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ABSTRACT With the fast development of digital technologies, we are running into a digital world. The
relationship among people and the connections among things become more and more complex, and new
challenges arise. To tackle these challenges, trust — a soft security mechanism— is considered a promising
technology. Thus, in this survey, we do a comprehensive study on trust and trust modelling for the future
digital world. We revisit the definitions and properties of trust, analyse the trust theories, and discuss their
impact on digital trust modelling. We analyse the digital world and its corresponding environment where
people, things, and infrastructure connect with each other. We detail the challenges that require trust in
these digital scenarios. Under our analysis of trust and the digital world, we define different types of trust
relationships and find out the factors that are needed to ensure a fully representative model. Next, to meet
the challenges of digital trust modelling, comprehensive trust model evaluation criteria are proposed, and
potential security and privacy issues of trust modelling are analysed. Finally, we provide a wide-ranging
analysis of different methodologies, mathematical theories, and how they can be applied to trust modelling.

INDEX TERMS Trust, trust modelling, digital trust, digital world, security and privacy.

The world of digital data and information transfer is grow-
ing. Devices, once only capable of communicating within
homogeneous networks, can now transfer data between
devices of varying background and capability. Technology
continues to advance in this direction to allow devices, from
sensors to smart phones, to communicate. As devices from
diverse backgrounds connect, their physical and social envi-
ronments become integrated with the digital world. Today,
service providers — that aid people, businesses, and soci-
ety — increasingly utilise digital technology. Information
exchange supported by the digital world has a substan-
tial impact on society. Thus, digital exchanges need to be
safeguarded.

Integrating digital, social, and physical worlds, how-
ever, exposes the digital world to newer and more com-
plex vulnerabilities. Growth in the number and variety
of entities in the digital world means digital exchanges
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are subjective and situational, with entities behaving and
prioritising differently. It also means hard security, which
provides widespread authenticated access control, is now
unfeasible [1]. As mere participants, malicious entities can
infiltrate and cause disturbances in digital networks. Regulat-
ing behaviour to control the actions of entities and minimise
their negative impact — a softer form of security — is now
necessary to ensure digital communities are conducive [2].

Trust is a nuanced social concept instinctively used for
interaction [3], [4]. Reflecting these social properties of trust
into the digital world, allows digital entities to perceive others
and choose their interactions, as is done in the real world.
Therefore, trust, implemented as a soft security mechanism,
provides much needed social management. Nevertheless,
trust is hard to quantify; the perception mechanisms we use in
the physical and social world are not available to implement
in digital environments. Trust modelling is needed to mimic
the evaluation and decision-making instinctively performed
in real life. Efforts have been made in several digital environ-
ments and research continues to grow.
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There have been several related trust survey papers.
Shrikant and Sunilkumar performed a brief survey of trust
models for Vehicular Ad hoc Networks (VANET) [5]. Amore
comprehensive trust survey for a broader range of trust sce-
narios was proposed by Yan Zhen in her survey of trust for
Internet of Things (IoT) [6]. Ruan surveyed trust in a different
digital environment: online social communities [7].

Each of these surveys discussed the unique characteristics
of the digital environment. In the VANET and IoT survey,
the unique characteristics of the environment was used to
outline key, wide-ranging, sometimes practical objectives for
trust management. Yan Zhen went a step further, discussing
how each of these objectives had to be addressed in each of
their defined IoT layers. Ruan’s online social community trust
survey considered trust management objectives differently,
recognising that there were attacks specifically targeting trust
management systems, that needed to be addressed.

This analysis of environment for trust management is
valuable for the implementation of soft security mechanisms
for the real world. However, the digital world is broad and
consists of many digital environments that differ, even when
abstracted. Since each of these surveys only discussed one
type of digital environment, it is not sufficient for a represen-
tative analysis of the digital world.

One of the key purposes of a survey paper is to break-
down existing literature. Yan Zhen’s paper classified different
models based on their primary goal. Then, they evaluated the
models based on whether the models met the outlined trust
objectives for IoT. Ruan’s survey for online social communi-
ties surveyed different methods of understanding, computing,
and inferring trust. Then, Ruan evaluated each trust model
based on its vulnerability to common attacks that undermine
trust.

Categorising existing trust models into different methods
and goals and evaluating them is useful in figuring out the
appropriateness of different models. Existing survey papers
categorise the different models in meaningful ways and eval-
uate models frommeaningful perspectives. However, in these
papers, it is not always clear whether it is the approach, or the
methods typically used in each approach that is insufficient.
If the approach is insufficient, the approach should change.
If it is the method that is insufficient, methods can be tweaked
and improved upon.

There were some survey papers that took an attack and
security-oriented approach towards trust modelling. Wang’s
survey evaluated different service-types for their security
requirements [1]. Different attacks and some models that
addressed these attacks were discussed, though this discus-
sion was brief. Hoffman performed a much more compre-
hensive attack and defence survey for reputation systems [8].
In their survey, they presented a framework for decomposing
reputation systems. In this system, the different system com-
ponents and design choices that were vulnerable to attacks
were discussed. Lastly, which defence mechanisms were
most appropriate and how they could be incorporated into
reputation systems for attack-resilience was discussed.

In both the above surveys, discussions about different secu-
rity requirements are particularly valuable in understanding
the extent of the trust research problem. The evaluations
were also useful in giving an idea of appropriate model
design choices for attack-resilience. However, in both sur-
vey papers, the range of attacks considered were limited.
For a diverse environment such as the digital world, this
range may be insufficient for implementation of secure trust
management. Furthermore, more technical aspects of design
choices were rarely discussed or evaluated. Therefore, these
survey papers did not offer a theoretical, technical baseline
to expand on existing design choices to make them more
suitable for defence. Instead, they only considered the engi-
neering, system-design direction.

There were a few technical, method-oriented trust surveys.
Guo classified different trust computation methods based on
different design dimensions [9]. They summarised the advan-
tages and disadvantages of each dimension and highlighted
whether they were effective against malicious attacks, partic-
ularly for IoT systems. A machine learning-oriented survey
was carried out for trust management by Wang et al. [10].
Covering different digital environments and rating methods,
they discussed the machine learning methods that have been
employed in different models. Each of themodels were evalu-
ated based onwhether they could address the rubrics outlined.

Surveys that take the method-oriented approach are useful
because they offer insight into suitable technical methods
for trust management. However, Guo’s survey was brief and
machine learning is often not suitable in many digital envi-
ronments. Other technical methods may be more suitable,
but these were not discussed in Wang’s survey on machine
learning. A more detailed analysis of the theoretical and tech-
nical basis for trust modelling methods would be useful to the
field. Furthermore, while methods are important, the factors
considered are just as important. Many of these models did
not consider, in depth, the appropriateness of factors and
methods chosen to model specific factors. Hence, it is not
known whether existing methods of modelling factors are
appropriate and whether choice of factors is suitable for soft
security.

The survey on computational trust and reputation by Diego
discussed trust and reputation broadly from a computational,
theoretical perspective [11]. In their survey Diego provided
extensive definitions and concepts of trust and reputation.
Then, they created a schematic to assess computational trust
and reputation models. Finally, they analysed research direc-
tions taken by different models in the field. However, not all
surveys can be examined via rubrics due to different standards
and definitions in different models. Furthermore, the lack of
mathematical analysis did not offer insight into the best pos-
sible methods for individual digital environments. So, while
Diego’s survey is useful in examining state of the art in trust,
it does not give much insight into the direction in which trust
modelling should move. Furthermore, the theoretical basis of
models was rarely discussed which limits understanding of
the most fitting methods for trust modelling.
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In summary, the premises of many existing survey papers
do not address a broad enough scope for the digital world.
Moreover, they do not offer insights into appropriate factors,
modelling and evaluation methods that will be suitable for
the digital world. For methods, the gap in theoretical analysis
is particularly stark. Hence, it is still hard to find the best
mathematical tools for trust. To address these gaps, our survey
contributions are as follows:

1) We analyse digital world environments and abstract
them to obtain the different types of trust that they
require. Each type of trust has further interpretations
that influence how trust evaluation. To demonstrate our
interpretation, we give examples from the digital world.

2) Based on the several types of trust and using our under-
standing of each digital environments, we propose sets
of factors that can be used within the digital environ-
ment. These factors cover a broad range of types to offer
a holistic perspective on trust for better, well-rounded
evaluation.

3) We also use our understanding of digital environments
to come up with a broad checklist for different trust
models in different digital environments, along with
trust-management attacks. Each model can be evaluated
based on whether it can check of each of the boxes.
A model that can pass the criterion is not only secure,
but also usable.

4) Finally, we look at different modelling methods and how
they are used. By offering technical details alongside
relevant models, we offer insight into the usefulness and
theoretical suitability for different digital environments.

The rest of our survey paper will proceed as follows.
In Section I, we discuss key concepts relevant to trust and
trust modelling, even discussing some social theories and how
they relate to the digital world. In Section II, we outline the
different digital environments, specifying the unique chal-
lenges they each face. Using our analysis of the digital world,
we categorise trust and provide factors that best model each
type of trust in Section III. Next, in Section VI, we discuss
different mathematical methods, the models that have used
them and how they can be used in a general trust modelling
framework. Lastly, we conclude and propose some future
research directions in Section VII.

I. TRUST DEFINITIONS AND PROPERTIES
Trust is understood and used differently in different fields.
In the humanities, trust and society have long been of great
interest. In this section, we outline the most notable social
theories of trust while exploring how they each inform digital
trust. Then, we discuss digital trust, specifically its definition,
properties, and some crucial related concepts.

A. SOCIAL THEORIES AND THE DIGITAL WORLD
Social theories about trust were pioneered by Simmel who
contributed to the field in two ways. First, Simmel identified
the function of trust, describing it as a force that works for and

through human association, to bring society together [12],
[13]. Second, Simmel explained its source, describing trust as
a combination of inductive knowledge and faith [13]. Later,
Luhmann expanded on Simmel’s theoretical foundations.
Luhmann explained that performing any action, no matter
how basic, involved uncertainty and risk. Therefore, trust was
necessary to assume at least the more unlikely risks were
negligible, so individuals could function normally [4].

Luhmann’s and Simmel’s ideas have been adapted by trust
modelling. In the digital world, every exchange, no matter
how basic, carries some form of risk. Like in the real world,
trust is needed to simplify the substantial number of uncer-
tainties so that necessary digital tasks can be performed.
Digital trust uses evidence and implicit knowledge about the
digital environment for reasoning and decision-making, like
social trust, digital trust uses inductive knowledge and faith.
Finally, when a digital environment implements trust, agents
can utilise a basic social mechanism to interact. Trust is a
synthetic force even in digital communities.

Later, Bernard Barber described how expectations form the
foundation of interpersonal trust — expectations that social
mechanisms functioned properly and others were willing and
capable of fulfilling their roles [3]. This is highly relevant to
the digital world. In the digital world, the ability and will-
ingness to fulfil roles determines the success of interactions.
Therefore, incorporating willingness and capability in trust
modelling of digital agents would reflect the decision-making
patterns from the real world.

More modern examinations of trust emphasise its
ever-present necessity. Giddens discussed the emergence
of social systems in the modern world and how these
were founded on and helped sustained trust [14]. Francis
Fukuyama discussed the importance of trust for today’s
economic activities [15]. Most recently, Piotr Sztompka dis-
cussed trust from multiple perspectives [16]. These discus-
sions tell us that as we digitize more and more of our modern
social and economic transactions, social interpretations of
modern trust need to be reflected in its digital counterpart.

While modelling trust in the digital world may not directly
depend on social theories, observations about society are still
highly relevant to the network-like digital communities of
today. Bearing social theories in mind allows more realistic
trust modelling. Doing so, however, is challenging as the
humanities only describe trust in its qualitative, vague, and
complex form. Practical applications of trust require the dig-
ital world translate conceptual trust into a tangible quantity.
We do this in the next section by describing digital under-
standings towards trust.

B. DIGITAL TRUST
Digital agents exchange digital services and/or information,
during which honesty and capability is needed. Digital trust
is defined as a ‘‘measurable belief and/or confidence’’ that
is ‘‘accumulated from past experiences’’ and is an ‘‘expect-
ing value for the future’’ [17]. To explain, this means trust
quantifies one’s certainty via sources of evidence, such as
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FIGURE 1. Flow chart of trust factors, concepts and agents.

experience. Evidence is accumulated and formulated into a
prediction of future behaviour. In addition, there are several
properties that need to be considered.

Subjective Trust levels differ between people [17]. Some
digital entities are stricter, while others are laxer.
Trust dispensed depends on each agent’s own, poten-
tially unobservable, preferences. Trust values and
decision-boundary thresholds need to reflect individual
preferences, not a universal standard.

Context-dependent Trust levels also vary with context [17].
Different digital environments invite entities with differ-
ent, sometimesmalicious, intentions.Within each digital
environment, each interaction differs from the other in
truster, trustee, purpose and other, observable, or unob-
servable, context features. Therefore, even within the
most seemingly similar interactions, agents may behave
differently.

Dynamic Trust tends to wane with time [17], [18]. As time
passes, any existing knowledge becomes increasingly
outdated. So, expectations about an agent’s future
actions become increasingly uncertain. Without over-
compensating, trust models need to sufficiently reflect
the decay of trust with time.

Transitive Trust is transferrable [17]. When a trusted indi-
vidual offers recommendations, the truster’s preced-
ing trust in the recommender implies a trust in the
recommendation. The transitivity of trust drives the
formulation of indirect trust which will be discussed
in Section I-B3. While trust may be transferrable,
it should be noted that the extent of the transfer depends
on the digital environment and individual agent.

Asymmetric Trust formed between truster and trustee is
directed; the existence of trust in one direction does not
imply existence in the other [17]. Therefore, a truster’s
belief in a trustee may not be reciprocated to the same
degree or even at all. In some cases, asymmetry can be
very stark. Where there is an imbalance of authority,

certified authorities are likely more trustworthy but are
unlikely to dispense trust as easily.

Easy to lose but hard to gain In all digital environments,
caution is exercised to some extent, to ensure secu-
rity. This caution means agents tend to choose inter-
acting with trusted, familiar agents over strangers and
when trust is betrayed, it is usually forfeited relatively
quickly [18]. While greater caution naturally implies
greater security, it also implies fewer risks. So, some
opportunities with trustworthy individuals are naturally
lost. A balance is needed to ensure the digital environ-
ment is safe but functional.

Pervasive Social theories from Section I-A indicate that trust
is an inherent prerequisite to any interaction. Its neces-
sity makes it pervasive. As social communities move
into the digital realm, this pervasive nature is seen in
digital communities as well. Digital agents will find it
impossible to interact and function in the digital world,
without trusting other digital agents. So, like in the social
world, trust is pervasive.

In the next section, we define important terms and con-
cepts. Figure 1 gives a broad overview of these sub-concepts
associated with trust. Broadly, trust in a trustee is influenced
by two factors: direct and indirect trust. Direct trust models
personal knowledge about the trustee while indirect trust
models the opinions of others. Both offer perspectives to
form a more holistic view about the trustee. In the following
sections, we will go into detail about each component.

1) TRUST AGENTS
In trust management, the modelled entity determines what
is modelled. Typically, there are two entities of interest: the
truster (the individual trusting) and the trustee (the individual
being trusted) [17].

Seen in Figure 1, a truster dispenses trust to a trustee,
based on direct and indirect trust, about their trustworthi-
ness. For similar evidence, different trusters may decide to
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trust differently. Trust propensity can be understood as the
trustor’s generalized expectation about the trustworthiness of
trustees in general [17]. There are several influencing factors
such as the level of security or degree of urgency. If an
interaction were more important, for example when credit
card information is being exchanged, higher trustworthiness
would be needed from the trustee. If a particular service
is needed urgently, trusters may lower their expectations.
Trust propensity illustrates that trust is subjective. Contextual
features are necessary to capture this subjective. Direct and
indirect trust will be discussed in Sections I-B2 and I-B3.

Trust values assigned to trustees represent beliefs in the
trustee’s performance or behaviour. However, there may be
uncertainty associated with the assigned value. This could
be due to the reliability of evidence used; A trustee’s past
behaviour with the truster or with other recommenders does
not guarantee their future behaviour. It is also possible that
the amount of evidence is insufficient to be certain about the
trust value of a trustee. A series of ten interactions provide
greater certainty about trustworthiness than a single interac-
tion. No method of modelling can fully capture trust. Trust is
inherently subjective and vague. Representing trust quantita-
tively inevitably means missing some influencing variables.
Trust values are therefore all inherently uncertain.

2) DIRECT TRUST
Trust values derived solely from truster’s individual opinions
are represented by direct trust. Such individual opinions are
formulated from past experiences with the trustee which
give information about their intentions and capabilities thus
giving insight into their future actions. However, behaviour
can fluctuate, intentionally or otherwise. Such fluctuations
need to be accounted for in a non-misleading way using other
knowledge about the trustee [18]–[23].
Experience includes past interactions and behaviour of a

trustee [24]–[28]. Past interactions refer to direct interactions
that have occurred between the truster and trustee and remove
the need to rely on malicious recommenders. Typically, per-
formance evaluation depends on interaction ratings, which
are assumed to either be part of the environment or volun-
tarily provided by the truster [28]–[31]. Otherwise, binary
successful and unsuccessful interactions are also used [18],
[19], [27], [32], [33]. However, ratings may not be avail-
able in certain digital environments. Each interaction is also
contextually different and potentially irrelevant. Contextual
features help elaborate on the nature of the interaction so that
its relevance to present day can be found and its contribution
to direct trust adjusted.
Knowledge could refer to trustee features such as

their communities, capabilities, and profiles. For example,
the depth, detail, and content of a user’s profile could help
reveal their authenticity and intentions [24]. Device features,
such as computational capability, have also been factored
into evaluating trustworthiness of devices in networks [19].
Knowledge could also refer to contextual features. These
include the nature and purpose of the interaction which

indicate a trustee’s incentive to perform well. Naturally,
knowledge features need to be measurable, and any proxy
would encounter the same issue of uncertainty that trust
values do. Nevertheless, trustee features are a useful tool to
build a more holistic view of the trustee, their capabilities,
and intentions.

3) INDIRECT TRUST
For a truster to interact with an unfamiliar trustee, direct
interactions are insufficient to draw reliable conclusions.
Moreover, knowledge about trustees is not always available
or accurate. Indirect trust is an added perspective to consider
that instead, relies on the opinions of others.

Several trust models perform aggregate and propagate trust
values throughout digital networks [18], [28]–[31], [34], [35].
Between any two nodes, there may be one or more interme-
diate nodes in which a directed path can be formed, where
each node provides a trust value for the node after it. This
path can then become a chain of reliable recommenders that
results in input on the trustee, for the truster. This process
of forming a trust chain is called trust propagation. Given
that direct connections are not always available, this method
of gathering information from surrounding, trusted nodes
become useful to patch any insufficient information. After
propagating trust values, each path’s trust values are consoli-
dated. Trust aggregationmethods are needed here to consider
which paths are trustworthy and to combine the different
opinions.

Nevertheless, multiple opinions, numerous paths and the
existence cycles make trust propagation and aggregation
complex. When there are cycles or many paths, it becomes
difficult for computational methods, iterating through the
network and all paths, to converge. How to combine and infer
the opinions of other nodes also depends on the application
environment as recommenders may harbour ill-intention or
unintentionally propagate inaccurate trust values. Some trust
models have countered this by accounting for the quantity of
evidence [21], [29], [32] and reliability of the advisor [19],
[29]–[31], [36]. Path lengths are also a consideration as it is
generally believed that the longer the path length, the more
diluted the opinion [25], [28], [34], [35], [37].
Reputation is the general belief about a particular trustee.

