C-means (FCM) [20] and
optimum-path forests [21].

Perhaps, the most relevant in [22] presented the perfor-
mance comparison for various existing outlier detection algo-
rithms on real dataset. The results show the feasibility of
outlier algorithms for electricity theft detection. Compared
to [22], the proposedmethod analyzes the accuracy for detect-
ing different attack functions and realizes the detection for
overlap outliers.

FIGURE 1. Illustration of AMI system model.

III. PROBLEM STATEMENT
A. AMI SYSTEM MODEL
The architecture of AMI is shown in Figure 1. AMI is
composed of smart meters, communication networks and
data management system. Under the structure of AMI, each
customer is equipped with a smart meter to record his elec-
tricity data. A concentrator is installed in an area with a
group of neighborhood users to collect the data from smart
meters in this area. Due to the stable topology within the
area and the fine security of concentrators, the electric-
ity consumption Wt recorded by concentrator is the sum
of ground truth consumption of all customers in the same
area, i.e.,

Wt =
∑

i∈Aui,t (1)

where ui,t is the ground truth load of user i at time instance t ,
and A is the set of all users in area A. If there are several
fraudulent users in area A, the set of fraudulent users are
denoted as C whose size is |C| and remnant benign users are
denoted as B whose size is |B|. The tampering behavior of
the electricity thieves is to transform the ground truth data
ui,t into modified data ũi,t , i.e.

ũi,t
f (ui,t )
←− ui,t (2)

where f (·) is an attack function to simulate the modification
of fraudulent users. The problem this study focuses on is how
to find the fraudulent users in C with different types of f (·).

B. ATTACK FUNCTIONS
There aremany known techniques for electricity theft inAMI,
which can be categorized into three groups [13].
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TABLE 1. Seven types of the attack functions.

FIGURE 2. An example of different attack types.

1) Physical Attacks: Fraudulent users manipulate smart
meters physically to lower meter readings, such as
meter-bypassed and meter-tempered.

2) Cyberattacks: Fraudulent users compromise meter read-
ings remotely or modify the firmware on smart meters using
communication technologies.

3) Data Attack: Fraudulent users inject bad data into the
datamanagement system or smartmeters, which reduces their
electricity bills and meter readings.

To simulate the tampering behaviors of above attacks,
Jokar et al. [13] summarized several attack functions.
Table 1 gives the detains of these attack functions, and
Figure 2 shows an example of the tampered load profiles.
As shown in Table 1, Type 1 reduces the ui,t in a constant
percentage throughout the entire fraudulent period. Type 2
means that ui,t above a threshold are clipped. In type 3, a cut
off value is subtracted from all ui,t . Type 4 modifies every
ui,t in different ratios. Type 5 generates ũi,t by multiplying
the average consumption of this day by a random percentage
defined for each user. In type 6, ui,t during a random period
longer than 4 hours each day are replaced by zero. Finally,
type7 modifies all ui,t by the average consumption of this
day to represent attacks against load control mechanisms in
which the price of electricity varies over different hours of
the day; while the total amount of electricity usage stays
the same. We utilize these 7 types of attack functions to

generate fraudulent data to conduct numerical experiments
for evaluation. There are many other theft attack functions
in [32]. However, a characteristic can be generalized based on
their definitions: An attack function either keeps the features
and fluctuations of the original curve, or creates new patterns.
This is the same for other attack functions, so our method can
handle them as well.

IV. METHODOLOGY
A. LOCAL OUTLIER FACTOR
The outliers are a sort of special data objects, which occupy a
very little proportion and deviate from overall normal model.
The outlier detection aims to find out these abnormal objects.
Electricity thieves account for a very little proportion in
reality, and their consumption patterns differ from normal
ones. Thus, outlier detection methods are quite suitable for
electricity identification. Local outlier factor (LOF) [23] is an
outlier detection method based on local density, and has been
proven to be very powerful in the field of fraud detection [25]
and fault diagnosis [26].

