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ABSTRACT This paper explores a more applicable distribution scheme to reduce the distribution cost from
the perspective of various influencing factors in the distribution process. We comprehensively considers
the effect of temperature changes on the decay rate of fresh products during unloading, the carbon emission
costs during transportation and cold storage, customer satisfaction, as well as the traffic situation of the actual
distribution route. On this basis, a distribution cost model is constructed. And the improved genetic algorithm
is used to solve the problem. In addition, we also conducted sensitivity analysis on different customer
demands, so as to put forward some management enlightenment to business managers. An analytical
investigation of a case study in Harbin indicates that reasonable transportation path planning can effectively
reduce the total distribution cost. Hence, the proposed distribution scheme can serve as an effective and
socially feasible method in cold chain logistics management to reduce logistics costs.

INDEX TERMS Cold chain logistics, vehicle routing problem, cargo damage cost, genetic algorithm, carbon
emission.

I. INTRODUCTION
With the increasing scale of cold chain logistics, the problem
of cold chain logistics distribution has become increasingly
serious. This issue has caused many negative effects, includ-
ing direct economic losses caused by the spoilage of fruits,
vegetables, meat, etc., and an increase in the operation cost
of enterprises. The data show that agricultural products suffer
serious losses after entering the circulation field. The spoilage
rates of fruits and vegetables, meat, and aquatic products have
reached 30%, 12%, and 15%, respectively.

Among them, the annual loss of fruits and vegetables
exceeds $12.5 billion, accounting for more than 30% of
the output value of the entire industry [1]. Path planning
is a distribution management method that has proven to be
effective in some cases [2], [3]. Previous studies showed that
it can rationally plan the distribution path and shorten the
transportation time, thereby reducing the spoilage rate and
increasing the benefits of enterprises.
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In rapidly developing countries such as China, most fresh
food still circulates at room temperature, so it is necessary to
plan reasonable paths to shorten the distribution time as much
as possible. Statistics show that the hardware facilities of cold
chain logistics in China are relatively perfect, but unreason-
able path planning leads to an increase in distribution time.
For example, the ‘‘Report on the Development of Cold Chain
Logistics for Agricultural Products’’ in 2018 showed that by
the end of 2017, the warehousing area of cold chain logistics
in China had increased by 13.7% to 119.37 billion cubic
meters, and the number of refrigerated vehicles increased
by 16.5% year-over-year to 134,000 [1]. However, due to
unreasonable path planning, the annual economic loss caused
by the decay of fruits and vegetables in China is as high as
$1.07 million. Therefore, to solve the problem of cold chain
logistics distribution, the key point is to plan a reasonable
path.

The basic principle of path planning is to realize the
minimum transportation cost or the shortest path [4], [5].
By adding constraints such as load, running route, and work-
ing time, we can design the route and manage the distribution
time. Therefore, we need to consider various constraints to
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meet the actual situation of cold chain logistics and trans-
portation of fresh products and develop an effective path
planning method to achieve optimal transportation efficiency.

For example, many studies have considered the linear or
non-linear decay rate of fresh food in the actual transportation
process [6]. But in fact, the change of temperature has a great
influence on the reaction rate of deterioration, especially in
the process of unloading. In addition, at present, low-carbon
economy is the only way for the sustainable development of
cold chain logistics, and it is also an important direction of
economic development. Only by reducing carbon emissions
can we achieve a win-win situation of economic develop-
ment and environmental protection [7]. In cold chain logistics
distribution, researchers should consider not only the above
constraints but also the customer satisfaction degree and the
traffic situation of the actual distribution route.

Some researchers have explored path planning to obtain
the shortest route. For example, Clarke andWright (1964) [8]
proposed a change in the solution of the classical vehicle rout-
ing problem (VRP) and generated a metaheuristic algorithm.
They found that a metaheuristic algorithm can improve the
computational efficiency of VRP. This lays a foundation for
researchers to develop a variety of calculation methods.

In addition, Mohammed and Ghani (2017) [9] designed an
improved genetic algorithm for solving the VRP model. This
can reduce the distribution time. Experimental results showed
that compared with existing linear programming methods,
the designed genetic algorithm has better optimization ability.