As in the social world, reputation can be derived globally,
from all opinions [29] or from a select group of mutual
acquaintances [30]. While methods of digital reputation may
overlap with trust aggregation, rather than trust value infer-
ence, reputation is geared towards quantifying a node’s sur-
rounding structure and standing in a network — the more
qualitative aspects that influence general opinion. For exam-
ple, reputation covers network features such as clusters and
connection types. Clusters of direct connections could indi-
cate some latent connections between nodes; the large num-
ber of outgoing to incoming edges could indicate that an
entity is randomly forming connections. Therefore, reputa-
tion adds an important perspective to indirect trust.

VOLUME 9, 2021 106747



H. L. J. Ting et al.: On Trust and Trust Modeling for Future Fully-Connected Digital World

FIGURE 2. Outline of digital world applications and relationships.

II. DIGITAL ENVIRONMENTS IN THE DIGITAL WORLD
There are many diverse environments in the digi-
tal world, each with unique characteristics and needs.
Figure 2 illustrates the most representative digital envi-
ronments and highlights some possible intra and inter-
environment relationships.

There are many diverse types of relationships, each with
unique features, that occur within digital applications and
span across digital environments. Each digital environment
may also support interaction with non-digital entities from
the social world and physical environments. In this section,
we use Figure 2 to discuss the different digital environ-
ments, their relationships and the respective trust and security
challenges they face. This discussion will help inform the
requirements and criteria for environment-appropriate trust
management as well as the different types of trust, how to
model them and what factors to consider.

A. ON-TOP APPLICATIONS
On-Top Applications are upper layer type digital applications
such as social networks and e-commerce platforms. In such
free and open platforms, attackers can infiltrate and cause
disturbances that make the network unconducive, driving
users away [2].

For example, in social networks, content created or dis-
tributed could be misinformation [38], [39], spam [40] or
harassment [41]. Harassment is extremely detrimental to the
mental health of its victims. When spam is rampant on a
platform, users get plagued with large amounts of irrele-
vant information. The spread of misinformation on social

platforms may cause users to act on misinformation with
real-life repercussions. Harm generated in social networks
tend to be widespread as other users can absorb and continue
to propagate such harmful information. Individuals need not
even harbour malicious intent to help propagate damage.
Trust is needed to manage interactions (sharing, liking, dis-
liking, commenting and absorbing information) on social
networks to reduce the impact of any harmful behaviour.

Harmful connections between digital users may also be
formed. In some social networks, digital connections can
access and receive updates about each other’s content and per-
sonal information. Users may be granted privileges to directly
converse with their connections. However, registration on
most social networks do not require authentication so, agents
can fake profile details. Malicious users can fake profiles
to gain access to individual’s private information or receive
interacting privileges to harass or spread misinformation. It is
then important for social networks to prevent these malicious
relationships from being formed by deciding which users are
trustworthy and which are vulnerable.

There are similar content-trustworthiness concerns on
e-commerce platforms, particularly with reviews. Reviews
that are dishonest prevent sellers from earning from their
products and buyers from making good purchases. Such
reviews could be written by competing consumers [36] or
rival sellers to drive away competitors. While some reviews
are clearly dishonest, there are more complicated contexts,
with more grey areas. For example, reviewers may be dis-
gruntled and or may not care about the quality of the review,
resulting in partially true but potentially biased seller-ratings.
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Reviews, however, are still important to prevent malicious
and dishonest sellers from selling faulty or fake products.
Therefore, reviewing, as well as buying and selling of prod-
ucts need to be protected by a trust mechanism. Trust mea-
sures are needed to disallow users from unfairly rating sellers
or their products, without consequence. At the same time,
reviews and ratings are also a trust mechanism to allow buyers
and sellers to trust each other. In summary, trust management
is useful for accurately reflecting product, seller, and reviewer
quality, for all users to make good decisions.

Privacy is of particular concern in on top applications.
User data is distributed on a large scale in social networks
and often collected on e-commerce platforms. Distribution
and collection of personal information on a large scale puts
the digital environment at risk of violating the privacy of
users and potentially leaking confidential information. The
design of trust management systems thus needs to addition-
ally consider safeguarding the transfer of large-scale personal
data [17]. Concurrently, trust management schemes often rely
on identity and behavioural data of agents. Information used
for trust management must not infringe on user privacy and
maintain confidentiality, while also ensuring security.

With cross-application communication, the effects of mali-
cious attacks on social networks or e-commerce environ-
ments can extend to affect the functioning of and users in
other networks. For example, in Figure 2 a user in some social
network could communicate false information to someone in
a smart city environment, which then negatively affects the
functioning of smart cities.

B. CELLULAR, NEXT-GENERATION IP AND PEER-TO-PEER
NETWORKS
Cellular, next-Generation IP and peer-to-peer Networks are
some examples of communication networks supported by
basic communication infrastructures. In such networks, com-
munication may be less subjective and nuanced. However,
other challenges exist. Devices vary in capability and service
flows differ between applications.

A single owner could have their devices communicate with
each other. For example, in Figure 2, a user could trans-
fer video and audio files from their smart phone to their
computer. During communication, each device needs to be
sure that the data transferred has not been compromised.
Uncompromised means the owner of the device indeed has
control, has authorised the transfer of information and the
information is not, by some mistake of the owner, harmful.

Data from one owner’s device can also be transferred to
that of another owner. In such situations, the devices have
a different relationship than co-owner devices. Data can be
sent by malicious attackers to negatively impact some unsus-
pecting owner. Such data needs to be differentiated from
intentionally transferred data. Even recognised devices could
also erroneously or maliciously send corrupted files. Trust
management can consider the variety of application scenar-
ios and adjust trust values to different needs for different
situations.

In the above heterogenous networks, devices from a wide
spectrum of capabilities can communicate. For example,
in Figure 2, data is transferred between a computer and a
smart watch, a smart watch and a smart phone. Trust man-
agement is needed to prevent the spread of potentially com-
promised data, regardless of the capabilities of the weakest
device — the smartwatch. Trust management on networks
need to be able to recognise malicious data and prevent its
distribution, even if some devices involved are incapable of
running large scale, computationally heavy algorithms [17].

C. INTERNET OF THINGS
Internet of Things (IoT) are networks of physical objects,
integrated into information networks, to provide intelligent
services. Physical objects include sensors, mobile devices,
and monitors. They extract information from their surround-
ing users and environment [6]. In Figure 2, there are three
primary digital environments: wireless sensor networks, ver-
tical industries, and smart home ecosystems.

In IoT digital environments, devices communicate within
networks. In a smart-home environment, air-conditioners,
refrigerators, and other devices transfer data to facilitate intel-
ligent home services. In vertical industries, special industrial
equipment automatically communicates with each other to
aid business operations. In wireless sensor networks, smart
and non-smart devices communicate with each other to
transfer collected data. Components within a network could
be compromised when attackers launch malicious code to
execute on IoT devices [42] or when devices have been
physically tampered with, intentionally by an attacker or
unintentionally due to environmental conditions. Primitive
devices may be incompatible with newer technology and
malfunction.

IoT networks are particularly prone to such attacks and
accidental errors. In outdoor vertical industries and wireless
sensor networks, IoT devices communicate with many device
types, the surroundings, and personnel. When collecting data
from the environment, its inherently complex nature makes
it easy for devices to take erroneous readings. When devices
communicate, data types and transfer modes may be incom-
patible and data packets are lost. Furthermore, exposure to
outside persons makes it possible that the devices could be
physically moved, or the data intercepted by malicious enti-
ties [43]. Trust is needed to (a) identify when a IoT device
within a network has been compromised and (b) when infor-
mation transmitted between devices is erroneous or mali-
cious, due to for example, spoofing attacks [42].

Devices can also communicate outside their network via
telecommunication infrastructures. Data is periodically trans-
mitted from IoT networks to user devices so that users can
for example, monitor their smart home ecosystems. Any
attacks on such IoT networks can have several repercussions.
If data transfer to outside networks is not well protected,
wormhole attacks could steal personal information and device
passwords [42]. When communicating with telecommuni-
cation infrastructure, denial of service attacks could disable
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IoT networks or prevent their access to larger networks
for necessary services [42]. Trust is needed for communi-
cation with outside devices to verify that devices will not
steal information, reroute data packets or damage network
functionality.

Challenges from managing different device types, men-
tioned in Section II-B, are particularly evident in IoT [17],
[43]. Smarter, more capable devices consistently need to
communicate with devices that are not primarily built to pro-
cess data, such as sensors or refrigerators; Inter-environment
communication means transmitted data tends to have largely
different characteristics and requirements [43]. Trust man-
agement needs to consider such data compatibility issues
to determine if a device is trustworthy by, for exam-
ple, considering the device’s capability of fending off
attacks. At the same time, management schemes also
need to ensure low computational overhead for partic-
ularly resource constrained devices like those seen in
IoT networks [17].

Furthermore, the integration of inherently different phys-
ical, social and digital worlds pose unique security chal-
lenges [17]. Exposure to surroundings means IoT devices are
more vulnerable to tampering, accidental and human errors.
How IoT devices perceive information and whether data col-
lected is reliable needs to be considered for trust. This means
that besides malicious attackers compromising IoT and other
digital devices, the presence of unreliable instructions from
the social world and inaccurate data from the physical world
also need to be considered.

One issue of great interest is the protection of personal
data collected by IoT networks. In smart home ecosystems
especially, IoT networks have gained entry to people’s private
homes and receive data from personal devices and informa-
tion networks. Personal information needs to be kept confi-
dential and privacy preserved, especially because information
is widely distributed to other IoT networks and telecommu-
nication infrastructures [43]. Simpler IoT devices, however,
may not have the means to fend off against malicious inter-
ception of outgoing and incoming personal data. Entire IoT
networks are then made vulnerable to privacy attacks. Trust
management schemes therefore data flow. Simultaneously,
trust management in IoT devices will require data about indi-
viduals, their profiles, and their actions. Trust management
schemes need to consider from which devices data is col-
lected, how it is collected and how it is transferred. Excessive
collection of information will invade user privacy and make
potential leaks much more damaging.

Challenges in trust management for IoT networks are wide
ranging. Besides identifying damaging data packets, trust for
IoT needs to consider device constraints and differences in
data type; data collection and distribution within IoT net-
works and the trust management need to be compliant with
confidentiality and privacy standards. At the same time, for a
trust system to be functional, data packets still need to reach
their relevant destinations to ensure the functioning of these
IoT digital environments [6].

D. HUMAN MACHINE TRUST
Human-machine collaboration, where people interact with
artificial intelligence and smart devices, is an emerging digital
environment in trust. It has garnered interest for its useful-
ness in assisting decision-making and automating tasks and
has already been employed in medicine, education, indus-
try, and space exploration [44]. In human-machine collab-
oration, artificial intelligence in smart devices interact with
people and the environment to take or propose appropriate
actions [45], [46].

However, artificial intelligence is not always accurate and
may make errors. Due to these errors, users may be tempted
to distrust the machine and constantly override it, rendering
the machine useless [45]. For a person to rely on machines
and artificial intelligence, trust is needed. Trust allows people
using machines to know when and under which conditions
are machines trustworthy. This then allows the benefits from
incorporating them into industries and service provision to be
realised.

III. TRUST TYPES FOR THE DIGITAL WORLD
In Section II, digital environments, their need for trust and
each of the unique sets of challenges they faced were dis-
cussed. Now, we consider how to formulate trust conceptually
to best target each environment. By categorising trust into
different types, we consider different scenarios, agent rela-
tionships and propose relevant factors. Figure 3 summarises
the different types of trust with examples of their application
scenarios and digital relationships.

A. PEOPLE TO PEOPLE TRUST
People to people trust is formed between any two people
with some relationship. In such relationships, people may
fake their identities, harass others, spread misinformation,
spam, commit fraud, leak information, or infringe on privacy.
With reference to Figure 3, to verify that trustees will not
commit any of these acts, trusters need to trust that a person
is inherently good or trust that a person will not do harm.
This interpretation helps formulate factors that influence trust
between people. They are outlined in Figure 4 along with the
relevant security issues.

1) TRUST IN PERSON’s INHERENT GOODNESS
People can trust that a person is inherently good. In this kind
of person-centric trust, a truster believes that the identity and
features a person presents themselves under is truthful and
that they are inherently honest. In Figure 2 and Section II-A,
we described how users makes ‘‘friends’’. To befriend others,
users on online social networks need to trust the authenticity
and features of a profile. On online job advertising platforms,
employers and potential hires connect based on user profiles,
features and identities. In such environments, trusters utilise
general understandings to perceive trustees and form trust.

Knowledge about a trustee’s traits and features describes
them and who they are. This perception of trustees, combined
with generalised expectations of people with similar traits,
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FIGURE 3. Organizational chart of different types of trust, how they are observed and examples.

FIGURE 4. Overview of people to people trust factors and security issues.

help trusters understand whether the truster is inherently
trustworthy.
Person’s Profile On social networks, user profiles are

widely available and can contain information such as
a user’s age, location, and write-ups about themselves.
The quality of a profile can be very telling. Spam
accounts lack incentive to invest much effort into pro-
file creation so, the apparent amount of effort helps
differentiate such accounts [24]. Profiles with many

inconsistencies, suggest users are lying and dishonest.
Profile features also partially describe trustees. Under-
standing trustee’s personality and abilities gives insight
into their trustworthiness.

Person’s Communities Another way to describe a trustee is
to use their communities and interests. Similar users are
more likely to consider each other trustworthy [25], [47].
Knowing a trustee’s communities and interests tells us
which topics trustees are invested in, allowing them to
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be paired with more like-minded trusters. For example,
on social networks, if two users belong to the same
networking group, they are more likely to share the same
opinion. Therefore, they are more likely to find each
other trustworthy.

Person’s Qualifications In some cases, qualifications are
relevant. A person’s qualifications determines if a suit-
able connection can be formed for hiring on online job
markets. On e-commerce sites, a reviewer can be par-
ticularly qualified to recommend certain products. With
these qualifications, users directly perceive trustworthi-
ness based on inherent characteristics. It should be noted
that qualifications can be inherited from the real world,
but they can also be implemented by trust systems based
on environment-specific metrics.

To understand who a person is, trusters can also rely on
past experiences with trustees. With experiences, trusters can
gather evidence about a trustee’s personality and reliability.
This understanding of the trustee’s personality directly deter-
mines their trustworthiness.

Person’s Activity Level Activity levels indicate the level of
investment in a digital community. Trustees that par-
ticipate less, are less invested. A lack of emotional
investment suggests users care less, so their activity
could be more error prone. Activity patterns in different
communities also inform which interests trustees are
invested. Generalized expectations about people with
certain interests form perceptions of trustees to different
trusters.

Person’s Interests Another way to describe personality is
through interests. The topics that trustees respond to are
an indicator of their level of interest in different topics.
User interest can differentiate between trustworthy and
untrustworthy trustees for specific trusters. For example,
if users have a similar pattern of reviewing products on
online markets or respond similarly to content on social
networking sites, they likely have similar interests and
so will share similar opinions [47].

Person’s Vulnerability Trustees that are more exposed to
or more trusting of damaging content are considered
vulnerable. More vulnerable trustees have a higher like-
lihood of distributing and spreading harmful content. So,
content passing through or originating from vulnerable
nodes should be considered less trustworthy. At the
same time, reducing a gullible node’s trust propensity
when they are trusters, reduces their exposure to dam-
aging content. As trustees, they are then less vulnerable,
thus they are more trustworthy. To measure vulnerabil-
ity, the degree of absorption of malicious content can
be measured, normalized or multiplied by a trustee’s
exposure.

Reputation factors quantify the opinions that other users
have towards the trustee. With the opinions of others, trusters
can gain a better insight into the trustee’s personality, partic-
ularly their behaviour with other people other than the truster

themselves. This patches any information the truster does not
know about a trustee’s personality.
Person’s Credibility A user that is credible is a user with

a good global reputation. Being credible can be mea-
sured by the structure and distributions of trust values
surrounding a node. While specific methods to measure
credibility may coincide with trust aggregation [25],
[27], [28], [34], [35], [37], [47], global network-based
indicators such as popularity or authority score, adapted
from PageRank, have also been used [24], [25], [47],
[48]. Rather than mere aggregation, PageRank-inspired
popularity indicators consider the number and quality of
incoming edges to measure credibility. Credibility thus
ranks a user in relation to the entire network.

Connections Connections measure reputation using a simi-
lar underlying concept as credibility but restricted more
locally. Connections of trustees and trusters are both
of interest here. Connections a truster has is impor-
tant because they form a group of people the truster
believes. Therefore, a truster’s community’s opinion
about a trustee would be important in helping a truster
evaluate trustworthiness. A trustee’s connections are
also important because beliefs about a trustee’s commu-
nity are generalized to the trustee themselves.

Centrality Between a truster and a trustee, centrality is the
degree to which a truster’s network is central to the
trustee or vice versa. For certain digital environments,
if a truster’s network is central to a trustee’s, this sug-
gests the trustee is important to the truster therefore,
the trustee is more likely to behave favourably as their
attention is less divided. Vice versa, if a trustee’s net-
work is central to the truster’s, this could, in some
digital environments, suggest that the trustee is already
well-connected with people the truster is familiar with.
Therefore, the trustee is already quite reputable amongst
the truster’s circle of friends.

2) TRUST IN PERSON’s ACTIONS
Trusting that a person is inherently good may be too naïve in
some cases. Sometimes, trust can only extend to believing
that a person’s current and future actions are not harmful.
We have described content-type interactions between people
in Figure 2 and Section II-A. On e-commerce platforms,
users can evaluate reviews and decide that reviewers that have
no incentive to leave harmful reviews. In social networking,
users evaluate content to determine that content creators are
objective. In both these cases, trusters interact with trustees
because they believe trustees and their behaviour is not
harmful.

To determine if a trustee is behaving in a non-harmful,
objective, and fair manner, we require descriptive factors
about a trustee’s actions and how these related to a trustee’s
future trustworthiness. They are knowledge-type factors that
describe a trustee’s actions. In addition, we can also con-
sider knowledge about trusters and their capacity to trust the
actions of trustees.

106752 VOLUME 9, 2021



H. L. J. Ting et al.: On Trust and Trust Modeling for Future Fully-Connected Digital World

Content Quality A trustworthy user’s content reflects their
quality. Quality can mean several things. First, it could
mean factual accuracy. Comparing presented facts with
known facts and counting the number of inaccuracies,
we can determine if a user is objectively wrong. This
method, however, naïvely assumes no grey areas. Sec-
ond, quality could refer to presentation. In word-heavy
digital communities, grammar, choice of words and
punctuation reveal the amount of effort invested and
emotions in a piece of writing. An excessively emotional
piece could be biased, and writing riddled with gram-
matical errors and vulgarities are presentation-wise, like
harmful content such as spam and harassment. In this
sense, quality of presentation indicates content trustwor-
thiness.

Content Category People’s taste and preferences are
indicative of their biases. The categories of content
they typically engage with is indicative of this taste
and preference. Understanding these potential biases,
helps form an expectation of the trustee. We can then
infer their potential biases in future related content.
Then, without having to deterministically process any
information, trusters can exercise caution with certain
trustees about specific topics.

Security requirement Determining the trustworthiness of
content on online social communities need not rely
only on the specific trustee’s activity. Online social
communities can differ in policy and purpose, thereby
attracting different kinds of people. For example, some
online communities have stronger anonymity policies,
reducing accountability and allowing users to be more
irresponsible. Therefore, certain communities may see
higher rates of malicious activity. Users in such com-
munities need to exercise greater caution so, trust values
should be universally lowered for tighter security.