Suppose that x and y are two data objects of datasetD. Let
us denote their Euclidean distance as dist(x, y). To calculate
LOF, the reachability distance (RD) and the local reachability
density (LRD) need to be defined. The n-objects inD closest
to x are called n-nearest neighbors of x and are denoted as
Nn(x). The reachability distance from x to y can be calculated
as follows:

Rd(x, y) = max {dist(x, y), distn(y)} (3)

where distn(y) is the n-th nearest distance between the objects
in D to y. It is worthwhile to mention that the reachability
distanceRd(x, y) from x to ymay not equal to the reachability
distance Rd(y, x) from y to x. As shown in Figure 3, when y is
inNn(x) but x is not inNn(y), theRd(x, y) is equal to dist(x, y)
while the Rd(y, x) is equal to distn(x).

FIGURE 3. Illustration of the reachability distance.

The local reachability density of x is defined as the recip-
rocal of the average value of Rd(x, y) when y ∈ Nn(x), i.e.,

ρn(x) =
n∑

y∈Nn(x)Rd(x, y)
(4)

ρn(x) can measure how close x is to its n-nearest neighbors
Nn(x). And a higher ρn(x) indicates a closer distance between
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x and Nn(x). Finally, the LOF of x is defined as the average of
the specific value between ρn(y) and ρn(x) when y ∈ Nn(x),
i.e.,

LOFn(x) =
1
n

∑
y∈Nn(x)

ρn(y)
ρn(x)

(5)

From (5), it can be concluded that, LOF is a sort of den-
sity comparison which could represent the density contrast
between x and its n-nearest neighbors Nn(x). The essence
of LOF is to quantify the outlier degree of x by its nearest
neighbors. If x is not a neighbor in the view of Nn(x), which
means that x is isolated and separate from its neighbors,
the value of LOF would be much higher than 1. Vice versa,
when x is a neighbor in the view of Nn(x), which means that x
stays close to its n-nearest neighbors, the value of LOF would
be close to 1.

Compared with other outlier detection method such as
DBSCAN and variogram cloud, LOF can consider clusters
with an arbitrary shape and requires only one parameter n (We
set n as 5% of the total number of D in this paper because it
is found to work well in practice). However, the definition of
LOF also suggests that, when some outliers overlap together,
the LOFs of these overlapping outliers could be close to 1.
And attack type 7 modifies the load curves to straight curves
which will overlap together after normalization. Thus, this
problem of LOF need to be tackled to detect type 7.

B. CLUSTERING AND LOCAL OUTLIER FACTOR
To handle the problem of LOF’s failure to overlapping out-
liers, we proposed an improved outlier detection method
based on clustering and local outlier factor (CLOF). The idea
of CLOF is to cluster dataset D with k-means and select the
objects which deviate from their cluster centers as the outlier
candidates set O. And then, LOF is adopted to measure the
outlier degrees of the objects in O.
In CLOF, the k-means is firstly utilized to classify the

objects in D. The cluster number could be easily chosen
according to elbow method [20]. For every object in D,
we calculate its Euclidean distance to its cluster center, i.e.,

dist(xji, x
j) =

∥∥∥xj − xji∥∥∥2 (6)

where, xji is the i-th object in j-th cluster Dj; xj is the cluster
center ofDj, ‖·‖2 is the 2-norm of a vector. ForDj, the objects
are chosen as its outlier candidates set Oj according to the
following equation.

Oj
=

{
xji
∣∣∣ dist(xji, xj) > d jc or

∣∣∣Dj
∣∣∣ < ε |D|

}
(7)

where, d jc is the cut off distance of Cj,
∣∣Dj
∣∣ is size of Dj;

|D| is the size of dataset D, ε is the ratio of outliers. In this
paper, d jc is defined as triple standard deviation ofDj based on
‘‘three-sigma rule of thumb’’, and ε is set as 5% according to
the parameter n in LOF. Finally, we can get the overall outlier
candidates set O = O1

∪O2
∪ · · · ∪Ok .

From (7), it can be concluded that, the outlier candidates
in O is composed of two kinds of objects: one is the objects

that deviate from their cluster centers, the other is the clusters
that account for very little proportion of the whole dataset.
After O is obtained, the LOFs are calculated for the outlier
candidates in O.

