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ABSTRACT In a microgrid, photovoltaic (PV) systems are broadly preferred with energy storage sys-
tems (ESSs) that form small-sized direct current (DC) microgrids. They are also termed local grids i.e.,
DC nanogrids, which feed the local consumers to some extent in the next decades. Therefore, ESSs enable the
DC nanogrids more flexible and stable by preserving the intermittent nature of renewables. Yet still, feeding
local consumers smoothly with PV-battery-based systems is exceedingly a considerable theme. In this
context, proper control of power electronics converters as the main carrier of the system is essential. Besides,
the rise of PV applications challenges possible issues upon integrating the conventional grid. Emerging
possible issues in stability, reliability, efficiency and the ways of dealing with them have been developing day
by day. Thus, it is inevitable that innovative methods will be put into practice. To achieve this goal, the deep
learning aided-sensorless control approach is adopted. To validate the proposed control method, the training
phase is presented elaborately with the help of the experimental setup of a DC nanogrid. From the obtained
results, it is concluded that the deep learning-based approach reaches very small error values, captures the
system dynamics successfully, enables a flexible structure with tunable hyper-parameters, and allows the
possibility to apply practically.

INDEX TERMS Deep neural network (DNN), sensorless control, deep supervised learning, photovoltaics,

power electronic converters, DC microgrid, DC nanogrid.

I. INTRODUCTION

The development of renewable-based distributed genera-
tion (DG) systems such as solar, wind, and biomass, etc.,
has become more prevalent year by year. Especially, DG is
a crucial enabler where the consumer points are far away
from the central power plants. Thus, DG-based power sys-
tems are broadly preferred in direct current (DC) or alter-
native current (AC) microgrid applications. A microgrid is
a small-scale power grid that supplies energy to the local
consumers and improves flexibility [1]. Compared to DC
microgrids, AC microgrids have some disadvantages such as
lower efficiency, higher implementation cost, more compli-
cated control, skin effect issue, frequency synchronization,
and lower reliability [2], [3], thus DC microgrids are imple-
mented commonly due to having intermittent DC output of
DGs [4]-[6]. Microgrids can be either connected to the main
grid or operate autonomously according to voltage type in the
point of common coupling (PCC) [7], [8].
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With regards to the two main resources such as wind and
solar energy for high penetration of renewable energy-based
DG units, the wind character can show nonsteady-state con-
dition and be limited; however, the harvesting of solar energy
has easily accessible and widely available energy resource
compared to the wind energy. Thus, solar energy is a suit-
able technology for both small DG structured power applica-
tions [9]. As an effective way to the DG, photovoltaic (PV)
systems have been attracting considerable interest due to easy
attainability and high efficiency in DC microgrids as well.
As a result of the rapid development of commercially mature
PV systems, widespread applications of small-sized PV grids
has been emerging as nanogrid-term which is categorized
from 1.5 kW up to 5.0 kW [10]. These small-sized grids
allow for the incorporation of developmental activities such
as night lighting, irrigation, residential appliances, remote
areas, electric vehicles, military, etc. [11].

In other words, a DC nanogrid is designed to be a reliable
deliverer that can dispatch power from DGs to the local loads.
Apart from being smaller size than microgrids, nanogrids
are localized i.e., more customer-centric, more viable, and
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easier to establish. They also can form the microgrid structure
by interconnecting each other [12]. As DC nanogrids can
be affected adversely by the unbalanced nature of renew-
ables, they are operated with energy storage systems (ESSs)
to mitigate the generated power and ensure uninterruptible
to the critical loads [3], [13]. Power electronic converters
with optimal design and proper control are deployed as a
backbone of DC microgrids and also nanogrids as well,
as they are known to be the most vulnerable parts in terms of
reliability in these systems. [14]-[16]. Thereby, the optimal
selection and proper control of power electronic converters
have a crucial duty in dispatching smooth power to the loads
for sustainability. Due to the rapid advancement of control
theory, many advanced control and optimization algorithms
have been carried out [7]. Traditional control approaches
depending on the detailed parameters of the system model
can expose various challenges under harsh disturbances.
To this end, non-model based approaches such as model
predictive controller (MPC) [17], artificial neural networks
(ANNS) [18], and fuzzy logic [19], a neural network sup-
ported MPC design [20] methodologies are presented for
the robust system operations, which do not need any system
model but also have been observed to outperform with sat-
isfying results. In this context, a great number of Al-based
smarter aspects with artificial and deep neural networks are
utilized for better performance such as control of DC-DC
converter using ANNs [21] for providing stable output volt-
age. Similarly, [5] introduces ANN-based method to reduce
the number of implemented sensors and control power con-
verters with lower attenuation at DC bus. Furthermore, ANNSs
are broadly adopted in fault diagnosis [22], failure and life-
time prediction of power devices [14], long-term performance
analysis for power electronic converters [23], detecting and
mitigation of cyber-attacks for DC microgrids [24], optimal
energy scheduling for microgrids [25] and maximum power
point tracking (MPPT) techniques for PV systems [26].