Interaction importance Different users use digital services
for different reasons. Some users may perform impor-
tant transactions that have a large potential loss. For
example, a user that is buying a big-ticket item on an
online marketplace should be wearier of dubious sellers
and dishonest recommendations than if they were buy-
ing something much cheaper. During such interactions,
users need to be less trusting, meaning that trust values
need to be lowered to fit the requirements of each inter-
action.

To evaluate if a trustee will or will not do harm, we can
look at their past behaviour as a sign of their tendency to
cause harm. A trustee that has been harmful in the past, has
shown that they cannot be trusted to behave well in the future.
To evaluate their potential future harmful actions, we discuss
experience type factors.

Content Biases In online social communities, users lack
incentive to be objective. For example, e-commerce
reviewers who have had bad experiences may be
inclined to give an exceptionally bad score, even if their

experience was not objectively as bad. The pattern of
behaviour, choice of words and manner of writing on
online digital communities give an indication if a user
tends to favour certain positions [47]. If a trustee tends to
overreact, they are more likely biased so, they are likely
less trustworthy.

Behaviour Consistency Consistency in a person’s content
reflects whether they behave in a consistent manner and
thus, whether they can be trusted over time. A user that
is more consistently good, provides a larger proportion
of positive evidence, meaning their future behaviour
is more certainly reliable. There are no instances of
negative behaviour that may breed uncertainty in pos-
itive judgements. Alternatively, consistency can refer
to informational consistency. If a user tends to con-
tradict themselves within or between activities, this
indicates the user is logically inconsistent, so they are
untrustworthy.

Behaviour Performance While consistency determines if
evidence about a trustworthy can give a certain outcome,
the performance of a trustee determines what the out-
come is. Obviously, if a trustee performs well, this per-
formance supports that they are trustworthy. Otherwise,
a user is untrustworthy. The magnitude of performance
is particularly telling in people to people trust. Good
content requires more time and effort. A more invested
trustee is more trustworthy.

Finally, we use the opinions of others towards the action
of a trustee to determine if the trustee’s actions are harmful.
By looking at how reputable the actions of a trustee are,
we can determine if a trustee is likely to do be harmful. These
are reputation factors.
Content Response Response to content is made up of reac-

tion mechanisms such as liking, disliking, commenting
and the pattern of propagation throughout the net-
work. Such a method of evaluating content is bene-
ficial as it borrows from the opinions of real people,
who are better able to perceive nuances. As individu-
als respond, the manner of distribution, who the con-
tent is propagated to and who propagates the content,
is recorded. Based on the similarity of distribution pat-
terns, the nature of content can be inferred. By proxy,
we can determine if the creator is trustworthy.

Content Source When content is distributed, the original
source of information heavily implies the content’s
trustworthiness. If the originator of information is
untrustworthy, it becomes highly likely the content is
untrustworthy. That the trustee propagated untrustwor-
thy information also reflects poorly on them.

Supporting Evidence Typically, to evaluate the factual
accuracy of some piece of information, people will
compare the information to sources they consider trust-
worthy. In trust, content can be directly compared to
other sources. Ideally, these sources should be for-
mal or highly regarded. Other sources of information
act as supporting or disproving testimonies. The more
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FIGURE 5. Overview of people to thing trust factors and security issues.

independent, trustworthy supporting testimonies there
are, the more likely content is trustworthy.

B. PEOPLE TO THING TRUST
People to thing trust is established from people to
non-sentient entities, such as devices, products, or infor-
mation. People to thing trust crosses the divide between
social and digital worlds; People trusters use social trust
mechanisms to perceive trustee objects using only their char-
acteristics presented within the digital world. In this dual-
world, devices can leak information or infringe on the privacy
of people; products can be fraudulent; devices can provide
wrong judgements in human-machine interactions. To trust
things, people can use their digital world perception of the
object or their real, social world perception associated to the
object to evaluate if the object is trustworthy. We use this
understanding to propose some factors for modelling. These
are outlined in Figure 5.

1) TRUST BASED ON DIGITAL WORLD PERCEPTION
Using their perception of the object in the digital envi-
ronment, trusters can determine if it is of good quality.
In Figure 2, we illustrated that a buyer in e-commercemarkets
needs to evaluate product trustworthiness. To do so, buy-
ers evaluate the product based on its digital world charac-
teristics. They may consider product features, brand, build
and materials to figure out product quality; Users may use
price to decide if a product is ‘‘too good to be true’’ or not
worth the price, making purchase decisions based on cost.
In peer-to-peer networks or smart home ecosystems, people
interact with devices. Users may allow devices with strong
defence capability to decide whether to accept incoming data.

These demonstrate that people can trust in things using only
the object’s digital characteristics.

Knowledge factors can tell us if an object in the digital
world have characteristics that make them trustworthy. This
is also influenced by other characteristics of the digital world
that may influence people’s perception of the digital object.

Security measures Security measures refer to mechanisms
deployed to fight malicious attacks. Measures whether
deployed by trusters or trustees are both important.
Trusters with capable security mechanisms can exercise
less caution. In cellular, next-Generation IP and peer-
to-peer networks (discussed in Section II-B), devices
that have anti-virus software installed can trust other
devices more readily. In e-commerce networks, a buyer
can readily purchase products if they have buyer’s
insurance policies. Trustee’s security measures are also
important. Trustees that are not well-protected lack
capability; capability in the sense that they are less able
to provide non-harmful services to trusters with high
success rate. For example, a device with no anti-virus
software is more likely to transfer compromised files.
Trustee devices should be less inclined to receive files
from poorly protected devices.

Thing’s attributes Obviously, thing features are important
to determine trustworthiness. Trustworthiness entails
that the thing can function as needed, without causing
harm. Features considered differ depending on environ-
ment. In people to device environments, we can consider
a device’s build, brand, and computational capability to
determine if they are truly capable of performing neces-
sary tasks, without corrupting files.Whether a product is
trustworthy, is determined by their quality. In people to
product digital environments, the amount of information
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available about the product, product-specific specifica-
tions, pictures, and materials give indication of authen-
ticity and reliability.

Security requirement Since people to thing interactions
can have very real implications, users generally have
scenario-specific requirements to ensure an ideal set of
outcomes for themselves. These requirements determine
trust propensity. If users are engaging in a high-risk or
high-cost activity, like exchanging substantial amounts
of personal information or buying an expensive product,
they are more cautious and less trusting. In scenarios
where digital environments are ridden with dishonest
users, trusters should trust fewer trustees to reduce their
likelihood of meeting malicious agents. In this case,
security requirements are higher so, trust propensity is
lower.

Experience about digital world activity tends to apply more
to device behaviour. Understanding the past behaviour of a
device helps formulate a person’s perception of how trust-
worthy and reliable a device is in the digital world. Digital
devices that do not perform well are likely old, too primitive
or compromised.
Defence success rate Devices with good defence success

rate is resistant to malicious attacks. Being resistant
means, it is unlikely the device has been compro-
mised before. Therefore, when interacting with the
device, users can be more confident there is no exist-
ing malicious software in the device that can steal
information or cause harm. A good defence rate is
also evidence that a device can deliver under mali-
cious threat. Therefore, when interacting, users can be
more confident the interaction will be successful even
if there were any attempts at a malicious attack on the
device.

Past digital performance Past digital performance of a
device gives an indication of a device’s ability to per-
form tasks and any potential malicious intent. Devices
with good past digital performance means they have
the computational capability to handle their assigned
tasks, thus far. That a device can fully provide necessary
services also implies it has not been compromised by
malicious attackers to cause disturbances in the network.
Therefore, good digital performance is indication the
device is trustworthy.

Activity abnormality Finally, without external intercep-
tion, devices should typically function as per normal.
Abnormal behaviour in devices is indication that devices
have been compromised. Compromised devices are
more likely to cause harm and fail at providing services.
Therefore, they should be considered less trustworthy
until they are fixed. Abnormal behaviour can be mea-
sured by deviation in the device’s behaviour fromwhat is
normal. For example, if an owner notices unusual power
consumption, this could mean the existence of added
malicious background software, especially if nothing
was done to trigger such power consumption.

Lastly, we can use the opinions of other devices to adjust
our perception of an object as a digital world entity. These
opinions tell us which devices regard the device in what way.
Based on other device perception, people can determine if a
device is likely to have been compromised.

Recommendations Recommendations are useful in people
to thing digital environments where users are not always
familiar with all the devices and products they interact
with. Having recommendations, users are better able to
determine if a product or device is trustworthy based
on the opinions of others. For example, in e-commerce
markets, users might not buy the same product multiple
times. Recommendations by other users about products
then help users make better decisions about which prod-
ucts are more reliable. This has been discussed in detail
in Section III-A.

Digital connections Devices and products can possess con-
nections to other devices and products. These connec-
tions allow one to infer about the trustworthiness of the
target trustee. For example, if a product is associated -
by seller, brand, manufacturer, or any other feature — to
a disreputable product, buyers should be less inclined to
buy the target product less they possess the same issues
as their connections. A device that has connected with
compromised devices have been exposed to malicious
or damaged devices. Therefore, there is a higher chance
the target trustee device has been compromised. Again,
users should be less inclined to trust target trustees with
disreputable connections.

2) TRUST IN THING BASED ON SOCIAL WORLD RELATION
It is not always possible to evaluate an object based purely on
its characteristics. However, there are often people intermedi-
aries between trustees (things) and trusters (people). Trust in
a thing can be inherited from existing trust in people. Exam-
ples are illustrated in Figure 2. On e-commerce platforms,
the quality of a product cannot be fully verified. However,
users can still choose to buy products anyway because a seller
can be trusted to deliver authentic, true-to-picture and decent
quality products. In the case of smart homes, guest devices
can connect to home networks if the guest device owner and
homeowner know each other. In both these cases, people to
thing trust can be established because trusters have some form
of guarantee. In the case of smart homes, this guarantee is not
observable in the digital world.

Social world relationships influence people’s decisions.
However, social variables are latent from the digital perspec-
tive. We can use knowledge factors to understand device
owners and their social world relationships.

Interaction purpose Interactions are generally undertaken
with some goal in mind. Interaction goals aid trust
modelling in two ways. A trustee’s goal when taking
part in interactions tell us how motivated they are to
perform well. If users stand to benefit from an inter-
action, they are more likely to cooperate. For example,

VOLUME 9, 2021 106755



H. L. J. Ting et al.: On Trust and Trust Modeling for Future Fully-Connected Digital World

trustee device owners have more incentive to behave
cooperatively if the interactions will significantly up the
reputation score of the trustee. Therefore, the probabil-
ity of success increases. Second, purpose of interaction
informs the level of access trustees should have access
to. For example, to provide services, devices typically
only require access to some, and not all, personal infor-
mation. If devices request for say, full access, this should
arouse suspicions. Otherwise, understanding the pur-
pose of any interaction helps tailor the trust threshold for
decision-making.

Transaction risk Some interactions carry more risk than
others. In high-risk transactions, trusters should exer-
cise more caution. For example, when buying expensive
products online, trusters should exercise more caution in
ensuring the quality of the product and the seller honesty
before putting money down. Trust evaluation needs to be
more stringent in high-risk cases to reduce the odds of
large losses.

Real-life relationships Since social world relationships
heavily influence people’s trust in related devices,
the existence and nature of real-life relationships natu-
rally influence whether a person truster trusts a device
owner. For example, when a device requests to connect
to the network in a person’s smart home ecosystem,
it is ill-advised to simply accept a stranger device’s
request. However, if the two owners know each other,
even if digitally, the truster is a stranger to the device,
real-life relationships between the device owner and
truster allows a trust relationship to be formed. Such
real-life relationships should be considered wherever
possible as they are influencing variables that cannot be
seen in the digital world.

Like in people to people trust, experiences with social
intermediaries are evidence of their trustworthiness. This
trustworthiness is inherited by the associated thing as good
experience with the social intermediary offers guarantee
when interacting with the associated thing.
Real-life Performance Based on past experiences with an

associated person, trustee things can inherit trustworthi-
ness from their associated social world agents. Being
confident in associated entities offers greater guarantee
for success when interacting with the thing. For exam-
ple, in e-commerce networks, trusters may be familiar
with a particular seller, knowing the seller often sells
high-quality and authentic products. They can use this
familiarity to evaluate product reliability, even if it can-
not be directly verified.

Real-life Consistency Consistency is relevant to experi-
ences with intermediaries. If a trustee intermediary
exhibits good but inconsistent performance, there is a
greater level of uncertainty associated with their trust-
worthiness. Therefore, less trust should be assigned to
the intermediary so, less trust is passed on to the object.
This can be seen in online marketplaces. If a seller is
inconsistent in delivering good products, trusters will be

more cautious about buying from them, less the truster
is unlucky and the seller fails to perform. Decisions to
trust the product by buying it are then less likely.

Finally, products and devices are made in the context of
the real, social world. Within the social world, things have
attributes with social reputations tied to them. Using these
related reputation factors, thing trustworthiness can be deter-
mined. We discuss them here.

Social authority If an object’s intermediary has a good rep-
utation, their increased social authority implies they are
more trustworthy. This trustworthiness is inherited by
the truster. For example, if a device owner is a verified
government personnel, by formal standards, it is likely
devices deployed by such personnel are more trustwor-
thy. Therefore, even if the device is new to the network,
they inherit social authority to become more powerful
within the digital network.

Brand/Manufacturer popularity Trustee things may also
possess attributes related to the social world. Trusters
use their generalized expectations to form an under-
standing of the thing based on its attributes. For devices
or products, the most relevant attribute would be brand
or manufacturing popularity. People form expectations
about brands and manufacturers based on hearsay and
their own experiences. If a brand is known for produc-
ing high quality goods, so long as the goods are truly
from the seller, trusters are more likely to purchase the
branded goods as quality is, to the truster, guaranteed.
If devices produced by certain manufacturers are known
for being secure, users may use this understanding to
choose devices by such manufacturers. Associated real
world understandings of intermediaries thus influence
object trustworthiness.

C. THING TO PEOPLE TRUST
In an increasingly digital society, people become agents in
device networks. Devices receive information— instructions
or data — from people and must make trustworthiness evalu-
ations about whether the information is harmful i.e., whether
it is misinformation, virus, or spam. Devices also must deter-
mine if users will infringe on privacy by excessively accessing
private information stored on the device or leaking any infor-
mation they access. It should be noted that devices are less
able to perceive nuance and cannot rely on intuitive, social
notions of trust. However, users still leave a digital trail in
device networks with trends and patterns. Devices can use
this to determine if people are trustworthy in that they are
authorised and if they are causing or mean to cause harm.
Figure 6 gives an overview of factors that we considered
based on these two perspectives along with the above security
issues.

1) TRUST IN THE PERSON’s AUTHORISATION
First, devices need to verify if users are authorised.
In Section II-B and Figure 2, we discussed that owners have
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FIGURE 6. Overview of thing to people trust factors and security issues.

usage relationships with their devices, while in vertical indus-
tries, personnel interact with devices. Only non-malicious and
real users should be able to pass authentication to gain access.
However, passwords can be leaked, and users can become
malicious. Trust management can help devices detect if a user
is malicious in nature. If a user has a malicious identity, they
should not be given access.

Knowledge factors elaborate on a truster’s identity. Using
this understanding of the trustee’s identity, devices can iden-
tify if the features of the user are unusual or harmful. Unusual
or harmful behaviour indicates the user is in fact, not autho-
rised to use the device.

Trustee authentication A first obvious step to determine
trustworthiness is to require authentication. If a user
cannot pass authentication, they are not authorised to
access the device because their identity is inauthentic,
or they have malicious intentions.

Trustee features Trustee features possessed by device users
can also give clues about whether a user is unreliable.
These are features tied to the identity of the user. For
example, if personnel in a vertical industry network
happens to have low rank within the plant but is request-
ing a unusually high level of access, this could suggest
the person trustee has gained access to the device for
malicious purposes.

Every user has identifying features in the way they use
devices and what information they store. Experience factors
determine if identifying features follow an unusual pattern.

Profile inconsistency A user typically has identity-related
features stored within a device. However, through usage,
additional data is collected. This data could be inconsis-
tent with previously stored data. Confirmation would be
useful here to determine if the inconsistency was mali-
cious or accidental or well-intentioned. If a user’s iden-
tifying features are inconsistent with before, the same
level of authorisation cannot be granted less the user has
changed.

Reputation factors describe how people trustees are con-
nected to the rest of the digital world. These connections
inform if the trustee has a malicious identity in the digital
world based on their connections with other devices in the
network.

Trustee authority Trustee authority is important in digi-
tal environments like vertical industries where multiple
users may access a single device. Trustees of different
authority level have different levels of access within a
network. A trustee that attempts to access a level beyond
their workplace authority should be flagged so their
behaviour can be accounted for with other potentially
suspicious behaviour.

Connections Trustees are socially connected in the real
world. These connections may be used to authorise
access to devices. For example, a friendmay unlock their
personal devices for their friends to use temporarily;
Low level personnel may be given access to devices
temporarily by other workers. These situations should
be accounted for to avoid wrongfully writing users as
untrustworthy.

2) TRUST IN THE PERSON’s BEHAVIOUR
Devices should trust users based on their behaviour, espe-
cially the typicality of behaviour and harmfulness of actions.
For example, in vertical industries illustrated in Figure 2,
devices can receive malicious instructions to perform harmful
actions, or they can receive harmful or incorrect data. Devices
that receive malicious instructions could damage infrastruc-
ture; misinformation could affect device’s computation and
output; harmful information, like spam, jams the network
and service-systems. The more harmful a user’s actions are,
the less likely they are trustworthy. It is possible the current
user is not the real device owner, has been given access but has
malicious intentions or the device owner is making a mistake.
Devices should defer from executing unusual instructions
until further confirmation.
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Devices can determine if user’s behaviour is atypical or
harmful using knowledge factors. Knowledge factors aid
experience evaluation to enhance trustworthiness evaluation.
Understanding the environment and activities undertaken in
the environment, give insight into how potential harmful or
atypical behavioural patterns of trustees are.

Activity risks When determining if the actions taken by
a trustee are trustworthy, it is important to consider
the level of concern required. Some actions have big-
ger impact than others. For example, in smart agri-
culture, if an exceptionally large amount of water
is to be released into the plantation, this presents a
large risk of flooding the entire plantation and dam-
aging all the plants. With such extreme and harmful
actions, greater caution is required so the device should
require additional verification to make sure the action is
well-intentioned or defer the action completely.

Security requirements In some digital environments,
the general level of trustworthiness could be very low.
The sample space of users has a larger number of
untrustworthy users, so the probability of encountering
an untrustworthy user is higher. Higher security require-
ments should be standard for all trustees to reduce the
chances of an untrustworthy person gaining access to
the device network.

Trust in a user’s behaviour requires evaluation of their
activity. Experience factors are necessary here to evaluate
based on experience if a user will or is behaving harmfully
or unusually. This helps verify their identity and that their
identity is non-malicious.

Behavioural anomaly Behavioural anomaly is an important
factor to consider. Some devices store activity history
and can track behavioural patterns of users. If a user
begins to exhibit anomalous behaviour, this suggests
the device has changed hands. If there is no reason for
this change, the authenticity of the user should come
under suspicion. For example, if devices record sudden
traffic to highly unusual, particularly dangerous sites,
this suggests a malicious user has hacked into the device.
This is also true of vertical industries where multiple
personnel can interact with devices. If personnel make
an anomalous request that could damage the device
network, caution should be taken to ensure personnel
are not malicious or making errors. Alternatively, since
devices can also record data from people, if data deviates
from trend, the trustee is potentially untrustworthy. For
example, if a device receives data about traffic conges-
tion from a user that is a significant distance away from
the reported location or the reported traffic congestion
occurs at a highly unusual timing, the data and trustee
should be unreliable.