In recent years, research on cold chain logistics distribution
has concentrated on solving the VRP [10]–[14]. However,
considering the spoilage of fresh food and the complex traffic
environment, researchers found that the shortest paths may
not necessarily lead to the lowest distribution cost. In 2014, P.
Amorim [15] studied the spoilage of fresh food and developed
a distribution model with the goal of maximizing freshness.
They found that if the shortest path is chosen, then the goods
need to be unloaded and loaded many times, which increases
the overall distribution time. Moreover, due to frequent load-
ing and unloading, the spoilage rate of fresh food increases
rapidly. Therefore, researchers need to consider different
processes of cold chain logistics distribution such as trans-
portation, loading, and unloading. Thus far, few studies can
comprehensively consider the influencing factors mentioned
above.

Moreover, we should also conducted sensitivity analysis
on some parameters in the model and discuss the influence
of parameter changes on distribution costs, so as to give
enterprises some inspiration on how to reduce distribution
costs. Masudin et al. (2019) [16] develops the remanufactur-
ing inventory model considering the storage capacity. He also
indicates that factors such as warehouse capacity and number
of cycles have an impact on the total inventory cost which
provides management implications that companies can make
appropriate policies to minimize total inventory cost.

Therefore, this paper comprehensively considers the effect
of temperature changes on the decay rate of fresh products

during unloading, the carbon emission costs during trans-
portation and cold storage, customer satisfaction, as well as
the traffic situation of the actual distribution route. On this
basis, a distribution cost model is constructed. And the
improved genetic algorithm is used to solve the problem.
In addition, we also conducted sensitivity analysis on differ-
ent customer demands, so as to put forward some manage-
ment enlightenment to business managers. This study tries
to provide theoretical references and practical insights for
the effective analysis of distribution decision-making as well
as an optimization of the distribution cost.The remainder of
this paper is organized as follows. In Section 2, we present
a review on cold chain logistics distribution in general.
Section 3 analyzes the influencing factors during cold chain
logistics distribution. The methodology, including variable
selection and distribution cost model construction, is dis-
cussed in Section 4. Section 5 reviews the algorithm design
for the model. Section 6 presents a case study. This paper
concludes with Section 7, in which the authors summarize
their findings and discuss the study limitations and directions
for future research.

II. LITERATURE REVIEW
Themajority of the studies on cold chain logistics distribution
focused on reducing the distribution cost. Some of them used
economic theories includingmarginal cost pricing, price elas-
ticity, and performance pricing to calculate distribution costs.
For example, Bonney (1992) [17] used economic theories
to analyze the composition of third-party logistics costs and
pointed out that the benefits of enterprises can be improved by
reducing distribution costs. These studies seldom considered
the impact of other conditions such as customer satisfaction
on distribution cost.

Certain studies focused on distribution decision-making
under the influence of fresh food characteristics.
G. Viji et al. (2018) [18] treated the spoilage rate of fresh
food as a multifactor influence function or a normal distri-
bution function and constructed an optimization objective
model. They found that by converting the spoilage rate
into an exponential function, the process of spoilage can
be determined more accurately to find methods to slow
down the spoilage, thereby reducing the distribution cost.
Qi et al. (2020) [19] considered the damage of goods over
time and the traffic situation of the actual distribution route
to establish the emergency cold chain logistics scheduling
model. Guike Liu et al. (2020) [20] andChen et al. (2019) [6]
divided the cost of cargo damage into the transportation
process and the unloading process. But the above studies only
considered the cost of cargo damage over time, and did not
consider the impact of temperature changes on the corruption
rate of fresh products during the unloading process. And apart
from Qi et al. (2020) [19] considering the traffic situation
of the actual distribution route, most other studies did not
consider the traffic situation of the actual distribution route.

MingxiWang et al. (2021) [21] combines different aspects,
such as considering the refrigeration energy consumption,
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the damage costs and the customer satisfaction. Although he
considered the impact of temperature changes on product loss
during unloading, they did not analyze the specific changes
in temperature during unloading and their effects on the rate
of deterioration reactions. Therefore, this paper will consider
the influence of the change of temperature on the decay rate
of fresh products during unloading, the customer satisfaction
and the traffic situation of the actual distribution route.

Moreover, Zhang et al. (2019) [22] and
Leng L et al. (2020) [23] found that there is little research
on the cost of carbon emissions in logistics, especially in
cold chain logistics, but now low-carbon logistics is more
and more concerned by enterprises and scholars, and reduc-
ing carbon emissions is an inevitable trend in the logistics
industry. how to cut carbon emissions and lower delivery
costs are the key focuses in the cold chain logistics industry.
Therefore, we also consider the carbon emission costs in the
transportation process and the refrigeration process.

