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ABSTRACT Brain-Controlled Vehicle (BCV) is an already established technology usually designed for
disabled patients. This review focuses on the most relevant topics on brain-controlled vehicles, with a special
reference to the terrestrial BCV (e.g., the mobile car, car simulator, real car, graphical and gaming car) and
the aerial BCV, also called BCAV (e.g., real quadcopters, drones, fixed wings, graphical helicopter, and
aircraft) controlled by using bio-signals, such as electroencephalogram (EEG), Electrooculogram (EOG),
and Electromyogram (EMG). For instance, EEG-based algorithms detect patterns from the motor imaginary
cortex area of the brain for intention detection, patterns like event-related desynchronization/event-related
synchronization, steady-state visually evoked potentials, P300, and generated local evoked potential patterns.
We have identified that the reported best-performing approaches employ machine learning and artificial
intelligence optimization methods, namely support vector machine, neural network, linear discriminant
analysis, k-nearest neighbor, k-means, water drop optimization, and chaotic tug of war. We considered the
following metrics to analyze the efficiency of the different methods: type and combination of bio-signals,
time response, and accuracy values with statistical analysis. The present work provides an extensive literature
review of the key findings of the past ten years, indicating future perspectives in the field.

INDEX TERMS Bio-signal patterns, control, machine learning, artificial intelligence simulator, vehicle,
aerial vehicle.
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DT Decision Tree

GHMM  Gaussian mixture-hidden Markov model
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GPS Global Positioning System

GRBF Generalized RBF
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EEG Electroencephalogram
EMG Electromyogram
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HMM Hidden Markov Model

HUD Head-Up Display

ICA Independent Component Analysis

M Imaginary Movement

K-NN K-Nearest Neighbor

LDA Linear Discriminant Analysis

LEP Localized Evoked potential

LR Logistic Regression

MPC Model Predictive Control

NN Neural Network

OAC Obstacle Avoidance Control

PCA Principal Component Analysis

PSD Power spectrum Density

QN Queuing Network

RBF Radial Basis Function

RBFNN Radial Basis Function Neural Network

RLDA Regularized Linear Discriminant Analysis

RP Readiness Potentials

SCS Shared Control Strategy

semi-MIM  Semi-Supervised =~ Mutual  Information
Maximization

SMSVM Soft Margin SVM

SNR Signal-to-Noise Ratio

SSVEP Steady-State Visually Evoked Potential

SVM Support Vector Machine

TN True Negative

TP True Positive

TSVM Transductive Support Vector Machine

VPA Vector Phase Analysis

WDO Water Drop Optimization

I. INTRODUCTION

The recent research in neuroscience supported by the devel-
opment of high-precision sensors and artificial intelligence
methods has significantly increased our knowledge about
how the human brain works. In particular, human body
movements activate neurons in the sensorimotor cortex area.
The activated neurons generate action potentials for different
actions, which have different patterns with specific prop-
erties. Several studies have been conducted to explore pat-
terns in electroencephalogram (EEG) signals. The patterns
would be related to voluntary movements or the human
body reaction based on the condition, such as stress that our
recent review paper on stress detection for drivers and heavy
equipment operators considered this phenomena comprehen-
sively [1]. Subsequently, automatic methods of identifying
and predicting these patterns specifically at the onset of a
voluntary movement have been introduced [2].

The Brain Computer Interface (BCI) science uses the
patterns in EEG signals for the control of applications,
such as bionic hands [3], [4], ankle foot orthosis [5], [6],
mobile robots [7], vehicles [8], and wheelchair [9]-[11].
These applications are useful for disabled people, who could
potentially enjoy a more convenient life. Among the vast
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variety of BCI applications, this review focuses on the Brain-
Controlled Vehicle (BCV) and the Brain-Controlled Aerial
Vehicle (BCAV), mainly designed for non-disabled people
and in particular for those not having suffered a brain stroke.
The benefits of BCV and BCAV applications for skilled
workers are for instance easier and faster execution of var-
ious tasks, relatively low costs of missions, precision in
hazardous missions, remote access to remote locations and
research targets, such as safety checks of large areas, burned
areas, provision of first-aid equipment in accidents in remote
locations, and acquisition of weather information from areas
that are difficult to access (mountains, pole areas, or volca-
noes). Figs. 1 to 3 illustrate BCV and BCAV applications,
respectively.

In particular, the BCV aims at tasks related to car nav-
igation, viz. keeping the lane, passing and following cars,
turning, Obstacle Avoidance Control (OAC), and braking
in different situations, specifically the Emergency Brakes
Control (EBC). The same commands are computed for the
BCAV with two more directions of moving upward (take-off)
and downward (landing). In general, the control of a BCAV
application is more challenging.