Past performance Like in other types of trust, performance
also plays a role in determining trustworthiness. Per-
formance determines how capable and willing a user
is to handle devices properly. For example, if a user

tends to download viruses easily, it shows the user is
incapable of identifying and avoiding bad links or using
the device maliciously. If personnel often log incorrect
data, them, and any future data they log could be flagged
as untrustworthy.

When users release information into device networks,
information from within the device network can also give
information about how harmful and incorrect the information
is. This sort of evaluation relies on reputation factors about
the trustee’s behaviour.
Informational conflict In digital environments where infor-

mation is collected from multiple users, data about an
observation or instructions at any time can come from
multiple people. If one person’s information is con-
flicts with that of a large majority of other people, this
information and trustee should be flagged. Alternatively,
if data is corroborated by a reliable person or device, this
indicates the information is highly reliable so, the trustee
demonstrates good performance and is reliable.

Activity abnormality Activity abnormality uses gener-
alised information about user behaviour to determine if
a particular user’s behaviour is suspicious. For example,
if a user downloads software from an unusual site where
users typically do not download such software, devices
can flag this behaviour as unusual. The device can then
look out for more signs that may suggest the user is
untrustworthy and intends to behave in a malicious
manner.

D. THING TO THING TRUST
In many digital networks, devices pass information on to
other devices to form a large network of automated commu-
nication. In these networks, devices can transfer poor com-
putational output to other devices, leak personal information
to other devices, fail to pass information on to other devices
or pass on harmful information such as spam or virus. To do
any of these things, malicious devices infiltrate the network.
Thing to thing trust is trust between two non-sentient entities.
To address security challenges in device networks, thing to
thing trust is needed. Devices need to believe the trustee thing
is inherently trustworthy or is at least trustworthy within the
impending interaction. Factors for each of these instances is
outlined in Figure.

1) THING’s INHERENT TRUSTWORTHINESS
Devices can evaluate if trustee things are inherently trust-
worthy. In Section II-B, Section II-C and Figure 2, devices
supported by widespread telecommunication infrastructure
and open device networks, can receive data from unfamiliar
devices. Malicious devices can exploit this openness to infil-
trate networks and cause disturbances. For example, they can
send a virus-infected file to a node in a wireless sensor net-
work or use communication infrastructure to randomly attack
personal devices in peer-to-peer networks. Truster devices
thus need to ensure that trustees are inherently trustworthy
and do not have intentions to carry out malicious attacks.
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To determine if a device’s identity is trustworthy, we can
use knowledge factors. Knowledge factors give insight into
the device and its surrounding social or physical environment.
These give insight into the purpose of deploying the device
and in turn, its future actions. In addition, knowledge about
the digital environment also provides insight into the likely
identity of the device so we consider those as well.

Security measures Whether a device is secure against mali-
cious attacks determines its defence capability against
malicious attacks and incidents that compromise its
performance. What security measures are employed
determine this security. For example, a device that has
anti-virus software should be able to defend against
viruses transmitted from other devices. Therefore, they
are less likely to pass on the virus to other devices when
transferring files if they have never been compromised.
This goes both ways. If a device lacks the appropriates
software to defend against malicious attacks, the device
should set higher requirements for trustworthiness val-
ues to exercise more caution.

Thing’s attributes A device’s characteristics also give
information about whether it is capable enough to
be considered trustworthy. A device that is older and
more primitive might be more prone to mistakes and
vulnerable to attacks, particularly if its software is
not regularly updated. Therefore, the information from
the device is less reliable, making the device less
trustworthy.

Thing’s owner A thing can also be connected to an owner.
If two owners know each other, even the two devices
have never interacted, a relationship can still be estab-
lished between the two devices. For example, if two
device owners wish to share an Internet connection,
the two devices can connect via tethering even if the

two devices have never connected before. That the two
device owners are friends is a characteristic that influ-
ences mutual trustworthiness of both devices.

Experience factors provide evidence about the pattern of
behaviour, any anomalies and exposure history of trustees.
Using this information, trusters can infer the identity of a
device—whether it is capable or willing to cause harm. Infer-
ring this provides information about device’s future actions
and thus, their trustworthiness.
Defence success rate Despite its best efforts, devices may

find that they still encounter malicious attacks. These
attacks could compromise the device making it such
that the actions of the device affect other devices it
interacts with. Then, the success rate of the device and
whether the device has been compromised in the past
becomes relevant before choosing to interact with it.
For example, if a device has experienced information
leakage before, a device that wishes to pass information
through that node may choose not to do so; if the cause
of the information leakage is still present, it will leak the
truster device’s information.

Thing’s attribute consistency Another experience feature
about device identity is whether the attributes of the
device remain consistent with time. If a device has a
particular characteristic, this characteristic needs to be
demonstrated with time and its various actions. Other-
wise, the device is behaving unusually. For example,
a device such as a laptop has high computational power.
However, if it often fails at simple processing tasks, this
could suggest the laptop has been compromised so, it is
behaving oddly.

Finally, we look at reputation features that give insight
into the intentions of the device. By relying on reputation,
devices overall network behaviour acts as more evidence in
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case current experience is insufficient to reliable infer about
a device’s intentions.

Authority In some device networks, selected devices have
greater authority. They may be large professionally
deployed communication infrastructure, government
deployed units or officially authorised nodes in the net-
work. Since these devices are verified, the information
they distribute is considered instantly and definitively
trustworthy. For example, in vehicular networks, vehicle
nodes can directly trust road-side units (RSU) because
they are officially deployed to disseminate important
information about traffic conditions.

Centrality Centrality is important due to the network-nature
of device networks. Between two devices, there are com-
mon devices that both truster and trustee have interacted
with. Depending on the trust values and the proportion
the common to total acquittance devices, how informa-
tion flows between truster and trustee device can be
visualised. If there is a sizeable proportion of common
trusted acquaintances, the indirectly flow of reliable
information between the devices is significant. So, just
like in people to people trust, centrality also matters.

Connections Connections influences the formation of trust
between devices in two ways. First, since trust is tran-
sitive, a truster can use a trusted node to exchange with
a trustee, forming an indirect connection for informa-
tion exchange. Second, if a device has formed many
disreputable connections, they are likely to have been
compromised on multiple occasions or are also a mali-
cious device. Therefore, the device is unwilling or inca-
pable of performing well in an exchange, making it
untrustworthy.

2) TRUST IN BEHAVIOUR HARMFULNESS
Devices often do not have sufficient information about the
inherent trustworthiness of a device based of its identity.
An alternative would be simply to evaluate if a device’s
incoming action is trustworthy. This is analogous to deter-
mining if a trustee will do harm and requires evaluation of
the trustee’s past and current actions. In Section II-C, it is
hard to determine if a device in an outdoor wireless sensor
network is inherently untrustworthy. Even if the device is
originally trustworthy, at any time the device can topple over
and record data wrongly or be physically manipulated by
a malicious entity to send inaccurate data. In such envi-
ronments, no device can be inherently trustworthy. Instead,
truster devices can only evaluate if the incoming data and
interaction with the device is non-harmful.

To carry out such evaluation, knowledge factors about the
interaction and environment are useful. Devices can infer
the likelihood of a harmful interaction and to what extent
the interaction would be harmful. This aids the decision to
continue with an interaction.

Interaction importance Whether an interaction is impor-
tant significantly affects the degree of caution the truster

should employ. If a truster device is exchanging sensi-
tive data, the trust threshold should be much higher to
ensure that trustee nodes do not either fail to pass on
necessary information or pass on misinformation. Data
with a substantial impact on the real world can also be
considered important. For example, if a device such as a
vehicular node releases information about traffic condi-
tions, this information will direct traffic along different
roads. If the information is wrong, intentionally, or oth-
erwise, this could cause significant traffic congestion.
Therefore, only highly trusted nodes should be allowed
to release such high-impact information.

Security requirement If there are many untrustworthy
nodes in a network, truster devices should also exercise
greater caution. This applies like discussed before since
most device networks are a type of network in some form
or another. Therefore, each node interacts with other
nodes in the network. If the network has a large propor-
tion of malicious nodes, it is more naïvely probable that
a randomly chosen node is malicious. Therefore, extra
caution needs to be taken during any interaction.

To determine if a current interaction will be successful, it is
useful to gather past evidence about the trustee device. This
requires experience factors which indicate whether the device
has been compromised and whether it will behave harmfully.

Past performance Naturally, like in all types of trust,
the performance of a trustee is important. A trustee’s per-
formance directly reflects their willingness and capabil-
ity to cooperate in exchanges. If a device often supplies
erroneous information, it is likely the device is either
compromised or too old so, it can no longer be trusted.
It would thus be better for the entire network to simply
ignore the device as its past performance does not bode
well for the device’s future performance.

Anomalous behaviour Since ‘‘things’’ refer to devices,
which while not static, cannot interpret nuanced, sub-
jective information, humans rely based on the trend of
behaviour to determine if a device can be considered
suspicious. If a device typically behaves in a certain way,
any behaviour that does not follow this trend suggests a
change in its surroundings or tampering by some party.
If there are no events that may suggest this change,
this should arouse suspicious that the device has been
compromised.

Finally, to evaluate if actions from a device are harmful,
we can rely on the behaviour and information being trans-
mitted. In particular, the reputation of the action within the
network is very telling in determining if the incoming action
is trustworthy, even if not much can be directly known about
the trustee or their behaviour.

Information source Since devices form parts of a network,
the information typically travels in paths and cycles.
Thismeans that information can be tracked to its original
location. If the original source of the information is
unreliable, this could suggest that the information is,
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by proxy, unreliable. Furthermore, the act of propa-
gating this information to the truster suggests the dis-
tributing device has poor connections, reducing their
trustworthiness.

Opinion variance Finally, trusters can receive information
from multiple devices in a device network. Potentially,
the device may receive similar information from multi-
ple sources or if a group of devices all manage the same
network, the data collected from all devices need to be
logically consistent. This data collected as a group acts
as a type of corroborating evidence. If the data collected
by the trustee device deviates too greatly from what is
expected, this suggests that the information and thus,
the device is untrustworthy.

IV. CRITERIA FOR DIGITAL TRUST MODELLING
In Section II, we laid out the different digital environments
and mentioned some trust modelling challenges. In this
section, we discuss different rubrics and criteria to address
basic trust modelling targets and these additional challenges.
They are outlined in Figure 7.

A. SECURITY
A good trust model is secure meaning it is safe for use and
can defends against threats, attacks, errors, and back doors.
There are many requirements for a trust model to be secure.

Privacy A secure trust model preserves privacy [1], [6], [10].
This means it allows users to select the type, method and
who can access their personal information. Trust man-
agement schemes must be able to prevent the invasion of
privacy by malicious attackers while itself minimising
the use of personal information while managing trust.
Entities within the network and trust models should not
be able to retrieve user’s information without permission
of the user. Privacy is necessary to the security of the
trust model as lack of privacy could make users feel
uncomfortable, resulting in harm, even if the company
has no intention of misusing the data. That the user
cannot confirm such misuse will not occur is sufficient
to cause distress.

Confidentiality Confidentiality is a concept highly related
to privacy and is too, necessary in trust management [5],
[6]. Confidentiality involves the prevention of excessive
collection and leakage of personal data. Like in privacy,
this means that both the digital service and the trust
model should keep confidentiality. Maintaining confi-
dentiality means trust management should only collect
relevant data and cannot leak data to any entities outside
those that absolutely need it. Personal data leakages are
harmful to users as they could reveal sensitive informa-
tion, causing real life harmful effects on the user.

Availability A trust model is secure if it is available when-
ever needed [5]. This means that attackers are not able to
cause disturbances to the network such that users are not
able to access its services. Trust is necessary here to filter

interactions that try to jam and reduce availability, such
as spam and virus attacks. The process of trust modelling
also cannot compromise the performance and capacity
of the network.

Transparency Trust management should be transparent
such that its processes and the information collected
are open to each user. The system also needs to be
accountable for any failure to protect digital services
and errors made during the trust management process.
Transparency also means that there should not be any
back doors. A lack of transparency in managing trust
makes users wary of digital environments.

Integrity Integrity is an obvious requirement of any trust
management system [5], [6]. A trust management that
has integrity can prevent malicious or harmful inter-
actions and behaviour. Trust is needed to decide and
measure when an entity is malicious. Then, these entities
need to be punished or removed accordingly. Integrity
protects the digital environment and its interactions from
meeting bad interactions and excessive harm.

Non-repudiation Non-repudiation refers to holding all users
accountable for their actions [5]. So, when malicious or
harmful interactions occur in the network, the relevant
perpetrators can be tracked and punished for the interac-
tion. Trust is needed for this as the trust degree should
track these harmful behaviours and accurately reflect
them in numerical values. Entities with low trust values
should not be able to interact in the environment.

Authenticity Non-repudiation and its implementation is
intricately linked to authenticity. Authenticity means
that user’s identities are verifiable. Being able to authen-
ticate users prevents them from being able to take on
multiple identities to take the blame for their harmful
actions in the network. Authenticity of the network
ensures that trust values and the management system
is in fact effective. If users were able to create false
identities when their trust values fell too low, the trust
values would have no meaning. Therefore, authenticity
is a necessary requirement for all trust models [5].

B. COMPREHENSIVENESS
Most trust models only partially consider comprehensive-
ness. A comprehensive trust model considers all the different
dimensions and aspects of trust modelling and can adjust to
account for these aspects. Comprehensive trustmodels should
fulfil the following requirements.

Dynamicity Dynamic trust models are models that consider
the time-varying nature of trust and are necessary as
trust is itself, dynamic [7]. Many models are dynamic
by considering the age of evidence, recommendations,
and trust values. Older evidence is less reliable as it is
less reflective of the entity’s future behaviour. However,
writing off old evidence can result in a lack of evidence.

Certainty Trust, being an inherently complicated con-
cept, carries an inherent uncertainty, as discussed

VOLUME 9, 2021 106761



H. L. J. Ting et al.: On Trust and Trust Modeling for Future Fully-Connected Digital World

FIGURE 7. Table of rubrics categorised into general concepts.

in Section I-B. Models that are comprehensive should
consider this uncertainty in its trust values and decisions.
This means that when evidence is lacking or contradic-
tory, the metrics used — be it the trust value itself or a
separate certainty indicator — need to reflect this and
factor it into trust decision-making.

Trust Degree A comprehensive trust model obviously
requires some representation of trust [7], be it binary,
discrete, or continuous. However, since trust is com-
plicated this trust degree must also reflect nuanced
understandings of trust. Trust models should also be able
to account for the differences between ‘‘no trust’’ and
‘‘neutral’’ and reflect them accordingly in the model.
Moreover, ‘‘no trust’’, ‘‘neutral’’ and ‘‘distrust’’ are not
necessarily the same. ‘‘Distrust’’ implies that the user
is repelled by the node while ‘‘no trust’’ or ‘‘neutral’’
could simply be that there is insufficient information
or conflicting information respectively about the user’s
trustworthiness.

Context Aware Since trust is by nature a highly situational
concept, trust models need to consider the different sit-
uations and how they affect trust [6], [10]. Not only do
they have to consider the different situations, but they
also must do so appropriately, choosing suitable contex-
tual features that inform a node’s trust the most. A trust
model that can consider this is holistic and sufficiently
comprehensive for implementation in real life.

Subjective As mentioned, trust differs from person to per-
son. Truster’s requirements need to be holistically con-
sidered, factoring in all the relevant truster features to
decide the most fitting trust value and decision for the
truster. A trust model that can adjust to fit its users’ needs
is sufficiently comprehensive for all users [7], [10].

C. USABILITY
Many trust models today claim to accurately detect mali-
cious users and attacks; however, few models consider
whether they are usable and implementable in real-life

digital environments. We break down how trust models can
become usable for the real world.
Computationally Efficient As mentioned in Sections II-B

and II-C, computational efficiency is a huge limiting fac-
tor in trust model performance. Therefore, trust manage-
ment schemes need to carefullymanage time and storage
complexity as well as the convergence of algorithms [5],
[8], [10]. However, complex, and time-consuming algo-
rithms are still usable in the right digital environments.
Networks that have primitive devices cannot utilise high
computational consumption algorithms but trust models
for online social networks, that utilise large, central
servers and processes might be able to.

Data Usability As mentioned in Section I-B2, ratings, trust
values and other indicators are commonly assumed to
exist in digital environments. This is not necessarily
true. Furthermore, feature based knowledge modelling
in Section I-B2 may not be able to access the nec-
essary inputs due to unavailability of data or privacy
concerns. To be implementable, trust models need to
consider what data is available and if their factors can
be computed. Proxies or alternatives need to be found
for incomputable factors.

Considers Node Diversity For trust models to be usable
they also need to be able to account for individual nodes.
This is related to the cold start problem. Trust models
that rely on factors such as experience, face the issue
where some nodes lack sufficient experience to have
high direct trust values. Such new nodes find themselves
unable to interact but unable to perform the necessary
exchanges to raise their trust values sufficiently. Trust
models should find alternative methods to calculate trust
that can account for all the possible different users in the
network.

Usable in Different Networks Trust models need to be
usable in different types of networks. This means that
trust management and its calculation methods need
to be able to work in networks, even if they have
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FIGURE 8. Table of standard trust security threats.

cycles [28], are sparse or have other problematic graph
characteristics. Particularly, graph theory related meth-
ods and path-finding algorithms may not converge
or collapse whenever cycles or sparse networks are
involved. Alternativemodellingmethods need to be con-
sidered accordingly.

D. FUNCTIONALITY
A trust model must be functional in that it supplies a suitable
decision-making framework. Many trust models often aim
to output a trust value. While this is important, the trust
values should be interpreted into corresponding access for
the trustee. In other words, trust models need to provide
corresponding access to the different trust values and levels.
There are several problems access control and functionality
must address.

Service-oriented Access Control Corresponding access
control needs to be service oriented [1]. This means
that the number of thresholds, how narrow the bands
are and the strictness for different access levels need
to be tailored according to the service. Service here
should additionally consider provision-context, the user
and device to which the service is provided.

Continuity of Access Rights Access control also needs to
identity when a user is not trustworthy enough to con-
tinue their access rights [1]. Their rights then need to
be revoked accordingly. Whether a user is trustworthy
enough depends on the application, even if a single
malicious act were sufficient to revoke access rights.
Therefore, even for trustworthy agents, their trust values
should be tracked, constantly evaluating trustees.

E. ROBUSTNESS
Robustness has to do with the trust management system’s
ability to function and provide appropriate trust values
despite network disturbances and system-errors. Network

disturbances may occur in soft-security distributed digital
environments. Therefore, in the transmission of trust related
data, trust management may find themselves vulnerable to
disturbances where for example, nodes propagate wrong
trust values, or a malicious attack occurs. Trust management
schemes need to be robust enough such that these trust values
are still available and the digital environment functioning,
no matter these disturbances. Trust management faces two
key types of disturbances.

Propagation Errors Errors can also include propagation
errors such as natural errors made in the transmission
of information between nodes. Trust systems should be
able to account for potential transmission errors of trust
values and adjust the trust value or certainty accordingly.
This ensures constant security and availability for the
digital environment.

Cold Start Problem The cold start problem mentioned in
Section IV-C is relevant here. A trust management sys-
tem is robust if it can counter instances of insufficient
information about the trustworthiness of a node and
still produce a good, usable trust value. It means the
system is comprehensive enough to be robust even under
problematic circumstances.