One such control system currently popular in this field of
research is the artificial intelligence (Al)-based deep neural
network (DNN) structure which is an improved extension
of ANNs. Due to these advantages, in [27], a deep con-
volutional neural network (CNN) structure is presented for
PV power forecasting and a non-intrusive load monitoring is
proposed via deep learning for residential microgrids [28].
For instance, [29] achieves voltage stabilization of the DC-
DC converters with low ripples via the deep reinforcement
learning technique. Additionally, short-term load forecasting
for sustainable management [30] and intelligent load fore-
casting for energy companies [31] are presented via DNNs.
With the aim of being inspired by the human brain structure,
it overcomes optimal power allocation issues for islanded
microgrids, which is developed through DNNs [32].

As seen in the state of the art, a promising solution to
relieve the drawbacks is to use a deep learning-aided system.
To provide a more reliable structure by reducing a sensor in
the control layer and tackle the regression problem success-
fully, stages in the training and analysis process of accurate
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estimation, the proposed control approach is dealt with DNN
which is a sub-set of Al technique, is an ideal technique.
As mentioned before, the sensorless control approaches are
such applications that reduce the use of sensors in the control
layer of power electronic converters, which greatly enhances
reliability. In this context, the proposed sensorless control
approach is applied to PV-Battery-based DC nanogrid struc-
ture by forecasting sensor data through a deep learning
method in the control layer. In other words, this paper proves
how DNNSs can help to solve regression estimation problems
and reduce the number of sensors in the control layer of the
power converters.

Briefly, the main contributions of the study can be summa-
rized as the proposal of the following points:

« Proper estimation of sensor data utilized in the control
layer does not only solve the regression problem but also
enhances the reliability of the general system as a con-
sequence of removing the sensor without being needed
it. Thereby, the communication delay of the removed
sensor is ignored, which makes the system faster.

« Since the current sensors are more vulnerable than volt-
age sensors in case of any sensor failure in DC system
measurements, it is crucial to pay attention to imitate
such a necessary output as current sensor data that has a
dynamic nonlinear relationship with inputs (solar irradi-
ance, temperature, and voltage).

o Unlike less-developed structures such ANNS, as a big
dataset is not required for the training process, a super-
vised learning-based DNN structure can enable the
exploitation of short-term forecasting hourly, daily,
or weekly with few data, very small error rates, and
non-delay when compared to the state of the art.

o Whilst training process, a great deal of training is exe-
cuted and their results are obtained to distinguish the
effect of the hyper-parameters of the DNNs.

To cover the discussed themes, the rest of this paper is
organized as follows. Section II elucidates the general system
description such as a physical structure of PV-Battery-based
topology and the control structure of PV conversion system
in the DC nanogrid structure. Section III describes the deep
learning design and deployment of the DNN-based sensorless
control approach is explained step by step. In Section IV,
obtained numerical results are presented. Besides, the dis-
cussions are stated in Section V. Finally, the conclusion and
future work remarks are clarified in Section VI.

Il. GENERAL SYSTEM DESCRIPTION

A. PHYSICAL STRUCTURE OF PV-BATTERY-BASED DC
NANOGRID

The PV-Battery-based DC Nanogrid comprises of a PV array
as DG and battery bank as energy storage system (ESS),
power electronics, filters, AC load, and grid side, which is
shown in Fig. 1. Whereas the PV array is the main source,
the ESS is considered as an auxiliary source. The power scale
of the discussed system meets the conventional DC nanogrid
structure.
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FIGURE 1. Overview of proposed PV-Battery based DC nanogrid.

As depicted, the PV array is connected to a DC bus with
the help of a unidirectional DC-DC converter and maximum
power point tracking (MPPT) controller. Also, the ESS is
linked to the same DC-bus through a bidirectional DC-DC
buck-boost converter. This topology i.e., DC nanogrid assure
supplying the AC loads continuously with the proper opera-
tion of a DC-AC interlinking inverter. Since the PV array is
considered as the main power source, proper operation of this
conversion system is crucial for smooth power flow once any
demand occurs.

The nanogrid structure in Fig. 1 represents an installed
real-experimental setup system. In this nanogrid structure, the
rated power of the PV array is 1 kW. As mentioned, a Perturb
and Observe (P&O)-based MPPT algorithm is implemented
for the proper operation of the PV conversion system in
addition to the PV converter’s controller. A roof-mounted
PV array is preferred to utilize meteorological variables effi-
ciently without any shading. Furthermore, a weather station
is established to obtain the weather variables near the PV
array on the rooftop of the faculty building. Regarding the
energy storage system, six pieces of Lead-Acid battery are
placed to act as a complementary power source, enhance the
stability, and also alleviate the intermittent nature of physical
conditions of renewables. When the PV array supplies the AC
loads as a primary power source, the ESS stores unused power
generated from the PV array too. The bidirectional DC-AC
converter is an essential interlinking inverter that participates
in system operation and feeds the loads as well. To provide
smooth power to the load side and reduce the high-frequency
current harmonics, an LCL filter is attached on the load side
of the system towards the grid side.