One of the most important bio-signals is the EEG, where
the first step is to know the EEG rhythms and changes after
tasks and stimulation. The important patterns to diagnose
the intentions of drivers are Event-Related Potentials (ERPs),
Steady-State Visually Evoked Potentials (SSVEP), Desyn-
chronization/ Event Related Synchronization (ERD/ERS),
Readiness Potentials (RP), and Local Evoked Potentials
(LEP). In the case of an intention of a movement, specific
patterns appear in the EEG about 0.5 s to 2 s before the
movement, and then, the intention turns into action [12]. The
objective in the studies reviewed in this paper has been to
develop novel algorithms for finding the onset of Imaginary
Movement (IM) patterns, such as ERD/ERS and RP.

Despite its widespread use, the resolution of EEG real-time
signals is usually not good enough for BCV and BCAV
applications. Therefore, hybrid methods have been devel-
oped to overcome the defects of the previous methods. For
example, the use of the EEG with other bio-signals, such
as Electromyogram (EMG), Electrooculogram (EOG), and
functional Near-Infrared Spectroscopy (fNIRS) has been pro-
posed to gain more information of human beings for control
applications. In addition to bio-signals, external sensors are
deployed for recording and analyzing the information about
the environment to facilitate a better analysis of the EEG and
the situation.

The aim of the present paper is to provide a comprehensive
review of BCV and BCAV studies over the past ten years.
Because there is a redundant of the algorithms and appli-
cations in published conferences and journals, a selection
of papers were performed to avoid repetition. Furthermore,
we expect that the present contribution would be helpful to
understand the recent history of the field, and how ideas and
studies have been developed further and improved. Thus, new
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ideas for future developments, based on recent technologies,
could be better contextualized. The papers covered in this
study are summarized in Tables 1 to 2, presented in Appendix,
to provide a systematic comparison between the different
contributions.

The rest of this paper is organized as follows: Section II
provides the background knowledge, mainly based on brain
rhythms with intention identification approaches and a data
acquisition model, both applied in the BCV and the BCAYV,
as well as open questions and limitations of the study.
Section III addresses the algorithms for automatically pre-
dicting the intention of the drivers based on patterns from bio-
signals. Section IV introduces applications for training and
testing the models in the real-time mode. Section V concludes
the review by presenting the already solved questions and
current limitations, while providing our future vision of the
topic.

Il. BACKGROUND ON BCV

In the following, technologies deployed for recording
bio-signals are introduced. In addition, the rhythms related
to the control of BCV and BCAV applications are presented.

A. BRAIN RHYTHMS AND PATTERNS FOR THE BCV AND
THE BCVA

Brain is an organ composed of neurons that generate differ-
ent rhythms with specific features. The detectable rhythms
change based on the type of action and stimulation. Changes
in the rhythms are also a key clue for early diagnosis of
a disease and serious health condition. By focusing on the
sensorimotor cortex area rhythms it is possible to predict
the subject’s intention of movement. Some of the patterns
studied for intention detection (thinking) are ERD [13],
ERP [14], ERS [13], and SSVEP [15], and they are defined as
follows.

1) ERD/ERS PATTERN

ERD is a cognitive pattern, which occurs after an intention
to move, and ERS is the second pattern, which occurs imme-
diately after the ERD if the intention turns into action. The
location where the pattern is recorded is the sensorimotor
cortex area of the brain [5].

2) SSVEP PATTERN

The SSVEP is a response pattern, which occurs when a visual
stimulation is applied to a human. By applying a visual stim-
ulation in a specific range, the same evoked potential patterns
called SSVEP will occur in the visual cortex. The advantages
of the SSVEP are the high Signal-to-Noise Ratio (SNR)
compared with other patterns [15].

3) ERP PATTERN

ERPs are the measured electrophysiological response by the
EEG to a specific stimulation. The P300 ERP is a known brain
response to a cognitive event after 300 ms. Some of the other
patterns are, e.g., N100, N200, and P100. The P300 is the
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pattern aimed at in the control applications [13]. For example,
the P300 pattern has been used for typing applications (pre-
diction, decision-making) for disabled patients, concentrating
on the letters. In BCV applications, the P300 is employed for
destination selection.

4) LEP PATTERN

Some studies have focused on searching for new ERPs for
better control systems. To this end, new tasks, such as audi-
tory tasks, have been designed and applied to stimulate neu-
rons other than sensorimotor cortex area, and the obtained
patterns, named as LEP have been employed for further
computations and control applications [16].

5) RP PATTERNS

Readiness Potential (RP) is a pattern generated about 1.5 s to
1 s before a real movement. The RP is associated with repeti-
tive voluntary movements, such as walking. In the processing,
the RP is divided into early and late RPs. The early RP occurs
about 1.5 s before a voluntary movement in the central area of
the cortex, and the late RP about 500 ms before the voluntary
movement in the primary motor cortex area [17], [18].