There are also some studies about solving VRP
to obtain the lowest distribution cost. For example,
Omar Dib et al. [24] used a metaheuristics method to solve
routing problems in road networks. The results indicated
that by optimizing the distribution path and shortening
the distribution time, the distribution cost can be effec-
tively reduced. A. I. Diveev and O.V. Bob (2017) [25]
conducted an in-depth study on a metaheuristic method
for solving VRP and introduced the successful application
of genetic algorithms in solving vehicle routing problems.
The research results showed that compared with exist-
ing linear programming methods, the genetic algorithm
has better optimization ability and efficiency in finding
the optimal path and calculating the lowest distribution
cost.

Based on the findings of the above studies, in many dis-
tribution cost model studies, the traffic situation of the actual
distribution route and the influence of the change of temper-
ature on the decay rate of fresh products during unloading
is not considered by many people. We also found that low
carbon and customer satisfaction has gradually become the
highest goal of cold chain logistics management. However,
there are few studies on distribution cost comprehensively
consider the influencing factors mentioned above. Themajor-
ity of the studies consider only some but not all of the
influencing factors. In addition, the sensitivity analysis of the
changes of the parameters on model should be considered
to understand the impact of the changes to the objective
functions.

III. FACTOR ANALYSIS
A. REQUIREMENT ANALYSIS
In the cold chain logistics distribution, customer satisfac-
tion is one of the important standards to measure the level
of enterprise distribution [26]–[28]. We need to meet cus-
tomer demand not only for the quantity and quality of fresh
products but also for the distribution time under uncertain
circumstances.

1) CUSTOMER DEMAND ANALYSIS
Customer demand varies and is affected by many factors. For
example, in different seasons, the quantity of fresh food pur-
chased by customers is different. Previous studies assumed
that customer demand is a known constant. However, in real
distribution, constant customer demand cannot reflect the
actual demand. Surveys have shown that the demand for
small and medium supermarkets changes every day. There-
fore, to meet the various distribution demands, this paper
will convert customer demand into a random demand that
obeys the normal distribution and set the satisfaction rate of
customer demand.

2) TIME DEMAND ANALYSIS
In addition to meeting various customer demands, we also
need to meet the customer demand for time. However, real
traffic conditions such as traffic jams, vehicle scheduling,
and other issues invalidate hard time window constraints.
Therefore, to solve the customer demand for time, the use
of soft time windows is more suitable. In this paper, we will
transform customer demand for time into soft time window
constraints and simultaneously establish penalty-cost con-
straints.

B. THREE-LAYER CARGO DAMAGE ANALYSIS
Osvald and Stirn found that the fresh-keeping cycle is divided
into three stages and linearly decreases with time [29]–[31].
Chakrabarty introduced a more universal Weibull function in
his research and considered that compared with the previous
linear deterioration rate, the treatment of the deterioration rate
of goods by a Weibull function is more in line with the actual
deterioration [29]. The quality rate of goods in three stages is
shown in Fig. 1:

FIGURE 1. Three stages of fresh-keeping cycle.

As shown in Fig. 1, in general, the distribution time and
temperature have a great impact on the quality of fresh food.
The temperature will inevitably vary during the process of
loading and unloading. Therefore, we should pay attention
to the change in temperature to minimize the second-layer
damage cost. Based on the above considerations, this paper
divides the cargo damage in distribution into three layers.
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The first-layer damage occurs when fresh food is transported
from supply point S to distribution centerDi, the second-layer
damage occurs the process of Di inventory turnover in the
distribution center, and the third layer involves damage from
distribution center Di to demand point Bj.

C. DISTRIBUTION LINK ANALYSIS
To decrease the spoilage rate, cold chain logistics distribu-
tion should ensure a refrigerated environment in the vehicle.
However, the process of loading, unloading, and handlingwill
inevitably increase the spoilage rate of fresh food. According
to the analysis of cargo damage in Section 3.2, we will
consider the cooling cost during transportation, loading, and
unloading [32]–[34].

IV. DETERMINATION OF DISTRIBUTION COST MODEL
A. VARIABLE SPECIFICATION
Based on the factor analysis in Section 3, it is innova-
tive to consider the cargo damage cost and related cost of
the distribution link while meeting the random customer
demand. In this paper, we use refrigerated trucks to distribute
from one distribution center to multiple inventory points
and customers. Therefore, we need to consider fixed costs
and transportation costs. In cold chain logistics distribution,
fresh foods need to be kept fresh at a constant temperature,
so refrigeration costs will be incurred. At the same time,
the distribution center and customers have corresponding
constraints on the distribution time, so there will be cargo
damage costs during transportation.