The main parameters of the PV array and also other parts
of the system regarding ESS, power converters, and grid are
listed in Table 1. As can be seen from Table 1, the switching
frequency (f;) is attained as 10 kHz for power electronic
converters. The operation of the system with these features
in Table 1 is deployed and performed to procure the training
data for the DNN structure to be designed.

B. CONTROL STRUCTURE OF PV ENERGY CONVERSION
SYSTEM

Small-scale PV systems are broadly preferred with two-stage
single-phase configuration till 30 kW rated power values [34].
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TABLE 1. System parameters (See fig. 1).

VARIABLE DESCRIPTION VALUE
PV ARRAY PARAMETERS
Ppy PV Array Rated Power 1 kW
Voc Open Circuit Voltage 363V
Isc Short Circuit Current 3483 A
Ns, Np Nb of Series and Parallel Panels 2,2
n Module Efficiency [33] 15.40 %
ENERGY STORAGE SYSTEM PARAMETERS
ESS Battery Type Lead-Acid
Vyom Nominal Voltage 24V
o] Nominal Capacity 600 Ah
R;, Internal Resistance 3.4 mQ
Veur-ofr Cut-off Voltage 18V
Ven Fully Charged Voltage 27.8V
POWER CONVERTERS AND GRID PARAMETERS
£ Switching Frequency 10 kHz
L Boost Converter Inductor 1.5mH
Cpy PV-Side Capacitor 1000 pF
Cpc DC-Bus Capacitor 1800 pF
L L, G LCL Filter 1.203 8%%%" HH,
Vbe DC-Bus Voltage 370V
Vo Grid voltage (RMS) 220V
19} Grid nominal frequency 2750 rad/s (50 Hz)
Ipy/Ppy P
_;W\,i_P’V_ 1 V npp
I R ——— A
Ipy S Ve E: Load " 13 1
Vo Vi Vey

[a] [b]

FIGURE 2. [a] Conventional equivalent circuit of PV panel (single diode
model) and [b] characteristic curves.

Routine operation of power converters does not only uti-
lize traditional multiple feedback loops with the help of
proportional-integral-differential (PID) controllers but also
pulse width modulation (PWM) is indispensable [35]. As a
result of the PWM signal PV converter is triggered through
the duty cycle (d). A proper controller is a key element in
accomplishing a well-operated system [36]. As seen in Fig. 2,
to extract much more power as possible and track maxi-
mum power point (MPP), a cascaded-PI reference voltage
current control cascade control mechanism is activated by the
P&O-based MPPT algorithm. Since obtaining the MPP from
the PV array is purposed, the MPPT part requires measured
voltage (Vpy) and current (Ipy) data and then adjusts the
reference PV voltage (Vpyyr) to harvest available power
close to the MPP at any condition. The target of the MPPT
controller is to send a PWM signal sensing the difference
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between Vpy and Ipy . To this end, obtained maximum power
from the PV array to the DC bus is ensured conveniently. The
relationship between input and output voltage as follows:
_ (Vpc —Vpy)

Vbe '

d ey

Upon designing the boost converter structure, the compo-
nents’ values should be selected properly. The boost converter
inductor (L) is a function of Vpy, d, f;, and lastly inductor
ripple current Al as follows [37]:

Lo Vevd
= AL

Keeping a high value of I; may cause electromagnetic
interference sensitivity, otherwise taking a low value may
result in unstable operation as well [38]. Thus, Aly is sup-
posed to be as 30% of I, i.e., between 20% and 40%. Simi-
larly, the boost converter DC-bus capacitor (Cpc) is stated as:

Cpe > W, 3)
AVDCfY
where, Ppy is PV power at DC-bus, AVpc is ripple voltage
can be considered from 1% to 5% of the nominal value
of Vpc [39].

One of the most widespread MPPT algorithms, i.e., the
used P&O technique examines the change in power at the
voltage-power characteristic curve of the PV panel as seen
in Fig. 2 (b). If the change of power APpy,; versus the
change of voltage AVpy,s ie., the slope of the curve
(dPpvref /dVpyrer) is higher than zero, tracking on the left side
of the MPP can be deduced from that the actual power value,
otherwise, dPpyyrer /dVpyrer is lower than zero, actual power
value wanders on the right side of the MPP, and Pjspp reaches
at the MPP [3].