B. DATA ACQUISITION

In order to control a BCI application using bio-signals,
amplifiers to measure the human body changes during the
experiments are required. Well-known devices are EEG,
EMG, EOG amplifiers (suitable for real-time process-
ing), fNIRS, and functional Magnetic Resonance Imag-
ing (fMRI) devices, the details of which are presented as
follows:

1) EEG, EMG, AND EOG AMPLIFIERS

To measure noninvasive signals from heart, brain activities,
and muscles, ECG, EEG, and EMG amplifiers, respectively,
are deployed. The usual electrodes for acquiring EEG, EMG,
and ECG signals are the Ag/AgCl, known as nonpolarized
electrodes. The other popular electrode is disposable (single-
use) electrode, called a gel-based or Bio-Potential (BP) elec-
trode. In theory, the BP electrode senses ion flow on the
tissue surface and then converts it into electron current.
For the EMG measurement using BP electrodes, the ion
distribution is generated by applying nervous stimuli and
muscle contraction. The electrodes deployed are categorized
as nonpolarized and polarized. The nonpolarized electrodes
(Ag/Agcl) pass the current across the electrolyte interface.
Thus, less noise is recorded compared with polarized elec-
trodes in the case of movement noise. Furthermore, nonpo-
larized electrodes are easy to manufacture, and they have
a very low half-cell potential termed as dc offset. There-
fore, Ag/Agcl electrodes are popular for the EEG recording
compared with other electrodes. The polarized electrodes do
not let the current move freely across the interface between
the electrode and the electrolyte, which acts similar to
capacitors.
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2) NIRS

The fNIRS is a noninvasive imaging system for measuring the
hemoglobin (Hb) concentration changes in the neurovascula-
ture system of the brain. The Hb concentration changes are
measured by optical intensity measurements (characteristic
absorption spectra) by near-infrared light. The studies apply-
ing the fNIRS are usually hybrid methods with EEG signals
for real-time control of the BCVA applications. The fNIRS
has been used for the primary motor cortex area for imaginary
tasks to determine accurately the areas the brain activity takes
place and use them for identification procedures [19].

3) fMRI

The fMRI is an accurate noninvasive imaging system for
demonstrating the localized power in a brain map with a
high resolution. The mechanism is based on hemodynamic
changes of the brain that are associated with neuronal activ-
ity [20]. In the present review, the fMRI is employed for the
control of BCAV applications. The fMRI is usually employed
as a hybrid method with the EEG to obtain significant results
in real-time systems.

4) EXTERNAL SENSORS

Hybrid methods are a combination of different signals to
improve the significance of the results. In some methods,
a combination of different bio-signals with non-bio-signals
are used to identify the driver’s intention and to navigate
accurately, such as a combination of the EEG with the EMG,
Global Positioning System (GPS), cameras, fNIRS, google
glasses, and motion sensors known as external sensors (e.g.,
acceleration, velocity, and wind speed) [21], [22].

C. CHALLENGES OF BRAIN SIGNAL PROCESSING

Here, an identification algorithm steps are introduced and the
challenges in each step is considered and the details of the
algorithm in each step is explained in details in section III.
In order to control a vehicle, either by the BCV or the BCAV
by using bio-signals, the following main steps are required:

1) preprocessing,

2) feature extraction,

3) optimization (can be applied to features and classifiers)
4) feature selection,

5) classifiers,

6) statistical analysis,

7) real-time experiments.

Fig. 1 provides a description of those steps and possible
options to be considered. These options will be described
next.

At present, some of the initial BCV EEG-based questions
and limitations have been solved; for instance, the area of the
cortex for recording the EEG related to specific tasks such
as hand movement, the frequency range of neuron activities,
and the specific patterns related to the applied stimulation,
and how to develop algorithms for automatically finding the
patterns.
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The unsolved problems are mathematical algorithms for
noise rejection and automatic identification of specific pat-
terns with a high precision. In particular, development of
effective algorithms for feature extraction and classification
for automatic pattern identification are challenging tasks.
Further questions associated with neuron connectivity are, for
instance: which neurons are connected in a specific task, and
how neurons communicate after the stimulation.

Other challenges are related to the mathematical
approaches for prediction of patterns, design of real-
time algorithms, and speeding up the processing of time-
consuming methods, such as wavelet-based methods. The
key problems in the BCV applications based on the EEG are
(1) the nonlinearity of the brain, generating patterns of dif-
ferent varieties for individual participants; (ii) the denoising
of the EEG signals affected by white noise (which is highly
nonlinear, and is similar to the EEG); (iii) hardware limita-
tions (distance and speed) of communication for portable and
wireless devices (irrespective of Bluetooth and Wi-Fi) in real-
time applications.