If the distribution center and inventory are out of stock,
then a shortage cost will be incurred. In addition, if fresh food
is not delivered within the specified time, then a penalty cost
should be considered. Therefore, considering the fixed cost,
transportation cost, refrigeration cost, cargo damage cost,
shortage cost, and penalty cost, we construct a distribution
cost model with the goal of maximizing social benefits. The
variables are listed in Table 1. In addition, the following basic
assumptions are made in this paper:

(1) Customer demand obeys a constant random
distribution F .
(2) The refrigerated trucks start from a distribution center,

pass through the inventory points and customers, and finally
return to the distribution center.

(3) There is no midway assignment; that is, once the vehi-
cle starts from a certain point, the next distribution point is
determined.

B. MODELING
1) FIXED COST
The fixed cost includes the cost of purchasing or renting
refrigerated trucks and the salary of the driver. We define the
fixed cost of the k-th refrigerated truck as h. In this paper,
the fixed cost is expressed as follows:

C1 = h
∑n

j=1

∑m

k=1
xk0,j (1)

TABLE 1. Variables in distribution cost model.

2) TRANSPORTATION COST
In this paper, we choose the actual transportation time to cal-
culate the transportation cost, and the impact of carbon emis-
sions during vehicle transportation is considered to ensure
the practicability of the model. The transportation cost C21
is expressed as follows:

C21 = c
∑m

k=1

∑n

i=0

∑n

j=0
tki,jx

k
i,j (2)

The vehicle fuel consumption PI ,J and cost of carbon
emissions in the course of transportationC22 can be expressed
as follows [35]:

Pi,j = (P0 +
P∗ − P0
Qmax

Qi)tki,j (3)

C22 = ε
∑m

k=1

∑n

i=0

∑n

j=0
ϕPi,jx

k
i,j (4)

105524 VOLUME 9, 2021



H. Deng et al.: Improved Distribution Cost Model Considering Various Temperatures and Random Demands

Therefore, the total transportation cost C2 is calculated as
follows:

C2 = C21 + C22

= c
∑m

k=1

∑n

i=0
tki,jx

k
i,j

+ε
∑m

k=1

∑n

i=0

∑n

j=0
ϕPi,jx

k
i,j

(5)

3) THREE-LAYER DAMAGE COST
Based on an analysis of the three-layer damage in Section 3.2,
the deterioration rate of cold chain logistics goods obeys a
Weibull distribution, and the function of the deterioration rate
is as follows:

F(t) =

{
1− e−α(t−γ )

β
, t > γ

0, t ≤ γ
(6)

When the k-th refrigerated truck moves from distribution
link xi to xj, the intact rate of fresh food is as follows:

δki,j = 1−
[
1− e−α(t−γ )

β
]
= e−α(t−γ )

β

(7)

where β > 0 is the shape parameter, α > 0 is the scale
parameter, and γ > 0 is the position parameter.

To better describe the function, the Arrhenius equation is
introduced to express the relationship between the reaction
rate g(T ) and temperature T . The improvements of δki,j are as
follows [36]:

g(T ) = Ue−E/LT (8)

δki,j = e−g(T )α(t−γ )
β

(9)

In this paper, the three-layer damage cost C3 can be sim-
plified into two linear functions: the damage cost during
transportation Ct and that during loading and unloading Cl .
The damage cost during transportationCt can be expressed

as follows:

Ct = z
∑m

k=1

∑n

i=0

∑n

j=0
ykj Qi

(
1− e

−g(T1)α
(
tki,j−γ

)β)
(10)

where T1 is the temperature during the transportation of the
refrigerated car and is a constant.

After opening the door of the refrigerated car, the temper-
ature in the car changes, and the temperature change function
Tin is as follows [37]:

Tin =


2.38lnt + 17, 0 < t < t1
T2, t1 ≤ t ≤ t2
−3.2t + 3.6ti + 4.3, t2 < t ≤ ti

(11)

The damage cost during the loading and unloading of Cl
can be expressed as follows:

Cl = z
∑m

k=1

∑n

i=0

∑n

j=0
ykj Qi

(
1− e−g(Tin)α(pi−γ )

β
)
(12)

Therefore, the three-layer damage cost C3 can be calcu-
lated as follows:

C3 = Ct + Cl

= z
∑m

k=1

∑n

i=0

∑n

j=0
ykj Qi

(
1− e

−g(T1)α
(
tki,j−γ

)β)
+z
∑m

k=1

∑n

i=0

∑n

j=0
ykj Qi

(
1− e−g(Tin)α(pi−γ )

β
)

(13)