V. ATTACKS ON TRUST MODELS
Known attacks inform security protocols on trust manage-
ment systems. A secure trust management system is able to
resist the attacks seen in Figure 8. We describe each attack,
potential repercussions and how preventing them helps secure
trust models.
Sybil attack In Sybil attacks, malicious nodes create fake

IDs that share or take the blame which should be given
to malicious nodes [1], [5], [7], [8]. Malicious nodes
carry out Sybil attacks by creating many fake identities
that then each attack honest nodes. Instead of the single
node taking on all the blame for the collection of attacks,
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the malicious nodes, all from the same user, share the
blame so that their individual trust values drop more
slowly. This way, the collection of malicious nodes is
able to launch more attacks before being individually
detected. A system that is ensures authenticity of users,
non-repudiation and integrity can resist Sybil attacks.
Users are authenticated so that multiple identities cannot
be created without at least being able to trace all nodes
back to the same identity. The authenticated identity is
then held responsible for attacks of any attacks by its
malicious nodes and removed before other nodes can
launch attacks.

Newcomer attack In newcomer attacks, malicious nodes
remove bad history by registering as a new
user [1], [8]. The newcomer attack is slightly dif-
ferent from the Sybil attack. Malicious attackers that
have accumulated bad reputations on the system are
able to leave the system and return, erasing history of
their behaviour so they can launch attacks on honest
nodes again. Like the Sybil attack, authentication, non-
repudiation, and integrity help resist newcomer attacks.
Authentication traces the identity of each newly created
node to its original creator and can carry the bad reputa-
tion from the earlier node to this new node. The attacker
is thus unable to launch attacks despite its new identity.

On-off attack In on-off attacks, malicious entities alternate
between behaving well and badly, to remain unde-
tected while causing damage [1]. On-off attacks are
attacks launched via direct interactions.Malicious nodes
perform well for a while to gain users trust before
attacking the user by performing poorly. They may
repeat this again to gain back the users trust before
attacking, remaining undetected to maintain trust val-
ues above a certain level. A trust model that maintains
non-repudiation and integrity will be able to identify
malicious nodes performing on-off attacks, punish them
and prevent them from attacking.

Spam Spam occurs when malicious nodes send out unnec-
essary messages or tag irrelevant information to jam
systems and/or create noise. Spam is another type of
attack that occurs in direct interactions. Such spam
can be seen in digital environments with tagging sys-
tems [40]. Spam is harmful as it distributes and intro-
duces large amounts of irrelevant, if not harmful,
content into networks. Non-repudiation and integrity
requirements target this attack so that trust management
systems that are secure can identify when a node is dis-
tributing large amounts of irrelevant content and remove
the node and their content as needed.

Message Suppression/Timing Attacks In message sup-
pression attacks, nodes fail to pass on messages and in
timing attacks, nodes take a long time to pass messages
on [5], [8]. Message suppression and timing attacks are
particularly damaging to time sensitive and distribution
reliant networks such as vehicular networks or wire-
less sensor networks. When attackers launch message

suppression and timing attacks, they do not or take a long
time to pass messages along. This could result in failures
to inform target users about necessary information in
time or at all, causing harm to the functioning of the
entire network.

Conflicting Behaviour Attack In conflicting behaviour
attacks, malicious nodes impair honest recommenda-
tions or build up reputation to attack another group
by performing differently to different groups [1].
Conflicting behaviour attacks are damaging to repu-
tation systems. Users destroy the reputations of hon-
est users by behaving positively only with them.
By doing so, they build up a good reputation with
this select group of users who then recommend the
malicious nodes to other honest nodes. This results
in a) the reputation or recommendation nodes being
tarnished and b) the truster nodes being harmed
from interactions with malicious nodes due to poor
recommendations.

Self-promoting Attack In self-promoting attacks, attack-
ers falsely augment their own reputation by exploit-
ing weakness in the system on their own or by using
a group of collaborating identities [8]. Self-promoting
attacks can occur in poorly designed and poorly authen-
ticated recommendation systems. In systems that are
poorly designed, malicious users can either falsely aug-
ment their own reputation by recommending themselves
or create and collaborate with other users to augment
their own reputation. By doing so, malicious users can
increase their trust values via indirect trust to perform
harmful actions.

Competitor’s Recommendation In competitive environ-
ments, there is no incentive for entities competing
for the same resources to provide any or honest
recommendations [1]. Competing recommendations
are particularly problematic in e-commerce platforms
where buyers compete for limited products and sellers
compete for limited buyers. When there are limited
resources, buyers and sellers have no incentive to supply
good and honest recommendations [36]. Giving false
recommendations results in entities making poor deci-
sions while not giving any recommendations results in
users having to act on insufficient information or not
acting at all. The lack of incentive to recommend could
result in the collapse or stalemate of systems where there
are insufficient direct interactions, particularly in new
digital environments. Integrity and non-repudiated sys-
tems can counter poor recommendations while systems
that meet the availability requirement are able to prevent
collapse due to lack of recommendations.

Good/Bad Mouthing Attack Good/Bad mouthing attacks
are attacks where malicious entities provide dishonest
recommendations [10]. Bad mouthing attacks makes
it difficult for trusters to find interactions to serve
their needs and trustees to gain the trust of trusters.
Good mouthing attacks increase the indirect trust values
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of malicious nodes and cause honest trusters to interact
with malicious entities. Recommendation systems that
are flooded with such attacks will drive users away or
cause users to no longer rely on recommendations. Sys-
tems that meet integrity and non-repudiation can resist
such attacks.

Collusion Attack Lastly, collusion attacks are attacks that
use a combination of the above attacks [7]. This allows
users to apply maximum damage to the digital environ-
ments. A fully secure trust system must also ensure that
the digital environment is not vulnerable to a combina-
tion of attacks and that defence against one attack does
create vulnerabilities to another.

VI. MODELLING METHODS
The criteria discussed can be met by employing the right
methods for modelling. In this section we discuss existing
methods used in trust modelling, their theories and how they
have been used. First, we present an overview of each of the
steps in trust modelling. For each of the steps, the existing
methods that have been used are illustrated and coloured by
the mathematical field they are under.

A. BASIC METHODS
Simple trust models are models that employ basic mathemat-
ical constructions. Heuristics are employed and introduced
in these equations so that their trends represent trust-related
processes in digital environments. There is no fixed way
to construct equations, some are adapted from known and
common basic constructions.

1) WEIGHTED AVERAGE
The key component of many simple models are usually
weighted averages. Weighted averages, like averages, com-
bine values of some set and normalises this sum by the
number of elements to achieve a representation of the set that
considers all its elements. In weighted averages, however,
different values are weighted differently, to provide a more
reflective combination. Weighted averages are calculated

x̄ =

∑n
i=1 ωixi∑n
i=1 ωi

(1)

where ωi are weights for each i-th factor, xi. There are
n factors being considered. Being able to apply heuristics
to weights in trust modelling is advantageous in considering
factors that do not have fixed mathematical constructions to
represent their meanings. This is useful to trust as the actual
magnitudes of ratings tend to be subjective.

a: COMBINING TRUST FACTOR
In [18], [19], [22], [29], [31]–[33], [48], weighted averages
were used to balance factors to output a trust value. Most
trust models do not define weights or leave it to implementers
or device owners to decide the weight of each factor [19],
[22], [29], [31]–[33], [48]. This allows users to personalise
their trust model according to their needs and makes them

responsible for weighting the factors based on what they
know about themselves.

However, some models may instead define weights and/or
additionally adjust the weights provided by users. For exam-
ple, in [18], dynamic confidence factors were used to weight
direct and indirect trust such that with sufficient interactions,
greater, if not all, weight would be given to direct trust val-
ues. Where NT

ij is the number of direct interactions between
users i and j, the dynamic confidence factor is

αij =
NT
ij

NT
ij + c

or αij = 1− βN
T
ij (2)

where c > 0 and 0 < β < 1 are parameters that can
be adjusted by the user. These user-defined parameters help
describe how reliant on direct interactions the user wants to
be. The two equations are both monotonically increasing with
limit at infinity 1 but have different trends. The dynamic
confidence factor can be chosen based on the needs of the
digital environment.

In [33], confidence and time help adjust the user-defined
weights for indirect trust. Confidence is modelled such that
the more interactions and recommenders there are, the higher
the confidence. This increase in confidence can be modelled
with any monotonic increasing function. To account for time,
[33] considered the number of time intervals passed since
recommendations were received from each recommender.
The longer the time lapsed, the smaller the weight assigned.

b: AGGREGATE EXPERIENCES
Weighted averages are also used to aggregate experi-
ences [22], [29], [31], [36]. This helps collect all the evidence
(from interactions) and combines them into a single represen-
tative value. These values can then be used as part of more
complex methods. In [29], xi in Eq. 1 would be the number of
positive interactions at each time window, Npos. Time-based
weighting was carried out by simply using a forgetting factor,
0 < λ < 1, exponentiating using time intervals so that older
intervals would have smaller weight. The weighted average
representing positive interactions was defined

N̄pos =
N∑
i=1

Npos · λi−1 (3)

where i is each time-window. Alternatively, if time intervals
are not appropriate, time passed ti after each interaction Ni
can also be used to as a weight for each i-th interaction [31]

ωi = e−λti (4)

so that as time passes, the weight given to older experiences
will decrease exponentially. Contextual features have also
been used as weights. The weights measure how similar the
i-th experience is to the current experience and would take on
ωi in equation 1.
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FIGURE 9. Overview of trust modelling process and methods in each step.

c: AGGREGATE TRUST VALUES
Weighted averages are also used to aggregate trust val-
ues [19], [27], [30], [49], [50]. Trust values can be that
describing paths or individual nodes in a network. Typically,
they are weighted using the trust values of intermediaries
so that ωi is the trust value about the intermediary(advisor)
and the factor is the advisor’s opinion about some other
intermediary or the trustee.

2) RELATIONAL MEASUREMENT
Relational measures include similarity measures, deviation,
correlation measures and other simple constructions. and
are simple constructions meant to represent how far two
variables, are related, whether positively or negatively. This
relation can give insight into whether these two users are
likely to trust each other.

a: SIMILARITY MEASURES
Similarity measures are useful to measure how similar two
users are in terms of their opinions. It is believed that the more
similar two users are the more likely they are to trust each
other. Cosine similarity was used in [25], [47] to measure how
similar two ratings were. When ratings are involved, such as
in review systems on e-commerce platforms, the similarity
between the ratings of two individuals about the same objects
can reflect the level of trust in each other. For example, if two
users rated the same set of n products and the ratings were
collected into vectors a and b for each user respectively,
the cosine similarity would be

cos(θ ) =
a · b
‖a‖ · ‖b‖

(5)

This way the actual magnitude of the scores is recorded and
only the relative differences between the two users’ ratings
will be considered. For example, a user could have rated two
products with the vector (2, 5) while someone else rated those

same products (4, 10). The reviews may have very different
magnitudes but their opinion towards the products is similar
(that the first one is worse than the second). Cosine similarity
captures this similarity in rating patterns rather than the total
magnitudes of the ratings.

b: DEVIATION MEASURE
ln-deviation is also used to measure how unusual some vari-
able for a particular node is [24], [48]. ln-deviation is adapted
from mean-log deviation used in income-inequality which is
like standard deviation except that ln is applied to reduce the
range of very wide-ranging features. For some variable X (i)
for user i, ln-deviation is given as

lndev(i) = − ln
(

X (i)+ 1
maxj∈N (X (j))+ 1

)
(6)

where N is the total number of nodes in the network. The
degree to which the variable for the node deviates from some
standard (in this case the maximum) could be an indicator
of the impact of their actions [48] or the abnormality of
responses or behaviour in the network [24], [48] and thus,
an indicator of trustworthiness.

Deviation was also used in Zeinab’s trustworthiness rep-
utation scheme [36]. The trustworthiness of an advisor is
measured by the competency andwillingness of the advisor to
provide good recommendations. Competency of the advisor
was measured using a standard deviation method. The relia-
bility of ratings was computed using the evidence-based cer-
tainty equation introduced byWang in [51]. Then the standard
deviation of the credibility of ratings for different sellers was
computed to represent the uncertainty in the seller’s ratings.
This helps account for the reliability of the advisor despite
sellers that discriminate in their behaviour by aggregating the
general rating behaviour of the advisor for common sellers.

This deviation was multiplied by the dishonesty of the
advisor. This dishonesty was also computed using standard
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deviation and was represented by the successful and unsuc-
cessful interactions with the seller that the advisor has had.
Beta probability described in Section VI-C1 was used to
measure while accounting for uncertainty the expected rating
of the seller. The output is then formulated as the expected
rating by the advisor or buyer about the seller. The standard
deviation was used on this expectation for common sellers
to reflect whether ratings provided by the advisor align with
those experienced by the buyer. If the ratings do not align,
the standard deviation would be high, reflecting a high level
of dishonesty.

Basic difference between ratings was also used and mod-
ified using heuristics to compute the willingness of an advi-
sor to provide good ratings. The difference in the rating by
the advisor and all other ratings over time was iteratively
computed over different time intervals. This was coupled
with integration over the exponentiated form (to give greater
weight to larger rating differences). The final integration
reflects the rating behaviour of the advisor relative to the
buyer. A large, accumulated difference in weighting reflects
that the advisor is less willing to provide accurate recom-
mendations. This difference was also weighted by the ratio
of good recommendations provided by the buyer to the rec-
ommender previously that were truthful. This captures the
intuition that the advisor will react in kind to how the advisor
was treated by the buyer in the past.

3) FUZZY LOGIC
Unlike Boolean logic where ‘‘true’’ and ‘‘false’’ are the only
values allowed, fuzzy logic allows multiple values to be
assigned to better represent situations where a statement can-
not be determined absolutely true or absolutely false. These
intermediate logical values take the form of fuzzy sets such
as ‘‘not very true’’, ‘‘somewhat false’’ and so on. Translating
observable real-life quantities to numeric values can be done
via the membership function. These membership functions
output the degree to which the quantity is belongs to some
defined fuzzy set. Fuzzy logic operators and rules act on
values attached to fuzzy sets. These rules help map quantities
to a fuzzy set output. The fuzzy output can be translated back
into a numerical value if necessary [52].

The entire process described has been implemented by
Song for evaluating trust in grid computing based on numer-
ical type features [53]. In their trust management model,
numerical values of features defence capability and job
success rate were fuzzified. Using membership functions,
the membership degree of the self-defence capability feature
in the fuzzy sets ‘‘low’’, ‘‘medium’’ and ‘‘high’’ was deter-
mined; the membership degree of the job success rate in the
fuzzy sets ‘‘very low’’, ‘‘low’’, ‘‘medium’’, ‘‘high’’, ‘‘very
high’’ was determined. Based on intuition, fuzzy rules and
logical operators were defined and used to map the fuzzy
set values to fuzzy set values describing trust. The possible
trust fuzzy sets were ‘‘very low’’, ‘‘low’’, ‘‘medium’’, ‘‘high’’
and ‘‘very high’’, and the fuzzy rules and operators help
obtain membership degrees for trust value in each of these

fuzzy sets. Using the membership degrees and the inverse
membership function, a numerical trust value can be obtained
by aggregation.

The concept of membership functions was implemented
in [54], [55]. The decision tree, explained in Section VI-D1.c,
is trained by iterating through the different splitting condi-
tions, using a greedy algorithm, to determine the best con-
dition that minimizes the error between derived trust values
and actual trust values. These splitting conditions can be used
to classify users into trustworthy and untrustworthy classes.
However, as highlighted in the motivations for fuzzy logic,
continuous attributes are rarely completely in one (inter-
mediate) category or another. Fang addressed this by using
membership functions to partially allocate users into each
category for each continuous attribute. By iterating through
different thresholds in the training process the decision tree
can be trained to be more flexible by determining the best
threshold to partially allocate users in different categories.

Wu employed a similar method to train a fuzzy neural
network [55]. By pre-processing continuous inputs, Wu cate-
gorised continuous inputs into sets to reflect human interpre-
tation on whether a particular value is ‘‘low’’, ‘‘just so-so’’,
‘‘high’’ or ‘‘very high’’. Therefore, the neural network can
process instead the categories and the degree to which the
user belongs in a particular attribute instead of the raw
values themselves. This allows human interpretation within
the neural network. The fuzzy operators and rules were
replaced with the neural network. This process is described
in Section VI-D4.b.

4) GAME THEORY
The iterated prisoners’ dilemma problem in game theory
has been applied to trust modelling for reputation systems
in e-commerce markets by Zeinab [36]. In the prisoners’
dilemma game, two players must decide whether to coop-
erate or defect. If both players cooperate, the reward is R;
if both players defect, the punishment is P; if only of the
players defect, the player that defected receives reward T
while the other receives punishment S. These payoffs satisfy
T > R > P > S and 2R > T + S [56]. In the iterated pris-
oners’ dilemma game, the two players repeat the prisoner’s
dilemma multiple times and can remember and react to past
actions [56].

In e-commerce markets, buyers must balance between
competition due to limited resources and not being able
to discover good sellers if they report untruthfully. Zeinab
adapted this iterated prisoners’ dilemma game to address this
aspect of reputation systems in e-commerce markets [36].
In the reputation system, an advisor can choose to cooperate
or defect by providing or not providing good recommenda-
tions about sellers. The rewards and payoffs from the pris-
oner’s dilemma can be defined analogously here. Using the
defined payoffs, an expected payoff from continuing the pat-
tern of cooperation and defection over multiple interactions
can be defined. This long-term payoff computation consid-
ers the time remaining in the e-commerce network and the
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trustworthiness value of the advisor. This trustworthiness
value of the advisor is determined by the competency and
willingness of the advisor to provide good recommenda-
tions [36]. Standard deviations and difference values were
used and are described in Section VI-A2.b.

5) ENTROPY THEORY
Entropy theory aims to quantify the uncertainty associated
with a random variable. To do this, entropy theory quanti-
fies information gained or uncertainty as I (p) = − log p
because [57]
• I (p) is monotonically decreasing. This reflects that as
the probability of an event occurring increases, we are
less uncertain of the possible outcome so, uncertainty
decreases.

• I (p) ≥ 0 which reflects that uncertainty is always
non-negative.

• I (1) = 0 which reflects that events that almost surely
occur do not have any uncertainty.

• I (p1, p2) = I (p1) + I (p2) which reflects that the
uncertainty of two independent events is the sum of the
uncertainty from either event.

Then, the amount of entropy associated H (X ) with a random
variable X is the expected amount of uncertainty with the
variable based on all the outcomes and the probabilities of
those outcomes. Therefore, entropy is defined [57]

H (X ) = E [I (p)] = −
n∑
i=1

P (xi) logP (xi) (7)

where the base of log depends on the application. In trust,
base 2 is usually used. Then, given the random variable X
that an agent cooperates with probability p, the entropy of
the agent cooperating is useful in representing the degree of
uncertainty in the agent. Explicitly, this entropy is

H (p) = −p log2 p− (1− p) log2(1− p) (8)

using Equation 7. Entropy has been used as a trust
value [49], [50] and as a weight [58].

a: ENTROPY AS A TRUST VALUE
Trust is often understood as the probability of an agent
behaving cooperatively. However, trust may not increase lin-
early with probability of cooperation. Using entropy as a
trust value, probability-based uncertainty associated with the
agent is used to represent trust. The trust value is usually
defined [49], [50]

T (p) =

{
1− H (p) if 0.5 ≤ p ≤ 1
H (p)− 1 if 0 ≤ p < 0.5

(9)

so that for more extreme probabilities of cooperation
(extremely high or extremely low probability), the rate of
change of certainty is very much higher than if the probability
is not as extreme. At less extreme probabilities (around 0.5),
the rate of change in certainty is much slower. Notice that
the entropy is flipped in this definition to represent certainty

instead of uncertainty. Trust using this definition of certainty
models a truster who
• For extremely low probabilities of cooperation, trust
drops rapidly. If an agent already has a low probability
of 0.2 of cooperating and they drop further to 0.1, their
trust value drops to a more disproportionate extent to
show that the truster is disproportionately more certain
the more extremely low the probability of cooperation.