@

Ppvref
on the left side,
= { on the MPP i.e..,Pypp,
on the right side,

if dPPVref/dPPVref >0
if dPPVref/dPPVref =0 @
if dPPVref/dPPVref <0
or
dPpyyef —0 )

Ppvref =Pupp

dvp Vref

Before proceeding, it is helpful to mention acquiring the
necessary transfer function between transfer Vpy and d,
which is constructed through the small-signal model as:

—Vbc
Vpv(s) ICpy
d(s)

; (6)

) s 1
57+ Rpy Cpy + LCpy

where, Rpy is the resistance of the PV array corresponds
to Vpy /Ipy, which is the output resistance of the PV array.
Regarding the implemented control strategy with cascaded-
PI control, Fig. 3 depicts the configured controller scheme for
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FIGURE 3. Traditional control strategy with cascaded-PI control for PV
side.

a two-stage single-phase PV system. The reference current is
expressed as

ki
Ipvier = <kpl + %) (Vv — Vpyref). @)

Furthermore, it is again worth mentioning that the ESS
acts an important role in enhancing the system’s stability,
as it reduces the negative effects of the unstable nature of
renewables [3]. Besides, the aim of the ESS bidirectional
DC-DC buck-boost converter is to provide the stored power
to the load side permanently in case of no generation from
the PV side in boost mode and charge the batteries once
the demand requires less than the generation in buck mode.
In other words, whereas the buck mode of the converter leads
to charging, the boost mode of the converter corresponds to
discharging of the batteries.

Additionally, the bidirectional DC-AC inverter supplies
generated power to the load side adjusting the DC bus
voltage and providing the grid synchronization through the
phase-locked loop (PLL) in addition, controlling the grid
current as well. As accepted, the PLL block provides a non-
linear feedback control system that synchronizes its output in
frequency and phase [3]. With regards to the control of other
converters such as ESS converter and interlinking inverter is
out of the detailed scope of the paper, it can be asserted that
the cascaded-PI reference voltage-current controller structure
has been preferred to achieve good performance, and also
obtained sensor data for the next step with deep learning
application.

Ill. DEEP NEURAL NETWORK-BASED SENSORLESS
CONTROL APPROACH

A. DEEP NEURAL NETWORKS

Al seeks to resemble the mindset in a biological brain.
The brains comprise many neurons, and these neurons are
connected with biological neural networks that facilitate the
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behavior process. It is utilized to train and test for the
static or dynamic nonlinear relationships in any engineering
problem that should be solved. Al is a large cluster that
involves machine learning and deep learning subsequently,
which is implemented in a variety of industry fields such
as energy, automotive, textile, telecommunication, finance,
nutrition, software, and agriculture, etc [36]. For deep learn-
ing structure, it can be asserted that it is formed by ANNs
with many hidden layers roughly. In other words, the ANN
structure has been improved to adjust wider and deeper an
ANN structure easily in order to deal with the engineering
problems such as regression, estimation, classification, and
recognition [5].

Deep learning is an extension of neural networks, namely,
it is a type of machine learning that employs multiple lay-
ers that corresponds to a DNN. It is formed by a neu-
ral network that contains two or more neural networks.
The training data train the DNN using learning rules.
When the network is trained, input data is provided and
the network produces the output. Apart from the known
ANN models, the back-propagation algorithm was invented
in 1985 [40], and then the problem of training multiple layer
neural networks was solved to a certain extent; however,
its performance could not meet expectations on practical
problems. The back-propagation is a technique to train the
weights in hidden layers to obtain the optimum output [36].
Since a neural network has a quite simple architecture,
it could not be improved due to its limited scope for a
long time.

It is worth mentioning that we have trained the network
using the back-propagation method and utilized the super-
vised learning-based DNN structure. For a better explanation,
it can be claimed that supervised learning is like finding
the correct solution that means the correct answer is already
known. Additionally, the output we have got is subtracted
from the correct output, so the difference between output
(vi) and correct output (d;) is an error (e;) of i neuron
as specified by (8). A DNN stores info about the current
weights, namely, to train a network with new info, we have
to modify the weights. In other words, the errors are passed
back to the hidden layers to adjust the weights of the nodes,
thereby the correct outputs are predefined. This systematic
way of modifying the weights is called *“Learning Rule.”

ei =d; —yj, (8)

Among the rules, the generalized delta rule is broadly
preferred. Based on the errors, the weights should be adjusted
using this rule as