4) REFRIGERATION COST
Similarly, the refrigeration cost can be divided into two parts:
the refrigeration cost during transportation C ′t and that during
loading and unloading C ′l . These are defined as follows:

C ′t = fe
∑m

k=1

∑n

i=0

∑n

j=0
xki,j
∧

tki,j (14)

C ′l = f ′e
∑m

k=1

∑n

i=0

∑n

j=0
ykj pi (15)

where
∧

tki,j = tki,j + max{ej − t
k
j , 0}, in which max{ej − tkj , 0}

is the waiting time.
At the same time, the impact of refrigeration carbon emis-

sions should also be taken into account. The carbon emission
cost C41 in the refrigeration process is

C41 = ε
∑m

k=1

∑n

i=0

∑n

j=0
θQi(t

k
i,j + pi)y

k
j (16)

Therefore, the refrigeration cost C4 is shown in Eq. (17):

C4 = C ′t + C
′
l + C41

=

∑m

k=1

∑n

i=0

∑n

j=0
(fexki,j

∧

tki,j+f
′
ey
k
j pi + εθQi(t

k
i,j + pi)y

k
j ) (17)

5) PENALTY COST
The time for the refrigerated truck to reach the demand links
in advance is max{ej − tkj , 0}, and the late time is max{tkj −
li, 0}. Therefore, the penalty cost C5 is as follows:

C5 =
∑m

k=1

∑n

i=0
(amax{ej − tkj , 0} + bmax{t

k
j − li, 0})

(18)

6) SHORTAGE COST
Due to the limited load capacities of refrigerated trucks,
they are often unable to meet the demand of inventories or
customers, which results in shortage costs. The shortage cost
can be defined as follows:

C6 = τ
∑m

k=1
max{dk − zk , 0} (19)

According to the objectives and constraints, the distribu-
tion cost model can be expressed as follows:

minC = h
∑n

j=1

∑m

k=1
xk0,j + c

∑m

k=1

∑n

i=0
tki,jx

k
i,j

+ε
∑m

k=1

∑n

i=0

∑n

j=0
ϕPi,jx

k
i,j
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+z
∑m

k=1

∑n

i=0

∑n

j=0
ykj

×Qi

(
1− e

−g(T1)α
(
tki,j−γ

)β)
+z
∑m

k=1

∑n

i=0

∑n

j=0
ykj

×Qi
(
1− e−g(Tin)α(pi−γ )

β
)

+

∑m

k=1

∑n

i=0

∑n

j=0
(f ex

k
i,j

∧

tki,j+f
′
ey
k
j pi

+εθQi(t
k
i,j + pi)y

k
j )

+

∑m

k=1

∑n

i=0
(a max{ej − tkj , 0}

+b max{tkj − li, 0})+ τ
∑m

k=1
max{dk − zk , 0}

(20)

s.t.
∑m

k=1
yki =

{
1,m, i=0i=1,2...n (21)∑n

j=1

∑m

k=1
xki,j ≤ m i=0

(22)∑n

j=1
xki,j=

∑n

j=1
xkj,i ≤ 1 i=0, k=1, 2, . . . ,m

(23)∑n

i=0
xki,j=y

k
j , j=0, 1, 2, . . . , n, k=1, 2, ..,m

(24)∑n

j=0
xki,j=y

k
j , i=0, 1, 2, . . . , n, k=1, 2, ..,m

(25)∑n

j=0

∑m

k=1
xki,j=1, i=0, 1, 2, . . . , n, i 6= j

(26)∑n

i=0

∑m

k=1
xki,j=1, j=0, 1, 2, . . . , n, i 6= j

(27)

xki,j(max{t
k
i , ei + pi + t

k
i,j − t

k
i ) ≤ 0 (28)

tki ≤ Li, k = 1, 2, . . . , n, i = 1, 2, . . . , n (29)

zk ≤ Qz, k = 1, 2, . . . , n (30)

P
∑m

k=1
zk ≥

∑m

k=1
dk = q (31)

xki,j ∈ {0.1}, k = 1, 2, . . . ,m, j = 1, 2, . . . , n

(32)

ykj ∈ {0.1}, k = 1, 2, . . . ,m, j = 1, 2, . . . , n

(33)

Qi ∼ F (34)

Formula (21) indicates the number of services, that is,
a refrigerated vehicle serves one demand point at a time;
formula (22) indicates the relationship between the route and
the vehicle, that is, the number of vehicles is greater than
or equal to the number of routes; formula (23) indicates that
the distribution center is the starting point of the refrigerated
vehicle; formula (24) and formula (25)mean that each vehicle
leaves after unloading; formula (26) and formula (27) indicate
that the delivery frequency is one time; formula (28) indi-
cates the departure time constraint of the refrigerated vehicle;

formula (29) means to ensure that the refrigerated vehi-
cle must meet the customer time window; formula (30)
indicates the vehicle load limit; formula (31) indicates to
ensure that the customer demand satisfaction rate is met;
formula (32) and (33) represent the 0-1 decision variable;
formula (34) indicates that the customer demand obeys the
random distribution F.