In the following, we explain the methods applied to identify
the intentions of drivers based on brain signals.

IIl. IDENTIFICATION OF THE DRIVER's INTENTION

To detect and predict the driver’s intention for the control
of a BCV and a BCAV, the steps presented in Section II-C
have to be followed. We will provide a brief review of each
step in this section (supported by the information presented in
Tables 1 to 2 in Appendix).

A. STEPS OF IDENTIFICATION ALGORITHMS

Conceptually, automatic identification algorithms are defined
in offline and real-time processing, where the offline mode is
used for training a classifier for the real-time processing; a
list of classifiers that are used in identification problems and
optimizers that can be used in training are shown in 1. In the
offline processing, the steps listed in Section II-C have to be
followed. The steps are well-known, and they are presented
in brief as follows:

1. Preprocessing: proposed for removing unwanted signals
that include segmentation, filtering, and normalization; all
these techniques depend on the targeted patterns. For exam-
ple, Alpha band (814 Hz) and Beta band (14-30 Hz) are
usually used for movement and IM patterns.

2. Feature extraction: a good feature algorithm shows
high distinction for a specific part of a signal against other
parts of the signal. A short list of features for the BCV
and BCAV applications are average, median, power, ampli-
tude, variance, PSD, FFT, autoregressive, long-term correla-
tion, cross-correlation, spectral amplitude, frequency-filtered
signal (Alpha and Beta waves), Common Spatial Pattern
(CSP), Independent Component Analysis (ICA), FastICA,
wavelet, Detrended Fluctuation Analysis (DFA), chaotic
algorithms, such as the largest Lyapunov exponent, and HbO
and HbR (hemoglobin concentration) changes for the fNIRS.
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FIGURE 1. Algorithm’s (features and classifiers) diagram for identifying the driver’s intention for BCV and BCAV applications.

In some algorithms, the initial values of the features require
optimization.

3. Feature selection: removing the irrelevant features by
using feature selection algorithms. The irrelevant features are
generated by noise. The feature selection algorithms used for
BCV and BCAV applications are the Principal component
Analysis (PCA) and the Linear Discriminant Analysis (LDA).
The selected features are then fed into the classifiers for
categorization.

4. Classifiers are decision-makers for the categorization of
features. Classifiers are divided into supervised and unsu-
pervised types. In the supervised algorithms, the labels
of segmented signals for different classes are determined,
whereas in unsupervised classifiers the labels are enig-
matic. In the present review, supervised and unsupervised
classifiers used for the BCV and BCAV applications are
K-Nearest Neighbor (K-NN), LDA and Regularized LDA
(RLDA), Neural Network (NN), a combination of RBFNN
with GGAP-RBFNN, different combinations and modifica-
tions of (Soft Margin) Support Vector Machine (SMSVM)
with (Generalized) Radial Basis Function (GRBF), threshold-
based classifiers, such as Vector Phase Analysis (VPA),
Queuing Network (QN), Logistic Regression (LR), Convo-
lutional Neural Network (CNN), Ensemble Classifier (EC),
Model Predictive Control (MPC), K-means, Gaussian Mix-
ture Model (GMM), and Hidden Markov Model (HMM),
which are discussed in Section IV, and whose details are
summarized in Tables 1 to 2.

5. In order to increase the efficiency of features and
classifiers, optimization algorithms are used. Optimization
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algorithms enable flexibility of the consistent parameters to
overcome limitations of traditional features and classifiers.
For example, Water Drop Optimization (WDO) and Chaotic
Tug of War Optimization (CTWO) have been developed
recently. Conceptually, the WDO is an evolutionary algorithm
that has been developed based on the behavior of water in
a river, the objective of which is to search for optimum
values in functions. The idea of the algorithm is based on two
characteristics of the water flow; 1) velocity and 2) number
of soils conveyed by water. The advantage of this approach is
high-speed convergence [23]. The second recently developed
optimization algorithm is the CTWO, conceptually inspired
by the rope pulling competition. The CTWO selects two
teams as solution candidates for applying pulling forces
(interaction between teams), and the magnitude of forces is
relative to the quality of solutions. The algorithm has five
steps; 1) initialization, 2) weight assignment, 3) competition,
4) new generation, and 5) termination. The advantage of
the CTWO is its higher speed compared with the stochastic
searches [3], [24].

6. Statistical analysis: in order to measure the efficiency
of the classifiers, statistical measures, such as accuracy, sen-
sitivity, and specificity are employed. In these algorithms,
the computations are based on four parameters as follows:
TP is the correct features that are correctly categorized as
positive, TN is the false features (incorrect) that are correctly
categorized as false, FP is the false features (incorrect) that
are incorrectly categorized as positive, and FN is the correct
features that are incorrectly categorized as false [25]-[27].
TP is an outcome where the model correctly predicts the
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positive class, TN is an outcome where the model correctly
predicts the negative class, FP is an outcome where the model
incorrectly predicts the positive class, and FN is an outcome
where the model incorrectly predicts the negative class. If the
results obtained are satisfactory, the trained classifiers are
then saved and used for real-time-experiments.