• For mid-value probabilities, certainty in the agent,
and therefore trust, changes slower. So, if an agent’s
probability of cooperation increases from 0.5 to
0.6 (0.4 to 0.3), the probability is still fairly low
(not that low) and the difference to the truster
between the two values might not be very large. So,
the 0.1 increase (decrease) results in a disproportionately
smaller increase (decrease) in trust.

• For extremely high probabilities of cooperation, trust
increases rapidly. If an agent with very good probability
of performing well can further improve their perfor-
mance, this continued improvement reflects very well
on them. Therefore, the increase in certainty in the agent
increases disproportionate.

b: ENTROPY AS WEIGHT
Entropy has also been used as a weight in trust mod-
elling [58]. Using entropy from Equation 8 as a weight,
more weight is given to interactions that have less extreme
probability values. For each interaction, there is a probabil-
ity of the interaction outcome being positive. If by entropy,
the interaction carries more information, more weight should
be given to the interaction when aggregating all experiences.

Jayasinghe did this in his model for IoT devices [58].
Adapting his method, suppose a truster has had c1, . . . , cn
interactions with a trustee, for each interaction cm there
is a probability pm of the interaction succeeding. Using
Equation 8, the uncertainty-weighted performance of the
trustee denoted CFD is

CFD =
n∑

m=1

cm
tm
H (pm) (10)

where cm
tm

is the fraction of total time spent by the trustee for
each interaction and helps to further weight the interaction
based on its duration. In CFD, if an interaction had roughly
50/50 chance of succeeding, its success was more uncertain
and so any information gained from the interaction would be
greater, by simplifying some of the uncertainty. Therefore,
more weight is given to the interaction outcome and duration.

B. GRAPH METHODS
In graph methods, we discuss the available methods to cap-
ture the structure of a network, globally and locally for each
node. These graph methods are particularly useful because
many digital networks can be simplified into graphs with
nodes and edges. The existing relationships and transfer of
any information offers large amounts of information that can

106768 VOLUME 9, 2021



H. L. J. Ting et al.: On Trust and Trust Modeling for Future Fully-Connected Digital World

be modelled into features for trust. Otherwise, graph methods
are useful for inferring trust values about other nodes based
on the trust values of surrounding nodes or along paths.

1) NETWORK FEATURES
First, in graph methods for trust modelling, of key interest is
how to describe a node’s structural position in a network and
relationships to other nodes. We call these network features
and discuss how graph methods can and have been used for
modelling of such network structural features.

a: NETWORK OVERLAP
The degree to which two individuals in a network have
common ‘‘friends’’ is an indicator of how significant a role
the other plays in each other’s network. The larger the role,
the more significant the role and so the more likely there will
be trust between the two users. There are two representa-
tions in trust modelling: centrality and Jaccard’s coefficient.
Centrality is measured by a simple mathematical concept in
several models [19], [58]. Centrality of trustor i and trustee j
is calculated as

cij =

∣∣Kij∣∣∣∣Nj∣∣ (11)

where Kij is the set of common friends and Nj is the set of
friends that j has. Then, cij represents the degree to which i
and j are indirectly connected. Nj is necessary for normaliza-
tion. For the same

∣∣Kij∣∣, a larger Nj means that the number of
common friends is proportionally smaller. Thus, the overlap
in connections is not as significant.

Jaccard’s coefficient is a similar measure but normalized
with the total number of friends [47]. Where I (i) is the set of
i’s friends, Jaccard’s coefficient for trust between i and j is
usually

Jij =
|I (i) ∩ I (j)|
|I (i) ∪ I (j)|

(12)

Then, Jaccard’s coefficient represents the proportion of
the friend group considering both users. This means that if
either user has a large group of friends, the union set would
be large and so the number of shared friends would not be
proportionally large enough to warrant a large amount of trust
between the two, based on common friends.

b: GLOBAL REPUTATION
A more global relational measure, adapted from PageRank,
measures the importance of a node in relation to the entire net-
work based on its links. PageRank is an algorithm typically
used to rank webpages on search engines. In trust modelling,
PageRank is modified so that the rank given to the page is
analogous to the authority or popularity of a particular node
in the network [24], [25], [47], [48]. This reputation score is
given by

R(i) =
1− d
n
+ d

∑
j∈M (i)

R(j)
L(j)

(13)

where n is the total number of nodes, M (i) is the number
of people who trust i and L(j) is the number of nodes that
j trusts. d is the damping factor, representing in the case
of trust, when the user continues trusting others within the
network, instead of not trusting anyone. PageRank algorithm
for trust outputs a ranking of nodes in the network that
considers number and trustworthiness of the truster nodes for
any trustee node. It is assumed that the trustworthiness of a
trustee node is indicated by the number of nodes that trust the
trustee.

c: ADJACENCY MATRICES
Adjacency matrices are square matrices that represent finite
graphs. The ij-th entry in the matrix indicates a relationship
between node i and node j in the graph. In a weighted
graph, like those typically used in trust, the weights will
be used directly as entries in the adjacency matrix. Other-
wise, the adjacency matrix will be binary with a 1 entry
indicating the presence of a relationship and a 0 repre-
senting no relationship. For trust, the adjacency matrix is
most useful for illustrating, in matrix form, the total path
weights (for weighted graphs) or total number of paths
(for non-weighted graphs) from any one node to another.
This representation allows an entry-by-entry visualisation
of the type of relationship each node has with every other
node. This representation can be further expanded into other
metrics.

d: KATZ MEASURE
Katz measure is useful in measuring the degree of influence
of a node in a network based on all the paths going to the
node [59]. Katz measure was used in [25] as an input feature
to a neural network and in [28] for the indirect trust value.
Katz measure of user i is given

Xkatz(i) =
∞∑
k=1

n∑
j=1

αk (Ak )ji (14)

where A is the adjacency matrix of the underlying graph.
Then, (Ak )ji counts all the paths of length k from user j to i and
does so for all users j = 1 to j = n. This is repeated for paths
of all lengths from k = 1 to k = ∞. The ‘‘attenuation factor’’
0 <≤ α ≤ 1 then weights the paths such that the longer the
path, the less weight assigned to it. This reflects how trust
diffuses the more intermediate recommenders there are along
a path. Computing Equation 14 is equivalent to finding the
column sums for the following matrix [28], [59]

Xkatz = (I − αA)−1 − I (15)

where I is the identity matrix. When α is less than the
reciprocal of the largest characteristic root ofA, computations
can be simplified significantly so that there is no need to
compute powers of matrices [59]. Otherwise, an iterative
method proposed by [28] also offers a more efficient method
of computation.
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2) SEMI-RINGS
Semi-rings are algebraic structures defined by a tuple
(A,⊕,⊗, 0©, 1©) such that for all elements a, b, c in the
non-empty set A and for the elements 0©, 1© ∈ A, the fol-
lowing conditions hold true [35], [60]

• ⊕ is commutative, associative and 0© is the additive
neutral element:

a⊕ b = b⊕ a (16)

(a⊕ b)⊕ c = a⊕ (b⊕ c) (17)

a⊕ 0© = a (18)

• ⊗ is associative, 1© is the neutral element and 0© is the
absorbing element:

(a⊗ b)⊗ c = a⊗ (b⊗ c) (19)

a⊗ 1© = 1©⊗ a = a (20)

a⊗ 0© = 0©⊗ a = 0© (21)

• ⊗ distributes over ⊕:

(a⊕ b)⊗ c = (a⊗ c)⊕ (a⊗ b) (22)

a× (b⊕ c) = (a⊗ b)⊕ (a⊗ c) (23)

The properties of the semi-ring can be interpreted to corre-
spond to human interpretations of trust. These interpretations
are described in [60] and [61] and demonstrate the usefulness
of semi-rings for trust modelling.

a: SEMI-RINGS FOR GRAPHS
Semi-rings have been proposed by [60] for trust-modelling
between nodes in graphs.

Typically, the set A in semi-rings used for trust modelling
are Cartesian planes of trust and confidence values. Each
point in the Cartesian plane is denoted (t, c) for trust and
confidence, respectively. The semi-ring operator ⊕ serves to
combine trust values of nodes along a path andwhile⊗ serves
to aggregate the trust values across different paths.

In [60], two semi-ring constructionswere proposed. In both
semi-ring definitions, the additional properties were imposed
to reflect properties of trust. These properties are

• a ⊗ b ≤ a, b to reflect that opinions propagated along
a path are limited by the trust values of nodes along the
graph and

• a ⊕ b ≥ a, b to reflect that opinions aggregated across
paths aremore information rich so they should be greater
than individual opinion values.

The first construction is the path semi-ring. In this semi-
ring, trust, and confidence values each come from the
domain [0, 1]. Therefore, the trust semi-ring would be S =
([0, 1], [0, 1],⊕,⊗) and the operators are defined [60]

⊗ :
(
tik , ckj

)
⊗
(
tkj, ckj

)
=
(
tik tkj, cikckj

)
(24)

⊕ :

(
tp1ij , c

p1
ij

)
⊕

(
tp2ij , c

p2
ij

)
(25)

=



(
tp1ij , c

p1
ij

)
, if cp1ij > cp2ij(

tp2ij , c
p2
ij

)
, if cp2ij > cp1ij(

max(tp1ij , t
p1
ij ), c

p1
ij

)
, if cp2ij = cp1ij

(26)

where tij indicates the trust from i to j and cij indicates the
confidence in this trust value. The superscript pkp indicates
that the corresponding value refers to that for a path k . In this
construction, only the trust value of one path is used at the
end to decide the trustworthiness of the user.

[60] also proposed an alternative distance semi-ring
construction. The domain of trust values is [0,∞] and
confidence values if [0, 1]. Therefore, the semi-ring is
S = ([0,∞] , [0, 1] ,⊕,⊗). The operators were defined

⊗ :
(
tik , ckj

)
⊗
(
tkj, ckj

)
=

 1
1
tik
+

1
tkj

, cikckj

 (27)

⊕ :

(
tp1ij , c

p1
ij

)
⊕

(
tp2ij , c

p2
ij

)
=

c
p1
ij + c

p2
ij

cp1ij
tp1ij
+

cp2ij
tp2ij

, cp1ij + c
p1
ij


(28)

so that the trust and confidence values are considered for
multiple trust paths. Both semi-rings behave differently as
demonstrated in [60] and should be chosen based on the
digital environment.

When considering more than two nodes along the path,
the above semi-ring operators proposed by [60] can be
extended to iterative computation so that the trust value
between the source s and target t is given(

tpkst , c
pk
st
)
=

⊗
eij∈pk

(tij, cij) (29)

where eij is an edge carrying the trust and confidence values
from i to j and i and j are intermediate nodes that from s to t
in the path pk .

Similarly, with more than two paths, the final path aggre-
gated trust value between source s and target t is

(tst , cst ) =
⊕

pk∈paths

(
tpkij , c

pk
ij

)
(30)

where pk is the k-th path in the set of possible paths from s
to t .

In [35], it is noted that confidence values are not immedi-
ately available to implement the semi-rings proposed by [60].
To obtain certainty values, [35] proposes two cik functions,
that takes in the edge eik between two directly connected
nodes i to k . The first function reduces the confidence value
as paths get longer by defining cik to be

cik (eik ) = α, 0 < α < 1 (31)

using a constant α as a decaying factor. Then clearly, by
Equation 24 and 27, the confidence between two indirectly
connected nodes decreases the more edges there are between
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two the nodes [35]. This reflects the intuitive understand-
ing that the more intermediate recommenders are required,
the more likely information is diluted by different opinions
and so the less reliable the propagated information.

Alternatively, [35] also proposes a distance-based confi-
dence function defined linearly by

cik (eik ) = min(β + γ di, 1) (32)

or exponentially by

cik (eik ) = 1− ηdi (33)

where di is the degree of node i in the edge from i to k and
β, γ, η are tunable parameters. Note that 0 < η < 1. The
underlying intuition is that the degree of certainty of the trust
value given by i about k is determined by how reliable i is
and the more edges i has, the more reliable i is. Therefore,
the greater the degree of i, the greater the confidence in the
trust value provided by i about k .

b: SEMI-RINGS FOR HYPER-GRAPHS
Hyper-graphs differ from graphs in that each edge can point
from one node to multiple nodes. Hyper-graphs are useful
for representing relationships in digital environments where
trust can be towards a group of individuals rather than a single
entity.

In the trust hyper-graphs proposed by [61], trust rela-
tionships can be established between one trustor and a
group of trustees. The direct edges typically found in a nor-
mal graph can be grouped to form an ‘‘AND connector’’.
The trust-confidence tuple attached to the edges can be
combined to form a single tuple describing the relation-
ship the trustor has with multiple trustees. To form an
indirect trust relationship between a trustor and a tar-
get group of trustees, the trustor, through intermediate
groups, to the target groups. This is called an ‘‘AND tree’’.
To compute the trust and confidence values attached to the
‘‘AND tree’’, the semi-ring from Equation 26 in [60] was
proposed.

C. BAYESIAN METHODS
Interactions in digital environments depend on many observ-
able and unobservable variables that play into people’s deci-
sion making and so, the outcome of any interaction can
be perceived as a random variable. Trusting another agent
prior to an interaction can then be measured by the believed
probability that some interaction in a trust environment would
result in a positive outcome. This interpretation of trust allows
the use of probability theory and inference for trust modelling
and decision making. Bayesian probability is frequently
applied [27], [29], [32], [38], [49], [50], [62]–[65]. Just
as humans combine their knowledge and observations to
make decisions, Bayesian probability, which is founded on
Bayes rule, combines data and a priori knowledge to produce
evidence-based probabilities.

1) BAYES RULE PROBABILITY MODEL
The most basic Bayesian inference model that will be
described in this section has been widely applied in trust [27],
[29], [32], [49], [50], [65]. Bayes rule is given by

p (θ |data) ∝ p (data|θ) p (θ) (34)

which tells us that the distribution of some parameter or
random variable given some observations can be given by
some combination of a likelihood (p (data|θ)) and prior
knowledge (p (θ)).

Let trustworthiness be the random variable T and there
have already been s successful interactions and n negative
interactions with the target agent. Bayesian probability can
determine the probability of trust given the collection of past
interactions as evidence. This is the posterior. In the context
of trust, T will be the belief in the trustworthiness of an
agent and (s, f ) will constitute evidence of successful and
failed interactions with the agent, respectively. By Bayes
rule, [27], [65]

P(T |s, f ) =
P(s, f |T )P(T )
Normalization

. (35)

The prior and likelihood functions are not fixed.
In trust, [27], [29], [32], [49], [50], [65] have all used
binomial distributions for the likelihood function and Beta
distributions for the prior. Then, the posterior can be
computed

P(T |s, f ) =
Binomial(s+ f ,T ) · Beta(α, β)

Normalization
(36)

= Beta(s+ α, f + β) (37)

The binomial distribution, Binomial(s+ f ,T ) is the proba-
bility mass function of the number of successes in a series of
s+ f independent interactions. Each interaction has probabil-
ity T of success since the agent’s trustworthiness reflects the
likelihood of successful interactions. Beta(α, β) represents
the prior knowledge about trustworthiness of the trustee
which can range from 0 to 1. α and β are the beta distribution
parameters and determine the shape of initial distribution of
the likely value of T . For trust, α can be interpreted to be the
prior expectation of the number of successful interactions and
β will be the prior expectation of the number of unsuccessful
interactions.

Suppose there is evidence of (s, f ) past interactions and
suppose not enough is known to form a prior expectation so
we set Beta(1, 1) = Uniform(0, 1). Then the distribution for
the trustworthiness value of the target would be, by Equa-
tion 36,Beta(s+1, f+1) [65]. Then, when there are additional
s′ and f ′ successful and unsuccessful interactions, we can let
the previous posterior Beta(s + 1, f + 1) be the new prior
and the likelihood function be Binomial(s′ + f ′,T ). Then,
the final posterior would be Beta(s′ + s + 1, f ′ + f + 1).
For convenience, we denote total positive interactions to be
Npos = s′ + s and negative interactions Nneg = f + f ′.
The expected trustworthiness value is then the statistical
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expectation of Beta(Npos + 1,Nneg + 1) which is

E
[
T |Npos,Nneg

]
=

Npos + 1
Npos + Nneg + 2

(38)

which is a single consolidated trustworthiness value.

2) CHERNOFF-HOEFFDING BOUND
In its simplest form, Chernoff-Hoeffding Bound provides
probability bounds for the sum of independent random vari-
ables. It states that for X1,X2, . . . ,Xm independent random
variables where 0 ≤ Xi ≤ 1 for i = 1, . . . , n, then for
0 < ε < 1− µ,

P
[
X̄ − µ ≥ ε

]
≤ e−2mε

2
(39)

where µ = E[X̄ ] [66]. Note that µ is equivalent to the
population mean. By definition of variables, we can interpret
this inequality as an upper bound for the minimum difference
between the sample mean and population mean.

Mohtashemi, Zhang and Zeinab all applied this bound
directly to their respective trust models [27], [29], [36].
In trust, Chernoff-Hoeffding bound is typically applied
to determine the necessary number encounters (the value
ofm) to achieve the desired level of confidence. Mohtashemi,
Zhang and Zeinab all defined ratings for interactions between
a trustor and a trustee to be binary. In other words, each
random variable Xi can have a value of 1 meaning the i-th
interaction was successful or 0 meaning the i-th interaction
was unsuccessful.

By definition, we can see that X1,X2, . . . ,Xm is in fact
a series of m Bernoulli random variables. Let trust be the
probability of success of each interaction (i.e., of each
Bernoulli random variable) and denote this θ . Since Xi is a
Bernoulli random variable, the population mean E = θ is
the expected number of successful interactions in the long
run. In Mohtashemi, Zhang and Zeinab, θ̂ , equivalent to the
sample mean of interactions, acts as the estimator of trust, θ ,
between the trustor and the trustee. Applying Bound 39 tells
us that for the m past interactions,

P
[
|θ − θ̂ | ≥ ε

]
≤ 2e−2mε

2
≤ δ (40)

where ε > 0 is a trustee set constant representing the
maximum tolerable error between the actual trust value and
estimator. The trustee should also define the maximum level
uncertainty allowed for error value, denoted δ. For example,
a trustee that is only willing to accept a trust value error
of 0.05 and must be 95 percent certain that the error is within
acceptable range will set ε = 0.05 and δ = 1 − 0.95 = 0.5.
We can then manipulate the second inequality in Bound 40 to
be

m ≥ −
1
2ε2

ln
(
δ

2

)
(41)

which tells us the minimum number of interactions to achieve
the desired level of trust value accuracy with the desired level
of confidence. Using the example above, we would need at
least 277 interactions before the desired level of accuracy and
confidence is achieved.

3) HIERARCHICAL BAYESIAN MODELS
In hierarchical Bayesian models, the relationship between a
random parameter and its observations is extended tomultiple
layers, where each random parameter forms a layer which
can have theoretically infinite layers of random parameters
above it (hyperparameters). Each parameter layer influences
the parameter below it in the same way θ influences data in
the posterior of Equation 34. Bayes rule given by Equation 34
is extended to multiple layers of random variables to compute
the posteriors - the distribution of all random parameters
given the observed data in the lowest level [67].

Suppose the random variable θ is of interest and there are
multiple instances of this random variable, denoted θj for the
j-th random variable. Suppose also that each θj has produced
a finite vector of observations yj =

(
. . . , yjk , . . .