V. ALGORITHM DESIGN
In this paper, we use an improved genetic algorithm to solve
the distribution cost model. The improved genetic algorithm
uses a random method to generate the population in the
method of generating the initial population, and uses the
roulette wheel selection and Partially Matched Exchange
(PME) to set the initial population and genetic operations.
By judging the evaluated population, this algorithm selects,
crosses, and mutates the parameters that do not meet the
conditions to generate a new population and continues to
evaluate until satisfactory results are obtained.

A. CODING DESIGN
In this paper, we assume that the distribution center should
be separated from the demand link. All serial numbers should
have 1 added to them in the process of encoding and decod-
ing, that is, the code of distribution center 0 is 1, and the code
of demand link 1 is 2. Each sort of permutation sequence is
a customer ordering order. For example, (9, 5, 3, 1, 6, 8, 7,
2, 4) is the code of each demand link. First, demand link 9 is
arranged in the first path, and then link 5 is searched to check
whether the constraint conditions are met.

B. INITIAL POPULATION GENERATION
Generally, the individual N in the initial population is gen-
erated randomly, and its range is [100, 200]. In this paper,
according to the number of customers, we use the integer
permutation coding method in Section 5.1. In this paper,
we randomly generate N chromosomes by permutation of the
sequence numbers of the client sites, where N is the size of
the initial population.

C. IMPROVING GENETIC MANIPULATION
1) IMPROVED SELECTION OPERATOR
The purpose of the selection operator is to directly inherit the
optimized individual (or solution) to the next generation or
generate a new individual through a pairing crossover and
then inherit the next generation. Based on preceding studies,
we use the improved roulette selection method as the selec-
tion method to determine the selection probability. In roulette
selection, the higher the individual’s fitness, the more likely
it will be selected to pass on to the next generation.

However, when individuals with high fitness values appear
in the population, it is easy to produce a large number of
reproductions of the dominant population. Then, the algo-
rithm optimization will be limited only in the vicinity of
the individual and stop approaching the optimal solution.
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To solve this problem, this paper introduces a ranking method
to improve roulette. According to the fitness value of all
individuals in the population, we arrange their orders and
determine the probability of individual selection. The prob-
ability of individual selection pi in this paper is shown in
Eq. (36):

c =
0.1

1− 0.9M
(35)

pi = c(1− c)i−1 (36)

where pi is the selection probability of individual i, andM is
the size of the population.

2) IMPROVED CROSSOVER AND MUTATION OPERATION
Generally, genetic algorithms mostly use a certain crossover
probability pc and mutation probability pm to solve problems.
However, they cannot fully determine the specific value,
which leads to the convergence and precocity of the algo-
rithm. In this paper, we introduce an adaptive mechanism
to maintain the dynamic balance of crossover and muta-
tion probability to reduce the possibility of cross-mutation
of excellent individuals and preserve excellent genes. The
crossover probability pc and mutation probability pm are
defined as follows:

pc =


h1(f0 − f ′)

f0−
, f ′ ≥ f̄

h2, f ′ ≤ f̄
(37)

pm =


h3(f0 − f ′)

f0−
, f ′ ≥ f̄

h4, f ′ ≤ f̄
(38)

where f0 and f̄ represent the maximum current fitness and
average fitness of all individuals, respectively. f ′ is the higher
fitness of the expected crossover individuals, and f represents
the fitness of the mutant individuals. h1, h2, h3, and h4 (h1, h2,
h3, h4 ∈ [0, 1]) are constants.

VI. CASE STUDY
In this section, we choose an urban area of Harbin to illustrate
the properties and performance of the proposed distribution
schemes. The relevant data are taken from the Harbin survey
dataset. According to the survey results, under the regular
demand, 12 vehicles are needed, and the total cost of distri-
bution is about 9340.5.

1) DETERMINATION OF DISTRIBUTION LINKS
Based on the data from the Harbin survey dataset, we obtain
the basic data of distribution links, including the distribution
demand, schedule between links, and other parameter values,
and illustrate the results in Table 2.