wij < wij + Awj, )
Awj; = adix;, (10)
then,
§i = ¢'(vei, (1)
wij < wij + a@’ (v)ex;, (12)
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where, a is learning rate should be between zero and one
(0 < a < 1), ¢ is derivative of the activation function,
v; represents a weighted sum of output node-i (i.e. i”* neuron).
To sum up the back-propagation algorithm, the complete
process flow can be elucidated as follows:
i. Initialize the weights with proper values (kernel
initializer),
ii. Calculate ¢; and §;,
iii. Propagate the output node 8f in the /" layer, backward
and forward nodes,
iv. Repeat step iii till it converges the hidden layer,
v. Modify the weights on the basis of the learning rule,
vi. Recur steps ii-v for all training points,
vii. Recur steps ii-vi till the network is trained accordingly.
By the way, the flow from step ii (including) to step vii
(excluding) is called an epoch. To this end, three different
technics exist such as stochastic gradient descent, batch, and
mini-batch methods for the supervised learning of the neural
network. In the stochastic gradient descent technic, the error
is calculated for each training data and the weights are
updated rapidly. In the batch technic, the error is calculated
for every training data, then each weight update is calculated;
however, the average value of the weight updates is used
to adjust the weights in (13). Lastly, the mini-batch method
involves both features from previous methods, which is like a
combination of them. This method has a speed of stochastic
gradient descent and stability of the batch method. The weight
updates of the selected data are calculated and trained the
network with the help of average weight updates [41].

N
1
Awi =+ Z Awi(r), (13)
r=1

where, Aw;j(r) is the weight update for ™ training data, N
denotes the total number of the training data.

As mentioned accordingly, deep learning has overcome
multiple key developments, and the improvement of these
technologies eventually formed into the current deep learn-
ing. The first impediment was training multiple layers, which
was solved by a back-propagation algorithm. The second
problem with deep learning was an existing poor perfor-
mance. The reason for poor performance is improper training
and also the reason for improper training are vanishing gra-
dient, overfitting, and computational burden. The gradient is
similar to the “Delta Learning Rule” of the back-propagation
algorithm. Once the output errors do not achieve to reach
the further nodes, it can be counted as a vanishing
gradient [41].

In the back-propagation algorithm, the errors are passed to
hidden layers to train the network. If the errors do not reach
the hidden layer, the weights cannot be adjusted. That means
the hidden layers cannot be trained. Thereby, there is no point
in training hidden layers if they cannot be trained. This prob-
lem can be solved using the Rectified Linear Unit (ReLU)
function as an activation function. This function provides us
the maximum value between zero and given input. We will

106645



IEEE Access

A. N. Akpolat et al.: Deep Learning-Aided Sensorless Control Approach for PV Converters in DC Nanogrids

need the derivative of the ReLLU function to handle this issue.

x, x>0

o) = 0. x<0 = max (0, x) , (14)
with
, 1, x>0
= 15
@ (x) 0. x<0 (15)

To calculate the output of a certain neuron in any layer / (1
< | < K) of DNN structure with ReLU activation function,
the output of any hidden layer are specified with a]l._1 (1<j<

!

Nj_1), all they are then multiplied with weights w’. from the

1}
7™ neuron in the (I-1)" layer to the i neuron in thje 1" layer
and bias terms bf (for the bias of the i neuron in the /" layer)
are accumulated. With these notations, aﬁ of the i’ neuron in
the /" layer is associated with the activations in the (I-1)"

layer as

Ni—

o) = freLU waja]lfl +bi ] i=1,....N, (16)
i=0

then the output for the last layer-K,
vi=wld, (17)

and also, (16) can be expressed in the vectorized form as
follows:

o =fiy (w’aH + bl) . (18)

Besides, DNNs are vulnerable to overfitting, as the model
becomes more complicated and it involves more hidden lay-
ers. As known, the complicated models are more vulnerable
to overfitting as opposed to being well-trained network like a
contradiction. The most classical solution to this problem is
the Dropout issue. Dropout is training some of the randomly
chosen nodes rather than the whole network. For example,
the first selected ones will be trained and the rest of the
nodes will be set to zero for deactivating in the next train-
ing phase. Normally, half of the nodes are dropped out for
hidden layers and a quarter of the nodes are dropped out
for the output layer to produce acceptable results. Another
effective method of preventing overfitting is regularization.
It simplifies the architecture of the network as much as
possible.

The last challenge of DNNS is the time required to com-
plete the training not to cause a massive computational bur-
den. The number of weights increases geometrically with
numbers of hidden layers and more layers require more train-
ing data. A large number of training data raises the training
time. Although training time is not a big deal, it is a critical
issue from a practical development perspective. To finalize
the training process faster, it is better to prefer higher perfor-
mance hardware such as a graphical processing unit (GPU)
instead of a central processing unit (CPU), the training algo-
rithm also plays a key role such as using batch normalization
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FIGURE 5. Structure of the designed DNN. Weights and bias terms are not
shown in the figure to get simplicity. Inputs and outputs are highlighted
with different colors, whereas the hidden layer with grey. Adjustment of
getting wider structure occurs with adding more hidden layer, while
deeper structure requires adding more neuron in the hidden layers.

algorithm for enhancing the performance. Upon challenging
the difficulties, the weight matrices are defined for each
hidden layer. The description of the proposed DNN structure
is seen in Fig. 4.