7. Real-time mode applications: In the reviewed papers,
the following real-time BCV and BCAV applications were
presented: a vehicle simulator, a graphical game, a real car in
the real world, a mobile robot, a quadcopter, a drone, a heli-
copter, and an aircraft. In the following section, we describe
studies on the control of BCV and BCAV applications in
detail.

IV. STUDIES ON BCV AND BCAV

In order to control a vehicle by using bio-signals, differ-
ent simulators and algorithms have been used as illustrated
in Tables 1 and 2. Studies published on BCV and BCAV
topics are related to detection of the driver’s intentions to
control a vehicle for navigation, changing the lane, steering
control, [28], [29], the EBC [30], [31], and the OAC [22],
[32]. The studies discussed here are divided into two parts;
BCV and BCAV studies, which are organized into successful
initial ideas (exploring patterns and how to generate patterns
by using appropriate tasks), mathematical developments, and
improvements to the current situation step by step. Some
studies report accuracy results based on individual subjects;
considering such studies, we have computed the average
values of accuracies and report them in Tables 1 to 2.

A. TECHNIQUES EMPLOYED FOR BCV APPLICATIONS
AND THEIR EFFICIENCIES

In the initial generation of key series studies, Haufe et al. [33]
implemented an EBC system for BCV applications by using
EEG and EMG signals in a graphical racing car task in the
real-time mode. In the algorithm, the areas under the ERP
patterns relative to the emergency brakes were computed and
categorized using the RLDA classifier, and the efficiency
was considered by accuracy and response time (reaction)
parameters. The cons of the method are the low number of
features, the limited ERP patterns for feature extraction, and
the use of the linear classification RLDA. Therefore, different
types and a larger number of ERPs for training of a nonlinear
classifier for such a complicated signal (EEG) are highly
recommended. It is noted that the ERPs vary over time in
various situations.

In the study by Kim er al. [35], the objective was to over-
come the limitations of previous studies by increasing the
number of states for identification (soft and sharp braking)
based on the driver’s intentions. Each state has different task
scenarios; soft braking refers to normal driving conditions,
and sharp braking to a scenario with an obstacle on the road.
In order to overcome the disadvantages mentioned earlier,
features were extracted from three different patterns, such
as RPs (time interval from 300 ms before the stimulation to
600 ms after the stimulation), the IM (ERD/ERS obtained
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by filtering EEG data between 5 and 35 Hz) and the ERP
(obtained by Hilbert transformation). The results showed
a higher accuracy to ‘“...compared to the previous study
in [33]. In addition, the authors reported that the area of
the cortex which produce the ERP patterns relative to the
emergency cases were determined. The limitation in the study
of [35] was the low rate of robustness and the use of
the binary RLDA classifier for categorizing more than two
classes. The RLDA principle is based on the LDA algorithm,
which is a linear classifier designed for binary identification.
The LDA maximizes between-group scattering over within-
group scattering. In other words, the algorithm searches for
the projections by optimizing the feature space coordination,
which reduces the inter-class variance whilst increases the
distance between classes. By regularizing the LDA (RLDA),
scattering of the inter-class features is regularized and enables
a nonsingular matrix, which has the capability of employing
a large number of features for the classification. The main
limitations of the RLDA are the linearity of the algorithm and
confinement to two state identifications [32], [36]-[38].

To solve the low robustness in the real-time experiment,
Haufe er al. [39] extracted new features from the auditory
signals in a vehicle-following graphical task for training of
a RLDA classifier. The new trained algorithm was tested
for the EBC in a real-world traffic case. The results did not
report the accuracy and robustness of the algorithm. Overall,
the presented series of studies aimed to extend the results
by using patterns from EEG, EMG, and auditory signals.
The significant advantages are variations of ERP patterns
generated in different situations by using scenario tasks. The
main drawback of the studies is that a larger number of
subjects was not employed when using different classifiers.

External sensors, such as velocity, acceleration, wheel,
and brake pedal angle sensors, and camera instruments,
have been used to increase the accuracy of the method.
Gohring ef al. [21] employed a set of 16 external sensors
with a camera for semiautomatic vehicle navigation on the
road. To control steering and braking, ERD/ERS patterns
from the EEG signal were extracted regarding the OAC and
normal driving scenarios. The camera and external sensors
used in the study helped significantly in decreasing the Evoke
Potential (EP) detection error rates. The algorithm was then
applied to a real vehicle, resulting in somewhat improved
results. However, the reliability can still be considered insuf-
ficient because of the use of a low number of subjects and
a threshold classifier, which is a known problem for single-
trial algorithms. Even though a threshold classifier was used,
the obtained accuracy is high enough.