)
. Let the

distribution in which the data is observed be Q. Then, it can
be said that yjk ∼ Q(θj). Further, suppose that each θg in
fact rises from a common distribution W described by the
parameter γ . Then θj ∼ W (γ ). This process of defining
distribution parameters by other random variables can be
repeated as many layers as is needed. In this case, suppose the
distribution of γ is roughly known (e.g., uniform distribution
with known start and end distributions), then by Bayes rule,
the posterior for all unknown parameters is

p (γ, θ |y) ∝ p (y|θ, γ ) p (θ |γ ) p(γ ) (42)

which gives us the distributions of the parameters of inter-
est. It is more likely that the overarching random parameter
that determines the distributions of all the parameters is of
interest [67]. Therefore, the marginal distribution of γ can be
computed

p (γ, θ |y) ∝
∫
p (y|θ, γ ) p (θ |γ ) p(γ )dθ (43)

when θ is a continuous random variable. The discrete case is
analogously defined. Computations are typically performed
stochastically using methods such as Markov Chain Monte
Carlo (MCMC) methods [67].

This hierarchical Bayesian model can be immediately and
simply applied. For example, thetaj describes the random
variable where agent j is cooperative and yj is the past expe-
riences that have been had with agent j. In this case, γ would
determine agent behaviour in general, being the parameter
in the distribution of agent behaviour theta. The posterior of
random variable γ |y, computed using Equation VI-C3 would
thus tell us the distribution of the behaviour of agents given
past experiences. One issue with Bayesian models is that the
distribution itself is not defined, even if its parameters can
be encoded as random variables. Nevertheless, hierarchical
Bayesian models have been used for trust modelling.

A more complicated hierarchical Bayesian model,
BLADE, was applied by Regan for e-commerce and rep-
utation systems [64]. In BLADE, ratings by advisors and
buyers about different sellers are random variables influ-
enced by random variable representing the features of the
respective sellers. Since the distribution parameters of ratings
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and features are unknown, their distributions are determined
further by random variables, denoted θ by Regan, that deter-
mine the respective distributions of each feature or rating
random variable. Dirichlet distributions were used to describe
each of the individual random variables. Time is incorporated
into this model by dropping the parameters of the Dirichlet
distribution at every time step by a constant factor.

HABIT, a hierarchical Bayesian model proposed by Teacy,
takes a different approach with the hierarchy of parameters
and chosen distributions [62]. In HABIT, two different but
related models - the confidence and reputation models - are
defined. The confidence model describes the likely outcome
of a particular interaction between a specific trustor and
trustee. The reputation model describes the trustee’s global
reputation. In the confidence model, the outcome of an inter-
action between trustor i and trustee j is a random variable,
Oij. To determine the distribution of the outcome random
variable, a random distribution parameter for each outcome
random variable, denoted θij, is defined. This random variable
is determined by a random vector variable, θ·j which collects
all opinions about trustee j. This random vector parameter has
an additional random variable that determines its distribution
parameters, denoted φ. These variables θ·j and φ form the
reputation model.

For the confidence model, a vector describing probability
of the likely value of the outcome of the interaction was
used as the likelihood function. A Dirichlet distribution was
assigned as the conjugate prior distribution. Hyperparame-
ters for each Dirichlet distribution determined the shape of
the distribution θij and were updated whenever with each
direct interaction. For the reputation model, a non-parametric
Dirichlet process (not Dirichlet distribution) model. The prior
for φ was fully described by a constant and the set of
trustees {θ·j}nj=1. The posterior for this prior was defined along
similar terms. Bayes rule could be used and there would
be a final closed form solution. Alternatively, a Gaussian
reputation model could be implemented which requires the
use of MCMC methods to achieve a closed form solution.
In the Gaussian reputation model, φ is the vector containing
all means and covariances which represents general trustee
behaviour and how informative reputations sources are [62].
The likelihood function is then defined using the standard
Gaussian probability density function. The prior is then
selected to be the normal-inverse-Wishart distribution.

4) DEMPSTER-SHAFFER THEORY
Dempster-Shaffer Theory (DS Theory) is a generalisation
of Bayesian probability that maintains the conditioning on
observed data and summarising state of belief but removing
the need for a global probability distribution assignment [68].
In DS Theory, probabilities are assigned to sets of events
rather than each individual mutually exclusive event [69],
[70]. This means that evidence collected can be associated
with a set of events and assumptions need not be made about
the single events within this evidential set [70]. For a set of
mutually exclusive and exhaustive single events, DS Theory

is interested in its power set (set of all subsets) and assigns a
massm ∈ [0, 1] to each element in the power set, via the basic
probability assignment function (bpa) [69], [70]. It should be
noted that the mass for the null set should be 0 and all the
masses should sum to 1 [69]. Formally,

m : P(X ) → [0, 1], (44)

m(∅) = 0, (45)∑
A∈P(X )

= 1 (46)

where X is the universal set of events and P(X ) is the power
set.

There are three functions, besides bpa, that are of inter-
est in trust. They are the belief in event of interest
A ∈ P(X ), the disbelief in A and the uncertainty in A. The
belief, disbelief and uncertainty functions take as input the
basic probability assignment and are denoted b(A), d(A) and
u(A) respectively. The belief in setA represents the total belief
about Awhen all evidence bearing on A has been pooled [69].
Disbelief represents the total belief that A does not occur
and uncertainty represents the level of uncertainty in the
occurrence of event A or ¬A [71]. The following definitions
then follow

b(A) =
∑
B|B⊆A

m(B), (47)

d(A) =
∑

B|B∩A=∅

m(B), (48)

u(A) =
∑

B
∣∣B∩A6=∅
B*A

m(B). (49)

and demonstrate the method DS Theory takes to generalise
Bayesian probability in the assignment of beliefs based on
evidence.
Another way in which DS Theory generalises Bayesian

probability is in its combination of multiple sources of evi-
dence. Combination rules in DS Theory aggregates these
multiple sources of evidence to provide a single meaningful
value summarising belief in the events of interest. These mul-
tiple sources of evidence provide different belief assessments
for the events in the universal set and DS Theory assumes that
these sources are independent [70].
Dempster’s rule of combination combines evidence using

the aggregation of basic assignment values,m1 andm2, in the
following way

m12(A) (50)

=


1

1− K

∑
B∩C=A

m1(B) · m2(C), when A 6= ∅

m12(∅) = 0, when A = ∅
(51)

where K =
∑

B∩C=∅m1(B)m2(C) [70]. K represents the
basic probability mass associated with conflict. 1 − K is a
normalization factor that serves to completely ignore conflict
and attributing the associated probability mass to the null
set [70]. Combination rules have been shown to provide
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counterintuitive results [72]. For this reason, some other types
of combinations rules have been proposed [70].

In trust, DS Theory has been used in conjunction with
several other methods. Wang used DS Theory as a precursor
to a neural network [47]. In the DS Theory portion of Wang’s
neural network, a set of representative features were selected
from the set of inducing factors. This set of representative
features was used as evidence. Then basic belief assignment
was carried out using degree to which each input factor
belongs to trust and distrust classes. Themasses for each class
and evidence were combined using a mass combining unit
that applied Dempster’s rule of combination. The combined
masses were then used as input to the fusing units that formed
the neural network. How the fusing layers of the neural
network work is discussed in Section VI-D4.c.
An alternative application of DS Theory combined with

Beta distributions, as discussed in SectionVI-C1, was applied
by Zhang and Zhou to their binary trust reputation sys-
tems [21], [29]. The possible atomic outcomes defined by
Zhang and Zhou were that the trustee was either trustwor-
thy, event denoted T , or untrustworthy, event denoted ¬T .
This means that the power set of interest would simply be
P({T ,¬T }) = {{T }, {¬T }, {T ,¬T },∅}. From general DS
Theory, the aim now would then be to assign belief functions
to the subset of interest, {T }.

With the definitions of belief, disbelief, and uncertainty,
and because the way the set of outcomes is so simply defined,
the belief, disbelief and uncertainty functions could be sim-
ply given by each of their first equalities in Equations 52.
Then, to assign the mass functions which are necessary to
compute belief, disbelief, and uncertainty, bpa values must
be assigned. This was done using the number of success-
ful interactions, denoted r , and unsuccessful interactions,
denoted s, as evidence. Borrowing from Beta distributions
discussed in Section VI-C1, the expectations of successful
and unsuccessful interactions were adapted to define themass
functions. Therefore, the belief, disbelief, and uncertainty are

b(T ) = m ({T }) =
r

r + s+ 2
, (52)

d(T ) = m ({¬T }) =
s

r + s+ 2
, (53)

u(T ) = m ({T ,¬T }) =
2

r + s+ 2
(54)

which were then used by Zhang as a computational tool for
reputation scores [29] and by Zhou as a decision-making
condition in their trust process [21].

5) BELIEF PROPAGATION
Belief Propagation (BP) algorithms coupled with k-Nearest
Neighbours Graph (k-NNG), discussed in Section VI-D2.b,
has been used in trust modelling of online content distribu-
tion [73]. Trust modelling using belief propagation requires
labels for at least a small number of known entities in the
network so that information can be propagated throughout
some graph.

Belief propagation is a likelihood updating algorithm that
uses Bayes Theorem to propagate the effect of new evi-
dence throughout a directed, acyclic graph called a belief
network [74], [75]. Using the directed graph obtained
from the k-NNG algorithm, the relationship between
nodes A©→ B© will be that the trustworthiness of A implies
the trustworthiness of B. Their edge is quantified by the con-
ditional probability P(Bj|Ai), where Ai and Bj are the states of
variables A and B [74], [75]. In the context of trustworthiness,
A,B ∈ {0, 1} are the trustworthiness variables defined by the
indicator random variable in Equation 72. The edge weight
can be interpreted in this context as the probability that Bj is
in trustworthy or untrustworthy given that Ai is of trustworthy
or untrustworthy.

For a single connected network - there is at most 1 undi-
rected path between any two nodes – Pearl describes an
BP algorithm that updates probability values at for each
node (variable) in one pass and produces probabilities that
are consistent with the axioms of probability theory [75].
Following the general fragment of a singly connected graph
in Pearl’s paper [75], suppose A© has parents B© and C©.
Since the graph is acyclic, the graph above A© can be par-
titioned into the subgraph of nodes connected (directly or
indirectly) to B© and the subgraph of nodes connected to A©.
Also suppose that A© has children X© and Y©. Like with parent
nodes of A©, the subgraph that is a child to A© can also be
partitioned into a subgraph of nodes connected to X© and a
subgraph of nodes connected to Y©.
The data contained in the subgraph of B© and C© is denoted

D+BA and D+CA respectively and the data contained in the
subgraph of X© and Y© is denoted D−AX and D−AY respectively.
Node A© separates B©, C© and each of its connected subgraphs
from X© and Y© and each of its connected subgraphs. There-
fore, the effect of D+BA and D+CA and Ai trustworthiness data
on the children subgraphs is summarised by Ai and we can
write [74], [75]

P(D−AX ,D
−

AY |Ai,D
+

BA,D
+

CA) = P(D−AX |Ai)P(D
−

AY |Ai). (55)

The goal of belief propagation in our context would be to
find out the probability that A is trustworthy or untrustworthy
given all the available data. We can then denote belief for
node and state Ai as BEL(Ai) and define this belief using
conditional probability to be

BEL(Ai) , P(Ai|D
−

AX ,D
−

AY ,D
+

BA,D
+

CA). (56)

Following the derivation in [75], obtain

BEL(Ai) = αP(D
−

AX |Ai)P(D
−

AY |Ai)

·

∑
jk

P(Ai|Bj,Ck )P(Bj|D
+

BA)P(Ck |D
+

CA)

 (57)

where α is a normalization constant. Equation 57 demon-
strates how the belief of the trustworthiness ofA is determined
by causal data from the parent subgraphs, diagnostic data
from children subgraphs and the fixed conditional probability
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matrix that determines how A is affected by its immediate
causes: B and C .

It can be seen that the children X© and Y© then need to prop-
agate P(D−AX |Ai) and P(D

−

AY |Ai) information to A© and parent
nodes B© and C© need to propagate P(Bj|D

+

BA) and P(Ck |D
+

CA)
to A©. According to Pearl, the information propagated from
parent nodes is denoted [74], [75]

λX (Ai) = P(D−AX |Ai), λY (Ai) = P(D−AY |Ai) (58)

and that propagated from children nodes is denoted

πA(Bj) = P(Bj|D
+

BA), πA(Ck ) = P(Ck |D
+

CA) (59)

for ease of defining the updating equations.
When some node, for example A©, receives new informa-

tion, it needs to update its parent nodes and children nodes.
As derived by Pearl, the updating function for propagation by
A© to each of its respective parents is [75]

λA(Bi) = λ
∑
j

[
πA(Cj)

∑
k

λX (Ak )λ(Ak )P(Ak |Bi,Cj)

]
(60)

and the updating function for propagation to each of its
children is

πX (Ai)= αλY (Aj)

∑
j

kP(Ai|Bi,Ck )πA(Bj)πA(Ck )

 . (61)
Belief propagation is touted by its creators to mimic the

way people make decisions [75]. It is also guaranteed to
achieve equilibrium in time proportional to the network
diameter [75] compared to other machine learning methods
that may not reach convergence. The calculations necessary
for each node is also simple and so is hardware imple-
mentable [75] and can address the issues raised in Section II.

It should however be noted that the above calculations only
work for singly connected graphs. This is highly unlikely in
the context of trust. Between any two people there can be
multiple trust relationships.Methods to extend themethod for
singly connected graphs to multiply connected graphs have
been proposed briefly by Pearl [75]. Relatively faster variants
of the belief propagation algorithm have also been proposed
such the Fast Belief Propagation algorithm proposed in by
Gisel [73].

In Fast Belief Propagation [76], the final belief of nodes is
approximated by solving for bh in the linear system[

I+ aD− c′A
]
bh = φh (62)

where φh is a vector containing the prior beliefs about nodes,
D is a diagonal matrix, A is the adjacency matrix and I is

the identity matrix. a =
4h2h

1−4h2h
and c′ = 2hh

1−4h2h
are constants

defined to account for hh which is the degree of similarity
between two nodes. hh is chosen using conditions in [76]
before solving to ensure convergence.

D. MACHINE LEARNING METHODS
Machine learning models are useful for learning different
trust factors and assigning weights to them based on data.
Machine learning methods vary, each with their unique bene-
fits. The main benefit of machine learning is the construction
of trust models based off on data rather than human under-
standings of trust which may be non-representative and too
complex to model.

1) CLASSIFICATION
Classification in trust modelling is used to gather multiple
factors and use them to classify nodes as trustworthy or
untrustworthy. There are several different methods each with
their individual benefits.

a: SUPPORT VECTOR MACHINE (SVM)
SVM is a classification method used in trust
modelling [58], [77]. Data was obtained from online com-
munities by Liu et al. [77] and an IoT network from a
convention by Jayasinghe et al. [58]. Decisions to interact
with reviews on online communities were used as indicators
for trust decision in Liu’s paper [77]. In [58], the trust values
were created using k-means clustering so that while there was
no explicit trust value in the data set, the effectiveness of the
selected features could still be tested to an extent.

In the trust model by Liu variables available in the data set
were used directly [77]. However, Jayasinghe described fea-
tures that were thought to described trust, such as past experi-
ence and centrality, using simple mathematical constructions
[58]. In both cases, the selected or modelled features were
mapped onto a feature space and SVM applied.

In SVM, the goal of the algorithm is to find a hyperplane
that correctly divides data points into trustworthy (repre-
sented as 1) and untrustworthy (represented as −1) with
maximum margin between the two classes. Where the trust
features are represented in the vector x and the trust decision
is y ∈ {−1, 1}, the set of n trust data points will be

(x1, y1), (x2, y2), . . . , (xn, yn). (63)

To prevent data points from falling into the margins of the
hyperplane and being incorrectly classified, the hyperplane is
restricted (for the linear form) such that [78]

yi
(
wT xi − b

)
≥ 1, for all 1 ≤ i ≤ n. (64)

To maximise the split between the data points, the distance
between the hyperplanes, given by 2

‖w‖ , should be maximised
and so, ‖w‖ needs to be minimized. Finally, in linear form,
the optimal hyperplane that divides the data points correctly
with maximal margin will be [78]

wTx−b = 0. (65)

By changing the dot product of vectors u and v to a
nonlinear kernelK (u, v), the SVM algorithm can bemodified
to best suit the digital environment [78]. The radial basis
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function kernel [78]

K (u, v) = exp
(
−
‖u− v‖2

σ 2

)
(66)

was used by Liu [77]. Other knowledge about the digital
environment and the way trust decisions are made can also be
implemented within the kernel function to make for a more
accurate trust model [78].

b: RANKING SVM (RSVM)
RSVM is a variant of SVM that was used by [26] for estab-
lishing trustworthiness of different users on social networks.
This variant of SVM was used so that users could be accu-
rately ranked according to features and this ranking used
to establish corresponding continuous trust values. The trust
values can then be said to be consistent with the rankings
established by the features in the trust model.

RSVM for trust modelling can be performed as follows.
Suppose for some trustor j in a data set, there are n trustees
to be ranked where each of the trustees have known ranks r∗j .
Then, RSVM should aim to find the ranking function fw(j)
such that the resulting rank rfw(j) and r

∗ have as few con-
tradicting ordered pairs as possible (discordant pairs) [79].
w is learned by RSVM and determines fw(j) which then
determines the rank of trustees by the projection of data points
in the feature space onto w [79]. The RSVM optimization
problem aims to maximize the number of pairs such that [79]

∀j
(
∀(dx , dy) ∈ r∗j : (dx , dy) ∈ fw(j)

)
. (67)

This is NP-hard. The solution is approximated by intro-
ducing non-negative, slack variables ξi,j,k and SVM margin
maximisation [79] to instead find w that minimizes [26]

V (w, ξ ) =
1
2
‖w‖2 + C

∑
ξi,j,k (68)

subjected to

∀(j > k) : wT xij − wT xik ≥ 1− ξi,j,k , ξj,k ≥ 0 (69)

where xij is the normalized feature vector between users i and
j.

c: DECISION TREE LEARNING
Decision tree learning has been used by Zhang and Fang
to classify users into trustworthy and untrustworthy classes
[20], [54]. Given a data set with known trust values, the deci-
sion tree training algorithm finds the splitting condition that
divides the data subset the best for the particular level, at the
particular node. This recursive splitting stops when no other
splitting condition can add value to the prediction.

Decision trees are useful in considering factors regardless
of whether they are binary, discrete, or continuous. They
are also useful because they allow variables to split in a
hierarchical manner, considering certain variables only after
some other variable has been considered. The end product is a
series of splitting conditions and an order in which to perform
this splitting condition that will likely determine if a trustee
is trustworthy with the highest accuracy.

d: Naïve BAYES CLASSIFIER
Naïve Bayes classifier has been used to classify trustees
based on their features using Bayesian probability [24], [41],
[77], [80]. Suppose there are features, x1, x2, . . . , xk to be
used to classify a trustee, Bayes rule is used to compute the
probability that the trustee is trustworthy given the available
feature evidence. This is given by

p (T |x1, x2, . . . , xk) =
p(T )p(x1, x2, . . . , xk |T )

p(x1, x2, . . . , xk )
(70)

=
p (x1, x2, . . . , pxk ,T )
p(x1, x2, . . . , xk )

(71)

where 71 is achieved due to the definition of conditional
probability and T is the indicator random variable for the
trustworthiness of the trustee, defined

T =

{
1, if trustworthy
0, if untrustworthy.

(72)

The denominator is just a normalization factor, so we
ignore it. To compute the numerator easily, it is naïvely
assumed that all features are mutually independent, condi-
tioned on T . Therefore, the posterior is given

p (T |x1, x2, . . . , xk) ∝ p(T ) ·
k∏
i=1

p (xi|T ) . (73)

Finally, the classifier will provide the trust decision, T̂ ,

T̂ =

{
1, if p (1|x) ≥ p (0|x)
0, if p (1|x) < p (0|x)

(74)

where x = (x1, x2, . . . , xk ) is the vector of features [80].
Since trust modelling is a form of social control and mod-

elling where agents act in a highly interdependent manner,
the mutual independence assumption is likely too strong.
Nevertheless, the classifier and use of Bayes Rule is still
applicable. In fact, the use of Bayes rule is beneficial as it
allows for a priori knowledge, evidence, and the strength of
evidence to be accounted for.