Algorithm of CLOF
Input: Dataset D, and parameters n, ε
Output: Rank of every sample in D
Step1: Get the cluster number k according to elbow method.
Step2: Analyze the data samples inD with k-means and divide

D into k-clusters D = D1
∪D2

∪ · · · ∪Dk

Step3: For each cluster Dj:
Calculate the Euclidean distance dist(xji, x

j) between
every data sample xji in this cluster and the cluster
center xj;
Calculate the cut-off distance d jc of Dj;
Get the outlier candidate set Oj of Dj according to (7);

Step4: Get the outlier candidate setO = O1
∪O2

∪ · · · ∪Ok

Step5: For every data sample x in D:
Get the n-nearest Nn(x) neighbors of x;
Calculate the n-th nearest distance distn(x) of x

Step6: For every data sample x in D:
Calculate the reachability distance Rd(x, y) for every
y ∈ Nn(x) according to (3);
Calculate the local reachability density of x according
to (4);
Calculate the LOF of x;

Step7: Get the ranks of the samples in O according to the
descending order of their LOF first;
Then, get the ranks of the samples not in O according
to the descending order of their LOF;
The ranks of the samples in O should be higher than
that of the samples not in O;

By adding the clusters with a small number into O, CLOF
can detect the overlapping outliers effectively. Figure 4 shows
an example of 2-dimentional outlier detection with CLOF.
In Figure 4, the black points are outliers detected by CLOF
while the hollow points are the non-outliers. And the red
point is 5 overlapping outliers. From the distribution of LOFs
in Figure 4, the points deviate from the normal majority more,
the higher LOFs of these points are. The outliers detected
by CLOF is accord with visual intuitive, and the overlapping
outliers can also be detected, which proves the effectiveness
of CLOF.

C. DETECTION FRAMEWORK
Based on above methodology, we design corresponding
detection framework for CLOF. The framework is composed
of three modules: the preprocessing module, the detection
module and the judgement module, as shown in Figure 5.

For an area that contains |A| consumers with their m-day
load profiles, the preprocessing module firstly vectorize the
load profiles each day to get the daily load vectors ũi =
[ũi,1, ũi,2, . . . , ũi,T ]T of user i. For every daily load vector,
the missing data are recovered as follows:

G(ũi,t ) =

{
mean(ũi), ũi,t ∈ NaN
ũi,t , otherwise

(8)
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FIGURE 4. An example of 2-dimentional outlier detection by CLOF.

FIGURE 5. Framework of the CLOF detection method.

where mean(ũi) is the average value of vector ũi. In addition,
there are some erroneous data in some conditions. Therefore,
the preprocessing module also recover those data by the fol-
lowing equation according to ‘‘three-sigma rule of thumb’’:

G(ũi,t ) =


ũi,t−1 + ũi,t+1

2
, if ũi,t > 3σ (ũi), ũi,t−1,

ũi,t+1 6= NaN
ũi,t , otherwise

(9)

where, σ (ũi) is the standard deviation of vector ũi. Next,
every load vector is normalized by dividing it with its
maximum.

Let us denote the normalized load vector of user i on
d-th day as ũ∗i,d . For all the normalized vectors on d-th day,
the detection module calculates LOFi,d utilizing CLOF. And
it gives a rank list of the p-users on d-th day by the descending
order of LOFi,d . The rank of user i on d-th day is denoted as
ranki,d . After the detection module get all the rank list of m
days, the judgement module calculates the average rank of
user i according to (10).

ranki =
1
m

m∑
j=1

ranki,d (10)

Finally, a user is considered committing electricity theft if
his average rank is high.

V. VALIDATION AND EVALUATION
A. DATASET
We use the realistic electricity consumption data released by
SGCC as benign dataset. Because all the users involved in
the dataset come from the areas whose line loss rates per
month are lower than 3%, those data are considered ground
truth. Table 2 presents detailed information about this dataset.
Particularly, it contains the load profiles of 3000 single-phase
(SP) users and 500 three-phase (TP) users within 285 days
(fromApril 1, 2019 to December 31, 2019). Each load profile
a day consists of 96 points with a time interval of quarter hour.

TABLE 2. Information of the dataset.