B. DEPLOYMENT OF DEEP NEURAL NETWORK

Generally, it is quite meaningful to be focused on such vari-
ables that have a dynamic nonlinear relationship for estima-
tion and regression problems [42]. This kind of relationship
enables us to utilize any value that needs to be forecasted with
high accuracy values. A DNN aims to mimic a sub-simulation
of the biological network using electronic circuits. or more
time series are utilized to estimate future values. According to
the conventional equivalent circuit of PV panel, Ipy is stated
as (20)

—Ipg +1Ip + Isy +Ipy =0, (19)
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with
Ipy = Ipg — Ip — Isq, (20)
kT
v, = =51 1)
q
V, +Ipy R
Ipy = Ipn —Ip (e% - 1)
V Ipy R
_ YcELL + Ipy S’ 22)
Rsy

where, Ip diode saturation current, Rg¢ and Rgy series, and
shunt resistances, respectively, and n is diode ideality factor.
meteorological inputs result in a thermal cell voltage called
V. While g identifies the electron charge, k is the Boltzmann
constant. Also, the generated photocurrent-/pg depends on
solar irradiance (G) and temperature (7),

G
Ipy = Isc + k(T — Tstc)G_a

stc

(23)

where, Igc is short circuit current, k; is short circuit cur-
rent temperature coefficient, Ts7¢c and Ggrc respectively
reference temperature and solar irradiance at standard test
conditions (STC). Consequently, estimating future values
of the current data-Ipy facilitates to be a remedy in the
control layer, since sensible input-output relationship exists
between G, T, Vpy and Ipy. Thereby, we have implemented
a multi-layer feedforward DNN architecture in this study,
which is a more complex structure than an ANN structure.
Each of the hidden layers operates the information flow from
the input to the output layer. Referring to the inputs of the
designed DNN whilst obtaining input-memory order of past
values up to delay (d) pieces of x(¢) is specified as a matrice
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of state variables:

x() =[xt =1,...,x1(t =d),
xt—=1),....,x0—4d),

3t —=1),...., 30 —d)]er» (24)
namely,
x(t) =[Gt —1),...,G(t —d),
Tt —-1),...,T(t—4d),
Vev(@ = 1), ..., Vey(t — d)]r » (25)

thereby, the output of the model can be expressed as in (26)
using with n inputs and hidden layers,

0 = [yt = D, 3t = Dy

The proposed sensorless control scheme with DNNs can
be mainly examined under six stages including proper input
selection, defining the paradigms, estimation, and implemen-
tation. After completing these all stages as follows, we are
ready to implement the well-trained DNN into the system as
the last stage.

Stage I: After acquiring the proper data from measure-
ments through the sensor data of the conventional cascaded-
PI controlled system operation, the DNNs datasets are ready
to be processed during the first stage accordingly. It is
important to emphasize that we consider the total number of
datasets that have equal elements.

Stage I1: With the completion of the first step, the acquired
data to be used for training are preset and subjected to Z-Score
Normalization or Standardscaler that is a method of normal-
izing data to prevent outlier problems. In other words, the
reason why we do apply is that; we need to compare attributes

(26)
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FIGURE 7. Overview of last application stage: operation of PV-Battery-based DC nanogrid with a trained DNN.
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FIGURE 8. Used datasets for three days’ data. The datasets are
highlighted with fawn, red, aqua, and dark blue colors. Antecedent two
days’ data are used for training and the rest of data i.e., third day’s data
used for testing phase.

with very large values and attributes with small value equally.
The basis z-score formula is expressed as
=)
G 9

27)

where, x is a test score, u is the mean value, and lastly o is
the standard deviation of the feature. Any value is evaluated
according to being equal, lower, or higher than the mean
values of the feature [43].

Stage I11: Input and output parameters are divided as target
timestamps. Roughly, there is a query to answer such as “how
many datasets will be used for the training part and test part?
In order to analyze the trained network elaborately, we have
divided target time steps as one-day data from three days’
data and utilized two days’ data for training. Then, the rest
of the data i.e., the third-day data used for the testing part.
In other words, the test dataset is different from the training
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data to provide a reliable trained DNN. If we have taken all
three days’ data for training, the output would encounter an
overfitting problem.

Stage 1V: After making a decision about the training and
test datasets, DNN is trained and optimized with the aim
of getting a high performance. As the latest trend opti-
mizer, “Adam” optimizer has been preferred. This optimizer
belongs to an adaptive learning rate optimization algorithm
and computes on the gradient handled on the mini-batch
method [44], [45].

Stage V: After the number of layers was determined,
fine-tuning is performed by changing the hyper-parameters
such as epoch size, learning rate, batch size, which can be
adjusted for the network [32]. For network performance,
the wider structure means increasing the hidden layers, while
the number of neurons in the hidden layers can be increased
for the deeper structure. The structure of the designed DNN
is depicted in Fig. 5. To evaluate the performance criteria for
the trained network, (28) expresses mean squared error (MSE)
which is used as a loss function:

22 —Zld

Hyper-parameters such as epoch size, learning rate, batch
size, and neuron architecture can be adjusted according to
the accuracy [46]. If the poor performance still exists, it is
notable to focus on the number, type, and suitability of the
used datasets.