The second generation of continuous studies aimed to
overcome the defects of the previous studies by designing
different tasks for generating new EEG patterns and devel-
oping mathematical algorithms for signal denoising, feature
extraction, and selection. Bi ef al. [34] designed a Head-Up
Display (HUD) task and extracted SSVEP patterns to control
a vehicle simulator. In the experiment, the first step was
to identify the Alpha waves by using the LDA classifier to
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FIGURE 2. Different BCV applications: a) vehicle simulator [33], b) vehicle with different external sensors and a
camera [21], c) real vehicle [22], d) video game vehicle [34], and e) mobile vehicle controlled by the EEG [29].

turn the vehicle on and off. Next, vehicle navigation (turn
right, left, and move forward) based on the SVM classifier
was implemented for the OAC. The results for the OAC
and turning the vehicle on and off in the real-time mode
were promising, but the results for the navigation in three
directions showed high variation in accuracy. Limitations of
the study were the small number of participants, the use of
the SVM binary classifier for more than two classes, and
neglecting the response time. Because of the constraints,
the recommended speed for the algorithm was 30—40 km/h.
In a subsequent work, Bi et al. [40] used an alternative pat-
tern, viz. the P300 pattern for selecting the driver’s intended
destination for the same experiment as in [34]; the obtained
results showed a higher accuracy with double the number of
participants.

In the next subsequent study, Fan et al. [41] combined the
SSVEP pattern and alpha EEG waves with the previous
methods to control the vehicle simulator for the following
commands: start, stop, stay on the lane, the OAC, and curve
control. In the algorithm, the PSD features were extracted
and categorized by the binary LDA algorithm, which has the
same above-mentioned limitations. After this, Bi et al. [42]
proposed a mathematical model for controlling the BCV
steering in the same application [34] and [40]. The model
was designed based on the QN algorithm for predicting the
driver’s intentions to navigate the vehicle in order to move
forward and turn left and right. The QN was fed by the
SSVEP patterns, velocity, acceleration, road information, and
vehicle position in the road features to control the steering
of a vehicle. The performance improved in comparison with
the previous attempts, but compared with the other studies,
the response time and robustness of the model were not
reliable. The hallmark of the study is the use of an effective
method for analytic equation solving, namely QN. The idea
of the QN is to construct different models for predicting
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the waiting time in queues. For this purpose, the QN is
constructed of three modules, known as preview, predict,
and control modules. The input of the preview module is
the path to determine the desired vehicle position, and the
input of the predictive module is the road information and the
vehicle state input provided by external sensors to determine
the predictive position. The input of the control module is
the subtraction of the preview from the predictive module to
compute the error for the steering command computations.
Therefore, the QN model is well constructed based on infor-
mative external features [42], but the algorithm would require
more subjects to achieve a precise model. On the other hand,
the EEG patterns vary considerably over time and in different
situations, and thus, the PSD is not an adequate feature to
predict the driver’s intentions.

In a subsequent work, Bi et al. [22] limited the applica-
tion to emergency brakes only. In the experiment, a set of
above-mentioned and new external sensors (Table 1) were
embedded into the system to analyze the conditions of the
environment, resulting in a significantly higher accuracy
and faster response in comparison with previous experi-
ments [34], [40], [42]. The reason for the better result is the
use of more sensors that provide more features, definition
of only two states in the task, the use of the CSP algorithm,
which is a powerful feature tool for binary states, and the use
of the binary RLDA classifier. In total, the number of features
increased and the number of classes decreased, which led to
higher accuracy with less variation. The major concept of
the CSP is to increase the feature space dimensions to max-
imize differences in variance between two classes, because
the scattered features are divided into two categories; the
reader is referred to more details in [37]. The SVM classifier
made decisions based on features that are located at the
margin of the two categories, namely the support vectors
with a linear/nonlinear kernel. The main drawbacks were the
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principle of the CSP algorithm, which is based on binary
classifications. The idea of employing road data, as a future
world-wide road map, is still open; to expand the method
presented by Bi ef al., the road model has to be connected to
a database, such as google maps, to obtain road information
and weather forecasts with high-speed connection. Regarding
the considerations of the study, the next telecommunication
generations have the potential of solving the distance and
speed constraints.