We use the load profiles of all TP users in the dataset from
August 1 to September 31, 2019 to conduct the experiments.
The 500 TP users are randomly and evenly divided into sev-
eral areas. For each area, several users are randomly chosen
as electricity thieves. And certain types of attack functions are
used to tamper with their load profiles. 40 of the 61 profiles
of each fraudulent user are tampered with.

B. EVALUATION METRICS AND COMPARISON
To obtain comprehensive evaluation results, we use area
under curve (AUC) [28] and mean average precision (MAP)
[29] that are widely adopted classification evaluation cri-
teria as performance metrics. The AUC is the area under
the receiver operating characteristic (ROC) curve, which is
the trace of true positive rate and false positive rate under
different thresholds. In addition to drawing the ROC curve,
AUC can also be calculated as in (22) [14]:

AUC =

∑
i∈C ranki − 0.5 |C| (|C| + 1)

|C| × |B|
(11)

where |C| is the number of fraudulent users, |B| is the number
of benign users, and ranki is the rank of user i in ascending
order according to ranki. The value of AUC must be in (0, 1).
And if it is closer to 1, the better result can be achieved.

MAP is usually used to estimate the quality of information
retrieval. To calculate MAP, we first define P@S as

P@S =
Ys
S

(12)

where Ys is the number of fraudulent users among the top S
suspicious users; Given a certain number of R, MAP@R can
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TABLE 3. Best evaluation results of the 5 methods with different attack types.

be calculated as in (24)

MAP@R =

∑r
i=1 P@Si
r

(13)

where r is the number of fraudulent users among the top R
suspicious users and Si is the position of such i-th fraudulent
user. It can be summarized that the value range of MAP@R
is [0, 1], which can measure how high-ranking the fraudulent
users are in suspicious list. The closer the value ofMAP@R is
to 1, the higher the ranks of fraudulent users are. On the other
hand, if there are no fraudulent users among top R suspicious
users, the MAP@R will be 0.

To demonstrate the effectiveness of the presented method,
we use some other correlation sorting and unsupervised out-
lier detection methods for comparison.

1) PCC [30] A famous bivariate correlation measurement.
Put the value of PCC as anomaly degree, the larger the PCC
is, the more suspicious the user is.

2) Maximum information coefficient (MIC) [30]: A metric
that can measure the degree of non-linear correlation between
two vectors.

3) Clustering by fast search and find of density peaks
(CFSFDP) [31]: A novel clustering algorithm based on
density and distance. In [10], it was modified to an outlier
detection method to find fraudulent users.

4) Local outlier factor (LOF) [23]: a classic outlier detec-
tion method based on local density.

C. RESULTS
In this part, we divide the users into 10 areas, and randomly
chose 6 users as electricity thieves. Thus, each area contains
50 users, and the ratio of electricity thieves is 12%. The test is
repeated for 100 times by recombination of users and random
selection of electricity thieves.

Table 3 gives the best values of AUC and MAP@20 of
the 5 methods with the 8 attack types, in which type MIX
indicates that the 6 electricity thieves randomly choose one
of the seven attack functions. The best scores for each attack
functions are bold. And Figure.6 shows the average AUC and
MAP@20 of the 5 methods in 100 tests.

FIGURE 6. Evaluation results of the 5 methods with different attack
types. (a) Average values of AUC in 100 tests. (b) Average values of
MAP@20 in 100 tests.

From Table 3 and Figure 6, the highest MAP@20 of
outlier-based methods is only 0.323 in detecting type 1,
whereas the lowest MAP@20 of correlation-based methods
is 0.737. Meanwhile, the gap of AUCs of type1 between these
two sorts of methods is also huge. This result demonstrate that
the outlier-based methods perform poorly in detecting type1,
while the correlation-based methods are far more capable of
detecting this type. This is because the tampered load curves
of type 1 are nearly identical with the ground truth ones after
standardization, which makes these load curves still conform
to the normal majority. On the other hand, when the load
curves are modified to arbitrary shapes (e.g., type4, type5 and
type6), the results are up-side-down. The outliers-based
methods have quite high values of AUC in detecting type4,
type5 and type6, especially LOF which is found to have
the best performance in detecting type5 and type6. While
correlation-based methods perform poorly in detecting these
three attack types because the tampered load curves become
quite random and the correlation no longer exists. For
type2 and type3, there is not much difference of the perfor-
mances of all 5 methods. However, for type7, all the methods
are failed except CLOF. This is because type7 modified the
load curves into straight curves which overlap together after
normalization