Stage VI: By reducing the amount of MSE value, a
well-trained network including current data can then be ready
for the exploitation phase in the control layer instead of the
old used one. The measured current data from the former
controller is ignored and the output of the trained network
is embedded into the control layer. All of these stages can

MSE = (28)
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FIGURE 9. Measured data for training phase of DNNs for three days with
864 samples: [a] solar irradiance, [b] ambient temperature, [c] PV
voltage-Vpy, and [d] PV current-Ipy .

be summarized in Fig. 6 and also the overview of the final
application stage is shown in Fig. 7.

IV. NUMERICAL RESULTS

In this section, the proposed deep learning-aided sensorless
control approach for PV Converters in DC nanogrids is
implemented by considering different complications. These
results validate that the proposed method represents a viable
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FIGURE 10. [a] Estimated and [b] measured currents for PV converter
operation.

alternative to the sensorless control approach. To realize the
proposed strategy’s validation and efficacy, hyper-parameters
of the training part were modified and tested. Also, the aver-
age value of five testing results was carried out and compared
with each other.

To get high performance in a short time, the complier com-
puter should have good features. Thus, the study results were
obtained using Python-3.6 with Keras 2.3.1 TensorFlow 2.4.0
(developed by Google') i.e., Keras-Backend TensorFlow
open-source library that is capable of parallel processing on
compute unified device architecture (CUDA) graphics cards.
All of the processes were operated in PyCharm software as a
compiler with the help of Numpy, Pandas, and SciKit-Learn
libraries. The server computer has some specifications such
as a 7™ generation Intel i7-7700 K processor, Nvidia GTX
GeForce 1080 TI 11 gigabyte (GB) GPU, 512 GB (solid-state
drive) SSD, and 1 terabyte (TB) hard disk drive (HDD).

The datasets have been measured and obtained for three
days. Assuming that the weather station generates measured
data per five minutes, on the grounds of a day contain
twenty-four hours, we can collect the number of samples
(NoS) per day as (24 hours 60 mins)/(5 mins) is equal to
288 samples. Each day comprises 288 data points, so we
have performed to utilize three days’ data that corresponds to
864 samples. As mentioned in the previous Section-Stage I11,
three days’ data have been reserved for the training as two
days’ data and the testing phase as one day’s data. It is con-
siderable to distinguish the training and testing dataset from
all datasets not to meet any potential performance challenges
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FIGURE 11. Estimated-ip, and measured-Ip;, current values.

of the DNNs. Since we have distinguished the datasets, the
DNNss are never tested through the training data. Accordingly,
it performs on a reliable operation under different conditions
like distinct input datasets. While Fig. 8 shows the whole
datasets allocation for three days, the used datasets to train the
DNN are seen in Fig. 9 obviously. It is important to mention
that the datasets were acquired in June. As judged in Fig. 9,
except for the temperature data the other sensors’ data could
not generate any value due to being night times. When the
sunshine rises up, it is obvious that the quantitive values of the
temperature, voltage, and current datasets increase as well.
As seen in Fig. 10, the estimated-Ipy and actual measured-
Ipy values of PV current are shown separately. The key
point is here that the estimated one is expected to converge
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FIGURE 13. Studied experimental setup of DC nanogrid, [a] weather
station, [b] PV array, [c] PV converter.

the measured one as much as possible. Similarly, the same
mentioned currents can be expressed in Fig. 11 with their
zoomed points. This estimated result has been expressed by
the most intimate one (i.e., with the best MSE) between all
results.

Furthermore, estimating current data enables power esti-
mation as well in PV systems. For power estimation,
estimated and measured powers can be shown in Fig. 12.
As mentioned before, the input datasets are generated with
the help of the real-time operation of a real experimental
setup of a DC nanogrid, which is visualized in Fig. 13.
Fig. 13 (a) and (b) illustrate the weather station and PV array
on the rooftop of the faculty building, while Fig. 13 (c) shows
the PV converter in the laboratory. For a better illustration
of the implemented method, arbitrary results with different
MSEs (including the best one in Fig. 11) are proved to be
distinct characters in Fig. 14.

All measured values are expressed with the green line.
To raise the importance of implementing well-trained net-
works with convenient MSE values, different results with
different quantitive MSEs are compared to each other
in Fig. 15 with zoomed points apart from the best one
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FIGURE 14. Comparison of estimated currents with the measured one.
The green line expresses the measured one, while the others are all
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(in Figs. 10 (a) and 11). It is remarkable that some of the
results converge properly when the current is high as opposed
to performing well when the current is low. Broadly, it is obvi-
ous that the more accuracy is achieved, the more convergence
is captured and also the fewer MSE values are reached.