2) CLUSTERING
While clustering may not allow for classification of trustees,
clustering is still a useful tool for combining and identifying
similar agents and entities based on defined criteria for further
analysis.

a: K-MEANS CLUSTERING
K-means clustering is a common clustering algorithm used to
group similar data by their numerical features [81]. Each clus-
ter of data is represented by its centroid, typically a weighted
average of all the points within the cluster. The number
of clusters, conventionally denoted K , is user-defined. The
algorithm works by first selecting K initial centroids. Then,
the K clusters are formed by assigning each data point to its
closest centroid. The centroid of each cluster is recomputed,
and the assignment process is repeated until the centroid does
not change.
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Jayasinghe created numerical features describing interac-
tions and connections between trustee and trustor agents in
an IoT setting [58]. Data however typically does not come
with trust value tagged to each interaction. To perform further
classification, Jayasinghe first performed k-means clustering
on the data to group similar interactions into two to three clus-
ters. Doing so helps to distinguish between better and worse
performing interactions with respect to the features. Given
that the features reasonable represent trust, the clusters then
help indicate which interactions were more likely trustworthy
or untrustworthy, despite the lack of explicitly recorded data.
If there were three clusters, one of them could be used to
indicate neutrality about trustworthiness.

Obtaining the clusters created a set of labelled data which
was then used in SVM for classification. The use of SVM
for classification has been discussed in Section VI-D1.a.
Briefly, SVM helped to find a boundary of features that
could distinguish between clusters. This boundary then offers
a standard for features to determine if a future interaction
should reasonably belong to one cluster or the other.

b: K-NEAREST NEIGHBOUR GRAPHS
Another way to group users together borrows from k-NN
classification to build a graph. This graph can function as
a method to perform propagation or other trust evaluation
methods. Given a set of data, the nearest neighbour of vi ∈ V
is a point vj ∈ V , j 6= i, with minimum distance from vi. Gen-
erally, Euclidean distance is used and to ensure uniqueness
of the nearest neighbour, the maximum index when there are
ties is used. The edges can then be defined e(vi) =

〈
vi, vj

〉
∈

E and the nearest-neighbour graph would be the tuple
G = (V ,E) [82]. The k-NNG graph is simply the
nearest-neighbour graph with k edges instead of just one
edge.

k-NNG coupled with Belief Propagation (BP) algorithms,
discussed in Section VI-C5, has been used in trust modelling
of online content distribution [73]. The idea behind using
k-NNG was primarily to group similar entities into a k-NNG
so that known labels could be propagated over the rest of the
network. This is then useful to determine the trustworthiness
of entities even if direct data about them is not explicitly
available.

In [73], the words in online articles were gathered and
passed through tensor decomposition to group similar arti-
cles. The articles were then represented as nodes in the graph,
andwhichwere grouped into a k-NNG.Articles that were suf-
ficiently similar to known fake news articles were labelled as
fake news. To generate a k-NNG graph, metrics for distance
are needed. Besides what was done in [73], it is also possi-
ble to incorporate trust features, such as those described in
Section III, within a distance metric like Euclidean distance.
The k-NNG graph is then a directed graphG = (V ,E) where
for each agent v ∈ V , there are k edges pointing to the k most
similar agents denoted ui ∈ V . It is then known the agents that
are feature-wise most similar to each other. This similarity

can then be used to make trust decisions, even if data such as
quality of direct interactions, is not available.

3) REINFORCEMENT LEARNING
Reinforcement learning is a type of machine learning method
where an agent interacts with the environment in a discrete
series of time steps to achieve some goal [83]. In reinforce-
ment learning, the agent may be in states, take actions and
use the received rewards to evaluate the quality of their
choices [83]. The agent uses the states, actions, and rewards
to formulate a policy which maps states to actions [83], [84].
Using this policy, the return is the expected future rewards
that the agent should aim to maximise [83]. The policy has
value functions which assigns to states or state-action pairs
the expected return if the agent follows the policy [83], [84].

One of the prevalent methods of performing reinforce-
ment learning is Q-learning where the expected value of
each action in different states is stored and incrementally
updated [84]. The policy is formed from executing the action
with the highest expected value [84]. The value function used
by Q-learning is a function of the immediate reward and the
expected reward based on the new state [84]. This is expressed
with

Q(xt ,ut )= (1−α)Q(xt ,ut )+α(R+ γQ(xt+1,ut+1)) (75)

where Q is the expected value of performing action u ∈ u
in state x ∈ x, R is the reward, α is the learning rate and
γ is the discounting factor [84]. The learning rate determines
the weight given to new information and the discounting
factor determines how the emphasis the agent places on future
rewards.

a: NETWORK EXPLORATION
Reinforcement learning has been used to learn the trust-
worthiness of target agents based on the strength of trust
paths leading into the target agent [34]. This is done by first
initializing a trust graph such that each node represents a user,
and each edge represents the relationship between two users.
Each edge is weighted with the direct trust value τ between
the two users.

Two methods for Q-learning were proposed in [34]. For
both methods, the agent starts from the source node and
selects one of its neighbours using ε-policy.
In the min-max aggregation approach, upon choosing the

next node vj from the current node ui, the agent receives a
reward rstrength

rstrength(ui, vj) (76)

=

{
−1, if vj has already been visited
τ (ui, vj), otherwise

(77)

which rewards the agent based on the trust outcome of the
node choice. The −1 punishes the agent for visiting existing
nodes to avoid the formation of cycles. The agent can then
learn from this reward and update the expected return from
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taking this particular trust edge with

Qtstrength(ui, vj) (78)

= (1− α) · Qt−1strength(ui) (79)

+αt ·min
(
rstrength(ui, vj),Q

t−1
strength(vj, v

∗)
)

(80)

which defines the terms for Q-learning in Equation 75 for
the context of trust. The expected future reward is determined
by the node’s trustworthiness or the benefit of following the
optimal policy for the subsequent action [34]. This learning
process is repeated until one of the neighbouring nodes of the
target is reached. A path to the target node is now available.
Using the learned expected edge rewards, nodes are chosen
using the optimal policy

π∗(ui) = argmax
vj∈Neighbour(ui)

Qstrength(ui, vj) (81)

starting from the source node to reach the target node. The
trust strength of the target is determined by the trust strength
of the path, optimised by reinforcement learning, which is
defined to be the minimum value of the trust edge.

Amore complexmethod proposed by [34] for indirect trust
computation is the weighted mean aggregation method which
attempts to find the path strength to all neighbouring nodes.
Here the reward for each node is redefined to be

rpath(ui, vj) (82)

=


−1, if vj has already been visited
1, if target’s neighbour node is reached
0, otherwise

(83)

to learn whether or node reaching a particular node would
result in a cycle being formed and avoid such a situation. The
learning proceeds via the Q-learning equation

Qtpath(ui, vj) = (1− α)Qt−1path(ui, vj)

+α(rpath(ui, vj)+ γQ∗path(vj, v∗)) (84)

which is similar in the way it employs Q∗ value like in
Equation 78 but uses an averaging method instead like that
seen in Equation 75. In the weighted average method, instead
of moving on to the next node and repeating the learn-
ing process, the agent must first repeat visiting each node
from the current node. This time it visits nodes that have a
Qtpath > 0 to avoid nodes that are likely to form cycles. After
doing so, the agent can learn the strength of the trust path
using another Q-learning equation

V t
strength (85)

= (1− α)V t−1
strength(ui) (86)

+α

(∑
vj∈C(ui) rstrength(ui, vj)V

t−1
strength(vj)∑

vj∈C(ui) rstrength(ui, vj)

)
(87)

whereC(ui) is the set of neighbours ui trusts. Here, the imme-
diate reward is defined

rstrength(ui, vj) = τ (ui, vj) (88)

until the node vj is reached. At the target node, the final
rstrength is defined to be 1 and Vstrength(vj) = τ (ui, vj).

4) ARTIFICIAL NEURAL NETWORKS
Artificial neural networks are a machine learning paradigm
that centres around mimicking the way the human brain
learns. An artificial neural network consists of simple
processing units called neurons and weighted connections
between those neurons. In neural networks, there may be
multiple layers of neurons, such as the input layer, hidden
layer, and output layer, that are connected to each other and
within the layer depending on the type of neural network.
Between two neurons (i, j), theweight is defined by a function
ω((i, j)) [85]. Each neuron receives either inputs to the net-
work or the output of other neurons and processes these as
inputs to the propagation function [85]. The output of the
propagation function and the previous activation state of the
neuron acts as input to the activation function which will
output the new activation state of the neuron [85]. Finally,
the activation acts as input to the output function which gives
the data output for other neurons [85].

a: BASIC NEURAL NETWORK TRUST MODEL
The most basic neural network has been used for trust mod-
elling in [20], [25], [47], [55]. In [25], different features
were modelled using the methods in Section VI-A2 and
other heuristics. This generated a set of features which then
underwent exponential time-based weighting to reduce the
weight that the older feature values have. These feature values
were then used as input to a neural network forming the input
layer. This neural network then outputs which nodes with no
previous trust relationship is likely to have a trust relationship
and the strength of this newly formed trust.

In Zhang’s paper, the neural network is implemented in
context of the vehicular network digital environment to deter-
mine if the vehicle is trustworthy based on the receiving and
delivery time of the messages by the vehicle [20]. A simple
ratio of Euclidean distances which represents the time taken
for a particular vehicular node to deliver a particular mes-
sage it receives was used as a proxy for trust values. Since
there may be transmission errors, the computed trust value
may not always be consistent with the expected trust values.
Therefore, the Euclidean distances are adjusted using a neural
network to obtain a more reflective trust value.

The message receiving vehicular nodes was used as the
neurons for the input layer to the neural network. These took
in the numerator Euclidean distance (representing the time
take for the receiving vehicular node to receive message)
as inputs. The next layer - the hidden layer - consisted of
the message forwarding nodes that take in the denominator
Euclidean distance (representing the time taken for the mes-
sage to be forwarded after it is first delivered by the previous
sender). In the output layer, the nodes receive the ratio, which
is the trust value. When the trust values that were expected
and the actual trust values are inconsistent, back propagation
is performed, and the Euclidean distances are adjusted by
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the respective nodes in the hidden and input layer. This way,
a more representative trust value is obtained and stored for
future interactions.

b: FUZZY LOGIC AND NEURAL NETWORKS
Neural networks can be used in conjunction with other com-
putational methods. In Wu’s paper, features obtained directly
from data sets of a user were used as input into a fuzzy
logic module [55]. In this module, fuzzy logic was used to
determine the degree to which each particular feature was
considered ‘‘low’’, ‘‘average’’, ‘‘high’’ or ‘‘very high’’. This
was done using membership functions for each category
which produced the degree of membership for each feature in
each of the categories. How this is done is further discussed
in Section VI-A3.

These membership degrees were stored in the neurons in
the input layer of the neural network. This neural network
fused these inputs with a rule layer which consists of 45
neurons to cover all the combinations of inputs. The rule
layer acts as input to the output layer which only has four
neurons. Each neuron in the final output layer represents the
membership function of the trustworthiness of the user in
each of the four categories - ‘‘low trustworthiness’’, ‘‘average
trustworthiness’’ and so on. The trustworthiness of the user is
the category in which the user has the highest membership
degree. Training of this neural network was done with the
gradient descent method and back propagation algorithm.

c: DEMPSTER SHAFFER THEORY AND NEURAL NETWORKS
In [47], features were constructed using functions from
Section VI-A2 and heuristics about a user. These features
were used as input to a Dempster Shaffer Theory module.
In the module, mass functions were assigned to each feature
to obtain an evidence prototype. Dempster’s rule of com-
bination was then used to combine the different sources of
evidence to derive a jointmass function for each feature value.
More details of Dempster Shaffer Theory will be discussed in
Section VI-C4.

The joint mass function for each feature value formed a
single neuron in the input layer of the neural network. In the
next layer, the local fusing layer, the neurons are trained
by the data set based on the joint mass functions from the
inputs. The best outputs from the local fusing layer form the
masses which are trained in the neurons in the global fusing
layer. In each node of the fusing layer, a logistic sigmoid
activation function was used in each node. Finally, the output
layer gives the mass functions for the event that the user
is trustworthy and the event that the user is untrustworthy.
The trustworthiness is thus determined by the most likely
trustworthiness event. This neural network was also learned
using the standard back propagation with gradient descent
approach.

d: BERNOULLI NEURAL NETWORK
Besides the most basic neural network, more complicated
constructions have been implemented in trust management.

One such example is the Bernoulli neural network imple-
mented by [86]. In the Bernoulli neural network, there are
three layers - the input, hidden and output layer. The defining
characteristic of the Bernoulli neural networks is that the
hidden layer uses Bernoulli polynomials as activation func-
tions [87]. The n−1-th hidden layer neuron can be computed
recursively with

φn−1(x) = xn−1 −
n−2∑
k=0

(
n
k

)
φk (x)/n (89)

which is the recursive form of the Bernoulli polynomial. The
input and output layer each have one neuron, both activated
by a simple linear function f (x) = x. The weight between the
input neuron and the hidden layer neurons is set to be one.
The weights between the hidden layer and the output layer
neuron are set to beωj where j = 0, 1, . . . , n−1which should
be decided or adjusted. Let the input into the network be x
and the output be y. From the structure of the entire neural
network, the output of the network is

y = ω0φ0(x)+ ω1φ1(x)+ · · · + ωn−1φn−1(x). (90)

A Bernoulli neural network is implemented as part of the
trust model in [86]. In the model, advisor agents train models
individually, using contextual features, based on past interac-
tions to output a predicted conditional probability about the
trustworthiness of the trustee. This recommendation acts as
evidence which is aggregated together with the truster’s own
first-hand evidence using the Bernoulli neural network. The
neural network trains its weights using gradient descent back
propagation with a cross-entropy loss function.

e: DEEP BELIEF NEURAL NETWORK
Deep Belief Neural Networks(DBN) are neural networks
with many hidden layers to perform a deep hierarchical rep-
resentation of the input data [88]. One type of DBN uses the
Restricted Boltzmann machines(RBM) in each layer of the
neural network [88], [89]. RBMs is a stochastic network that
consists of two layers of nodes - a hidden layer and a visible
layer [89]. Each node in one layer is connected to all the
nodes in the other layer with weights and vice versa so that
the values in one layer affects the values of the other. Nodes
take on a value of either 0 or 1 at different time intervals with
probability conditioned on the nodes in the other layer [89].
RBM learns by unsupervised learning by presenting training
patterns to the visible nodes [88]. The weights of connections
and the biases in each layer is adjusted to minimize the energy
of the network [88].

DBN uses RBMs in each of its layers by constructing
the neural network such that top hidden layer of one RBM
acts as visible bottom layer of the RBM layer above it [89].
Training of the DBN is done by first iteratively training
each RBM layer using unsupervised learning to obtain ideal
parameters for extracting features from the data [89]. Then
supervised learning classification usingmethods such as back
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propagation with gradient descent is performed to fine tune
the weights throughout the whole network [89].

This DBN trainingmethod has been used in trust modelling
to achieve context aware trust values [21]. In Zhou’s paper,
the DBN model is trained to link the features of a situation
- features of the trustor, trustee, and context of interaction
- with trust values [21]. When there is insufficient evidence
for a specific interaction - the specific trustor, trustee, and
context features - the DBN neural network can still derive a
trust value even with little information by using incompletely
related past interactions.

Zhou achieved this using a DBN with an input layer, three
hidden layers and a label layer [21]. The input layer takes
in normalized feature values and passes them into the first
hidden layer. The hierarchical nature of DBN is used here
to progressively filter more important features at each layer.
At the first hidden layer, there are nodes corresponding to
the total number of features. At the second hidden layer, only
more significant features are selected by restricting the total
number of nodes to a fraction of the total number of features.
At the last hidden layer, the nodes are fused to decide a trust
value for the specific context. The final label layer outputs
a single value representing the trust value for the current
interaction.

f: GROWING HIERARCHICAL SELF-ORGANISING MAP
Self-organising maps(SOM) are an unsupervised learning,
neural network model that preserves the topological in the
input space into the output space [90], [91]. This topological
preservation means that the similarity of the input data is mir-
rored to a very large extent in geographical vicinity within the
representation space [92]. In SOMs, neurons are organised
in a two-dimensional rectangular or hexagonal grid and each
neuron is assigned a weight vector of the same dimension as
the input vector [91]. At each iteration, SOMfinds the weight
vector that is closest to the input vector in the data [91]. The
SOM algorithm updates the weight of this vector and that
of its surrounding nodes while maintaining the connections
from the original grid [91]. This is repeated until the map
converges

Growing Hierarchical Self-Organising Map (GH-SOM) is
a variant of SOM that independently determines the topo-
logical space (which needs to be decided prior to training in
SOM) and mirrors the hierarchical relations in the data [92].
This is done by a hierarchical structure of multiple layers
where each layer is several independent SOMs. The first
layer contains one SOM and for every neuron in the SOM,
an SOM can be added to form the next layer. This expansion
helps represent the subset of data at the specified level of
granularity [93].

Capua utilised GH-SOM to classify content on social net-
works as harassment or non-harassment. By collecting dif-
ferent features about the content, [93] collected the features
into an input vector. These input vectors representing fea-
tures of a specific content piece are used as input data to
a GH-SOM. The GH-SOM then groups in a hierarchical

manner, independently, the different content based on their
features.

VII. FUTURE WORK AND CONCLUSION
In our survey paper, we covered the basic definitions and
properties of trust, analysed social theories of trust while
discussing their impact on digital trust. We analysed a broad
range of environments in the digital world, including how
these environments connect. Then using our understanding
of the digital world, we illustrated how trust was needed as
a soft security mechanism. Based on the established under-
standing of the digital world, we defined different types of
trust relationships and discussed the factors needed to make
a complete, representative model. To address the challenges
of trust modelling, we came up with an evaluation criteria for
trust models. Finally, we explained different trust modelling
methods and how they have been used, including their theo-
retical basis and practical usefulness. In writing this survey,
we hope to have offered a well-rounded survey of trust man-
agement from analysis of application environment to actual
modelling methodology.

There are several areas for improvement. First, did not
manage to align our digital environment analysis and factors
withmodellingmethodology. An additional step in our survey
would have been to tie in which factors have been modelled
and how they can be modelled using existing mathematical
methods. However, we were not able to do so as the scope
of the survey would have been too big. Another aspect of
trust that we could have explored was the suitability of each
method for security. While we covered the theoretical basis
of each model, we did not manage to perform any analysis on
the suitability of each method and how each method would
evaluate trust in the face of security attacks. Combinations
of methods — whether they complement or conflict each
other — were also not considered. Further analysis can be
performed in the future to determine how sensitive each
method is to different trends and behaviour in the system.
This pushes research in the direction of the most suitable
technical method for trust management.

The lack of real-world data about trust makes research
challenging. While some real-world data is available about
some digital environments, it is rare to have actual data with
corresponding trust evaluation, much less data sets that are
recent. In the future, methods to expand on data sets or
to meaningfully make use of existing data sets should be
analysed. Alternatively, using real world data, sample and
simulation data can be created. Finally, from our derivation
of different factors based on the digital world, we find that
there are many tangentially related fields that can aid trust
management. Future surveys in trust can consider looking
into behavioural management, anomaly-detection, and risk
management models to borrow relevant theories for trust.
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