The presented CLOF have taken the advantages from LOF
and overcome its disadvantage in type 7. For type4, type5 and
type6, for which LOF specializes in, the performance of our
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method is as good as LOF. For type 7 which LOF failed
with, both the AUC and MAP@20 of CLOF are above
0.80. The results demonstrate that, CLOF maintain the excel-
lent performance of LOF in its specialized situations while
achieving significant improvements in type 7, resulting in
the best detection accuracy in type MIX. The AUC and
MAP@20 of CLOF in detecting MIX increased by 12% on
basis of those of LOF. It is worthwhile to mention that weight
factors in type MIX alter the detection accuracy. Although
we assume identical weights for the attack types, the CLOF
method achieve improvements in accuracy for other nonex-
treme weight factors.

FIGURE 7. (a) The standard deviations of the evaluation results. (b) The
time consumption of the 5 methods.

Fig. 7 (a) shows the standard deviations σ of AUC and
MAP@20 in 100 experiments for the 5 methods when detect-
ing type MIX. The σAUC of the 5 methods are all approxi-
mately 0.04, and CLOF has a minimum σAUC of 0.041. The
σMAP@20 is distributed between 0.8 and 0,19. The σMAP@20
of CLOF is 0.084, and is lower than that of all other methods.
The result shows that the CLOF method has a superior and
stable performance when detecting type MIX.

Fig. 7 (b) gives the average time consumption of the
5 methods for one detection of the whole 30500 load pro-
files. The test was done on AMD Ryzen 95900@4.7GHz
desktop computer with 64GB RAM. Among the 5 methods,
the CFSFDP is the most time consuming while PCC is the
least. The time consumption of the CLOF is 4,76s, which still
is the lowest in the three outlier-based methods.

D. SENSITIVITY ANALYSIS
In this part, we attempt to explore the impact of number
of electricity thieves on the accuracy of above 5 methods.
We hold the number of users per area to 50 and change the
number of electricity thieves from 2 to 16 (step size is 2).
Figure 8 shows the AUC and MAP@20 of the 5 methods in
this progress when detecting type MIX.

We can see from the values of AUC and MAP@20 that
PCC and MIC perform well under the conditions of fewer
electricity thieves. However, with the number of electricity
thieves increasing, theAUC andMAP@20 values of PCC and
MIC drop rapidly. The three outlier-based methods all behave
robustly against the number increasing of electricity thieves.

FIGURE 8. Performance of the 5 methods with different numbers of
electricity thieves per area. (a). AUC values of the methods.
(b) MAP@20 values of the methods.

Among them, CLOF maintains excellent performance for
both AUC and MAP@20.

VI. CONCLUSION
In this study, we proposed a CLOF based method for electric-
ity theft detection in AMI. By combining k-means and LOF
together, this method utilizes LOF to calculated the anomaly
degree of outlier candidates selected by k-means. And a
detection framework for practical application is designed.
Numerical experiments based on realistic dataset from SGCC
with 7 attack types shows that, the proposed method exhibit
excellent performance in all attack types except type 1. Thus,
our method outperforms other approaches in detecting type
MIX which is closer to the real scene. Considering the
fact there is no one-fit-all solution to handle all sorts of
attack types, the CLOF method is of high value in practical
application.

However, there are also some limitations in the proposed
method. First, the proposed method only analyzes electricity
consumption data alone, which may contain limited informa-
tion. In addition to meter reading data, the other information
such as climatic factors (temperature), regional factors, and
some electric factors (current and voltage) is worth being
studied in the future. Second, our method dose not specialize
in detecting linear FDI (type 1), which is adopted by most
physical attacks. Therefore, it is worthwhile for us to inves-
tigate how to supplement the detection for linear FDI in next
step.
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