V. DISCUSSION
As stated previously, while designing the networks, the archi-
tecture can be modified having made deeper and wider
structures. After assuring the final network structure, modifi-
cations of the significant hyper-parameters aid to improve the
network mission such as giving more accurate output, reduc-
ing low computational burden with a fast training process.
To this end, two different configurations were proved as
follows:
i) The first configuration has been prompted with a fixed
epoch size equal to 1000, a learning rate equal to 0.0001, and
variable batch size, as can be seen in Table 2.
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FIGURE 16. Comparison of different configurations: while the first case
remarks the change of the batch size (see Table 2), the second one
belongs to the chnge of learning rate (see Table 3).

On account of obtaining the best average MSE value with
a batch size equal to 32 in this configuration, the batch size
of the second configuration has been fixed as the same value
as 32.

ii) The second configuration has proceeded with the same
epoch size as 1000, the same batch size as 32, and variable
learning rate, as can be seen in Table 3.
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TABLE 2. First case results.

Feat'ures Mean Squared ~ Average
Epoch Leﬁl;:‘leng Batch Size Error (MSE) Value
0.152924
16 0.217302
0.363000 0.429798
0.552219
0.863546
0.072490
30 0.080406
0.114939 0.113457
0.135115
0.164331
0.188958
48 0.119019
0.141539 0.166402
0.152721
0.229775
1000 0.001 0.168467
9 0.192820
0.271864 0.218098
0.315812
0.141525
0.299272
0.188821
200 0.172609 0.229238
0.166682
0.318806
0.264669
0.293191
500 0.438629 0.340550
0.334757
0.371507
TABLE 3. Second case results.
Balt::}? tures Tearing Mean Squared Average
Epoch Size Rate Error (MSE) Value
0.0001 0.375625
0.0001 0.223489
0.0001 0.090744 0.286537
0.0001 0.424846
0.0001 0.317985
0.0005 0.237782
0.0005 0.518078
0.0005 0.348764 0.344668
0.0005 0.309679
0.0005 0.309036
0.0010 0.072490
0.0010 0.080406
0.0010 0.114939 0.113457
0.0010 0.135115
0.0010 0.164331
1000 32 0.0025 1.619907
0.0025 2.022840
0.0025 0.200500 0.856823
0.0025 0.342936
0.0025 0.097931
0.0050 1.277175
0.0050 0.226590
0.0050 0.180249 0.483033
0.0050 0.201417
0.0050 0.529735
0.0100 0.394716
0.0100 0.475015
0.0100 0.569173 0.494700
0.0100 0.491619
0.0100 0.542978

As observed from Table 2 and 3 (and also in Fig. 16)
respectively, higher batch size accomplishes slower conver-
gence, whereas lower batch size shows non-convergence
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behavior with less accuracy i.e., higher error rate (see the
error of the first line with a low batch size being higher
than the others in Table 2). Despite being higher batch size
takes less training time than being the lower batch size in the
training phase.

Besides, it is extracted from Table 3 that the effect of
learning rate modifications has not been generalized in par-
allel to the effect of batch size modifications, because the
average error values show uneven characteristics accord-
ing to the variable learning rate. As known, MSE values
should be received attention to be variable due to the incal-
culable computational effort of DNN structure for each
training.

As can be seen in the Tables, the best convergence rate
was obtained epoch size equal to 1000, batch size equal
FIGURE 11. Estimated-Ipy and measured- Ipy current val-
ues. to 32, and learning rate equal to 0.001 with the lowest
MSE value as 0.072490. Additionally, Fig. 16 depicts the per-
formance criteria-MSEs in terms of different configurations
with the order of change of the hyper-parameters (from small
to high values) as obtained in Tables 2 and 3.

VI. CONCLUSION AND FUTURE WORK
To sum up our work, it can be asserted that we have high-
lighted a supervised deep-learning aided control application
for PV-Battery-based DC nanogrids. The findings of this
paper indicate that this deep learning-based approach can
tackle the system dynamics and track the PV current sensor
data for the control layer properly. This paper essentially
shows how the deployment of the DNN structure can sup-
port solving regression estimation problems to provide more
reliable systems by eliminating the sensor data. We have also
validated the effectiveness of the proposed approach once
the system was trained by splitting up the training and test
datasets. The strong point of our study lies in reaching high
accuracy, utilizing real datasets without generating artificial
data, and complying with the real application data. The pro-
posed controller for handling regression issues with high
accuracy (with an average MSE equal to 0.113457) and a
fast response (average 29.23 secs training time) assures the
usefulness of this approach. It is worth mentioning that this
approach has features to be adjusted for different datasets.
This study has gone some way towards enhancing
our understanding of supervised deep learning for PV-
Battery-based nanogrids. In our view, these results constitute
a valuable initial step towards the real-time application. Since
the performance of the proposed controller has been encour-
aging, one promising application of our technique would be
a design of a controller board that is embedded deep learn-
ing algorithm for the experimental implementation of this
approach.
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