The same team, Lu and Bi [43] designed a controlling
method to increase the safety of the user during longitudi-
nal brain-control driving. The proposed method maintains
the rear-end safety of the BCV while the user concentrat-
ing on the brain-controlling of the vehicle. In the algo-
rithm, three models are defined as follows: 1- Longitudinal
brain-control driving model for the driver decision behavior
and brain-control operation behavior, 2- Vehicle longitudinal
model for dynamic models of the host and preceding vehicles,
and 3- Driver’s behavior model for predicting the driver’s
decision. In the algorithm, predicting the driver’s decision
found from the SSVEP pattern at 12 Hz and 15 Hz, that
features computed and feed into the SVM classifier. In this
method, the safety is measured based on two measurements of
minimum safe distance and a minimum time to collision. The
obtained accuracy results were significant consequently the
safety of the system were considered and achieved noticeable
results.

Later on, the same team continued [44] and developed a
controller named as robust sliding-mode nonlinear predictive
for control of a mobile robot based on the EEG and HUD.
Authors used the same HUD-based SSVEP as in their previ-
ous study [34] to increase the efficiency of the results in [43].
In the controlling algorithm, a cascading predictive controller
which is for identifying the human intention is combined
by a smooth sliding-mode controller which is designed for
robust velocity tracking. In the algorithm, three classes were
identified (forward, turn right and left) using the SVM (one
vs others) algorithm. The results showed significant enhanced
performance, higher safety, and robustness for control of a
mobile vehicle. The safety has two points of view in the study,
which are the distance safety of the vehicle during driving by
use of a laser sensor and tracking the user attention during
the task based on the SSVEP patterns at 12 Hz to 15 Hz. The
obtained accuracy results showed significant improvement in
comparison with their previous study [43]. It would be inter-
esting if the researchers would use the Deep learning algo-
rithm, which has potential of multi-class identification, even
though the Deep Learning algorithm requires large number of
input values for training. It might be covered using the large
number of sensors. The disadvantage of the SSVEP-based
methods is staring at the blinking lights for a long time for
control a vehicle is not convenient.

The same team in a series studies, the aim was to
increase the SNR and accuracy rate by combining classifiers.
Lu and Bi [8] designed an algorithm based on the longitude
control system to control the speed of a simulated vehicle.
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In the algorithm, the CSP was employed for augmenting the
EEG signal SNR, and then, PSD features were extracted from
the SSVEP patterns and classified using the traditional SVM
classifier with the traditional RBF kernel. The accuracy of
the results has high variations (low robustness) for individual
subjects. Later, Lu and Bi [28] amended the previous study
for longitude and lateral control. The idea was to extend the
two classes to three classes with the same identification clas-
sifier, namely changing lane, selecting path, and following.
Also in this case, the accuracy results showed the same high
variation for the subjects. The studies had several drawbacks,
as discussed above.

Later, the same team developed a control model
including an optimization approach called MPC was by
Lu et al. [45], [46] to increase the identification performance
of the driver’s intentions. The MPC was designed based on
penalty values, which are obtained with a cost function for
safety criterion parameters. The MPC model was a combina-
tion of two virtual scenarios; control of the road-keeping test
and the OAC. The performance still has high variations. The
novelty of the study was the use of the MPC method, which
is an algorithm for controlling a process while satisfying the
equation criterion. The remarkable advantages of the MPC
are its flexibility and open formula for linear, nonlinear,
and multi variable equations without a need to change the
MPC control algorithm. One main disadvantage of the study
is the use of traditional features and classifiers with low
efficiencies, such as SVM and RBF. In the recent studies of
the same team, Fei et al. [47] used a semi-supervised method
based on adaptive algorithm for control of a vehicle. The
adaptive method initialized the input values using a small
labeled feature for a training set. Then, the initial values
adjust automatically during updating with unlabeled new
coming selected inputs. The study employed EEG patterns
related to nine-character flashes for the users and extracting
Mutual Information Maximization (MIM) features. The key
points of the algorithm was employing a semi-supervised
mutual information maximization (semi-MIM) feature selec-
tion algorithm that classified by Transductive Support Vector
Machine (TSVM) classifier. The cons of the study were
employing two subjects for the research, which is difficult
to figure out how much the method is effective and small
number of features.

In a set of different studies, various ideas based on com-
binations of sensors and traditional classifiers were imple-
mented to increase the accuracies with higher reliability.
Stawiki et al. [7] developed the control of a mobile vehicle by
using a graphical user interface and a live camera feedback
system based on the SSVEP patterns. The novelty of the
algorithm was the adoption of a computational approach to
remove noise and increase the amplitude of the SSVEP pat-
terns before feature extraction, namely the refined minimum
energy algorithm, which significantly affected the results.

Later, Hernandez et al. [30] designed an identifier for
a vehicle brake system for considering different driving
situations based on different scenarios. The preprocessed

VOLUME 9, 2021



A. Hekmatmanesh et al.: Review of State-of-the-Art of BCVs

IEEE Access

EEG signals were the time-domain features, which were
categorized by the SVM and CNN classifiers. The obtained
response times for braking in the emergency cases (high
speed) were insignificant.