2) DETERMINATION OF DISTRIBUTION PATH
In this paper, to reflect the influence of changes in cus-
tomer demand on the path choice, we assume that customer
demand obeys an independent normal distribution. In this

TABLE 2. Distribution data.

case, we also consider the changes of various costs under
different customer demands. We assume that the satisfaction
rate of customer demand is 95% and obeys the independent
normal distribution of X ∼ N (µ, σ 2). When X = µ+zα×σ
and zα = z0.05 = 1.65, we define that the demand variances
σ are 1, 2, 3, 4, 5, and 6, respectively. Then, we calculate the
distribution path for each variance.

TABLE 3. Distribution path for demand variances.

The results listed in Table 3 indicate that as the demand
variance σ increases, the number of distribution paths grad-
ually increases. When σ = 6, the number of distribution
paths is the highest, which is three more paths than that when
σ = 1. The reason is probably that the greater the change in
customer demand, the more distribution routes are required.
By increasing the number of distribution vehicles or distribu-
tion paths, the model can only meet the changing customer
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FIGURE 2. Temperature changes during loading and unloading.

FIGURE 3. Distribution route (σ = 1).

demand. In addition, we find that when σ = 1 and σ = 2,
the number of paths is the same. Similarly, when σ = 4 and
σ = 5, the number of paths is 9. The reason is that even if
customer demand is different, by optimizing the distribution
path, we can obtain the optimal distribution scheme, thereby
reducing the distribution cost.

3) DETERMINATION OF DISTRIBUTION COST
Based on the ‘‘Cold Chain Logistics Development Annual
Report’’ of 2018, the variables of distribution cost are listed
in Table 4. In addition, in this paper, we set the chromosome
length n to 20, population size to 1600, crossover probability
Pe to 90%, and number of iterations Gen to 60.
As shown in Fig. 4 and Table 4, after substituting the

above values into Eqs. (20)-(34), we obtained the distribu-
tion cost for each variance and the corresponding number
of iterations. The results indicate that the number of itera-
tions of the new algorithm is lower than that of the original
algorithm under random demand; that is, the efficiency of
the improved genetic algorithm is better than that of the
original genetic algorithm. This also shows that the variety of
customer demand has a negative influence on the distribution
cost; that is, the greater the variety of customer demand,
the higher the distribution cost.

The reason is that the variety of customer demands directly
determines the planning of the distribution path and the for-
mulation of the distribution strategy. For certain customer

TABLE 4. Iterative times.

demand, refrigerated trucks only need to carry out the trans-
portation and distribution of fresh food regularly and quanti-
tatively every day.

However, when customer demand changes, according to
actual customer demand, the distribution strategy needs to be
adjusted to meet the needs of each customer. In this case,
refrigerated trucks may need to deliver to the same distri-
bution link several times a day. This inevitably leads to an
increase in the distribution cost. Moreover, the greater the
distribution time, the higher the distribution cost.

Successively, we use different variances to calculate each
part of the distribution cost and the total distribution cost. The
calculation results are shown in Table 5.

TABLE 5. Distribution cost.

The results indicate that as the customer demands
increases, the cost of each part increases gradually, and the
corresponding total distribution cost also increases. When
σ = 1, the total cost is the lowest (¥5873.3). However, when
σ = 6, the total distribution cost increases to ¥8510.2. The
fixed cost increased by nearly ¥500, and the refrigeration
cost increased by nearly ¥1500. The underlying reason is
that with the change in customer demand, the number of
refrigerated vehicles required increases; and then the fixed
cost, transportation cost, and refrigeration cost also increased.
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FIGURE 4. Changing trends of objective function calculated by (a) original
algorithm and (b) improved algorithm under random demand.

At the same time, uncertain customer demand further
increases the risk of shortages, so the shortage cost increases

by 47.05% compared with σ = 1. In addition, across the
entire distribution cost, the fluctuations of transportation cost,
damage cost, shortage cost, and penalty cost are small. In this
paper, we select urban and suburban traffic situations so the
road conditions are relatively simple and the distribution time
of refrigerated trucks is less affected by road conditions.

Conversely, the refrigeration cost accounts for a large pro-
portion of the total distribution cost; and with an increase
in customer demand, the corresponding refrigeration cost
increases. In the entire cold chain logistics distribution,
the longer the distribution time, the higher the refrigeration
cost. Therefore, reasonable transportation path planning can
effectively reduce the refrigeration cost, thereby reducing the
total distribution cost.

By comparing the distribution costs under six variances,
we find that when σ = 1, the distribution cost is the lowest.
Therefore, we substitute the path with σ = 1 with those of
other variances and calculate the corresponding total cost.
The optimized distribution costs for each variance are shown
in Fig. 5.

FIGURE 5. Optimized distribution cost.

Compared to the total distribution cost without the dis-
tribution scheme, the total distribution cost within the sur-
vey period increased, which means that the new distribution
scheme has a positive effect. In a detailed comparison among
the 5 variances, the results in Fig. 5 suggest that the greater
the change in customer demand, the better the effect of the
distribution scheme. Among them, the distribution cost with
σ = 6 dropped the most, from ¥8510.2 to ¥7213.8. Simi-
larly, the distribution cost with other variances also dropped.
This indicates that after we implemented the new distribu-
tion scheme, the distribution path of refrigerated trucks was
optimized. The reason is that compared with the original
distribution scheme, the new distribution scheme has a more
reasonable distribution path, which is beneficial for reducing
the number of refrigerated trucks and distribution distance,
thereby decreasing the transportation and refrigeration costs.

Conclusively, after implementation of the new distribution
scheme, we found that the average distribution cost dropped
8.73%. The results of the case study indicate that by imple-
menting the proposed distribution scheme, the distribution
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path was reasonably planned, decreasing the distribution dis-
tance to reduce the distribution cost.

Based on the above analysis, we provide some suggestions
for the managements of companies. Through the analysis
of the distribution cost under different customer demands,
we found that each cost has increasedwith the increase of cus-
tomer demands, but the increase in the cost of refrigeration is
the largest. This means that we can consider the cost of refrig-
eration from the perspective of this. On the one hand, when
the refrigerated trucks are correctly used, the transportation
volume and speed of the vehicles must be increased without
increasing driver fatigue and risk and overloading. Thus, the
distribution cost can be reduced by reducing the time on the
road. On the other hand, we should choose quality refrigerat-
ing equipment and unload quickly to reduce cargo damage,
refrigeration costs and carbon emissions [21]. In addition,
we should plan the distribution path through reasonable and
scientific methods, so as to reduce the distribution cost.

VII. CONCLUSION
In this paper, the influencing factors in cold chain logis-
tics distribution, including customer demand, time demand,
three-layer cargo damage cost, and distribution links, were
analyzed based on the characteristics of fresh food and ran-
dom customer demand. Then, a distribution cost model was
established in terms of the fixed cost, transportation cost,
refrigeration cost, cargo damage cost, shortage cost, and
penalty cost, aiming at the minimization of distribution cost.
An improved genetic algorithm was used to solve the model.
The results of a case study demonstrated that by imple-
menting the distribution scheme designed in this paper, not
only was the distribution path more reasonable, but the total
distribution within the survey period also decreased.

In contrast to existing studies, in the process of transporta-
tion, we took into account the actual transportation time.
In addition, we took into account the cost of carbon emissions
in transportation and refrigeration costs to make the model
more reliable. Additionally, we considered the nonlinear dete-
rioration rate of fresh food and the effect of temperature
changes on the metamorphic reaction rate during unloading,
and modeled the three-layer cargo damage cost.

Then, we analyzed the effect of temperature changes on
the decay rate of fresh products during unloading, the carbon
emission costs during transportation and cold storage and
construct a distribution cost model in association with the
actual distribution time. The results of the case study in
Harbin demonstrated that after implementing the distribution
scheme, each cost had a different proportion in the total
cost. The results in Table 4 suggest that compared to the
other costs, the refrigeration cost accounts for the largest
proportion. Conversely, the proportion of penalty cost is the
smallest. Conclusively, the costs related to transportation
account for more than 90% of the total cost, and we can infer
from the results that a reasonable distribution path is helpful
to reduce the distribution cost.

This study provides theoretical references and practical
insights for the effective analysis of distribution schemes and
makes a methodological contribution to calculating distri-
bution costs. By considering the comprehensive cold chain
logistics and distribution influencing factors and the entire
distribution process, the distribution scheme can be used for a
wide range of cold chain logistics management. By optimiz-
ing the distribution path, a reduction in distribution time and
an increase in the efficiency of distribution can be realized,
thereby decreasing cold chain logistics distribution costs and
solving the problem of distribution. Notably, consideration of
the cold chain logistics distribution in this paper occurred in a
city. Different cities can be considered to expand the proposed
model. Moreover, the distribution pattern we considered is
that a distribution center distributes to multiple demand links;
thus, more comprehensive distribution patterns with multiple
distribution centers can be considered in the distribution cost
model.
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