In another recent study, Nguyen and Chung [48] devel-
oped a method for identifying the driver’s intentions for the
EBC in a vehicle. The algorithm consists of the EEG band
power, auto-regressive model features, and an NN classifier.
The results showed high accuracy and a significant improve-
ment in the response time. The results have the potential
for improvement if some of the features and classifiers are
optimized. In general, the lack of subjects and nonoptimized
algorithms is obvious, and moreover, improving the results by
using simple models, such as auto-regressive, would require
more considerations.

Recently, Dindorf and Wos [49] a system for the EBC using
the EMG signals, named as dual brake pedals. Also, authors
designed a new application using a Pneumatic Actuator as a
secondary foot brake pedal to increase the safety by increas-
ing stopping power. In the method, muscular signals from the
partcipant’s face and eyelids, clenching of jaws, and pressing
tongue on the palate were measured for controlling the brake
pedal. In the algorithm, feature extracted from a low pass fil-
ter (15 Hz) signal and spectral analysis. The evaluation of the
results was based on the brake pedal deflection that computes
by the lowess method filter and lase sensor. In the presented
method, the reaction response for the signal processing was
0.02-0.05 s and the reaction time for the pneumatic system
was 0.23 s, the best obtained response time was 0.24 s. The
cons of the method are due to the use of pneumatic system
instead of electrical break the reaction time is high and expose
the diver in dangerous situation. Also, statistical analysis
such as accuracy, sensitivity and specificity did not evaluated.
In the next study, Dindorf et al. [5S0] used the EEG, EMG and
eye movement signals to increase the efficiency and safety
of the user. In the study, it is claimed that the user safety is
improved by decreasing the reaction time of the system in an
EBC task.

In another study, supervised and unsupervised classifiers
were combined to raise the accuracy rate. Zhao et al. [51],
designed models for the driver’s intention for braking. The
model was a combination of the GHMM/GGAP with RBFNN
(GHMM/GGAP-RBFNN). The algorithm was designed for
identifying slight and normal braking states and then tested
in a real vehicle. The results obtained were significantly
improved compared with their previous work [52], but the
time response was not taken into consideration. The novelty
of the method is the optimization of the network connections
in an NN by using GHMM/GGAP approaches, where the
GHMM is a combination of the unsupervised GMM and
HMM algorithms. Conceptually, the GMM assumes that each
class has a Gaussian distribution, and the feature space con-
sists of a mixture of a number of Gaussian classes, which
follows the rule of mixing finite Gaussian distributions, each
Gaussian having a specific center and width. In the study,
some GHMM parameters were computed using the HMM
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clustering algorithm. In short, the HMM is an extension of
the Markov Model (MM)), the principle of which is based on
the Markov Chain (MC). Conceptually, the HMM is based on
observable patterns that are relative to unobservable interior
factors, namely patterns and states, respectively. The algo-
rithm has two random processes for the layers, called hidden
and visible processes for the hidden states and observable pat-
terns, respectively. The hidden states compute the MC and the
probability distribution of the patterns relative to the states.
The features are then categorized based on the probability
computations [53]. Next, the GHMM is then employed to
compute the parameters in the GGAP algorithm that links the
aim of desired accuracy of the RBFNN with the importance
measurements of the closest added new neuron, which is
computed using the average content of the specific neurons.
In general, the RBFNN is a supervised classifier, based on
the feed forward NN with the traditional RBF activation func-
tion. The RBFNN contains input, hidden, and output layers,
in which connections between the RBF activation functions
have been pruned using the GHMM/GGAP-RBFNN method.
In such a combination of complex and unsupervised meth-
ods, disadvantages are the delay for real-time processing,
a high error rate, and low robustness. One easier approach to
improve the results is to optimize the sensitive initial values
in the features and classifiers.

Later on, Liuetal [54] employed lidar simultaneous
localization/mapping technique for navigating. In the algo-
rithm, the SSVEP patterns used for control of a vehicle.
The SSVEP patterns where generated using four different
frequencies and the patterns were recorded by eight EEG
sensors. Then, features classified by Filter Bank Canoni-
cal Correlation Analysis (FBCCA) that improved the CCA
method results in previous their study [55]. Because the
correlation is the main decision maker, no training set pro-
cedure is required. The achieved results for such a high speed
processing method showed significant improvements.

In a recent continuing complementary study, optimiza-
tion approaches included identification algorithms for adjust-
ing features such as CSP and chaotic features and tuning
classifiers such as traditional SVM and Radial Basis Func-
tion (RBF) for the BCV applications. In our previous exper-
iment [37], [56], a method for controlling a mobile vehicle
was implemented for moving forward and braking states, and
the same method was applied to a prosthetic hand. In the pro-
cedure, Filter Bank CSP (FBCSP) features were optimized
using the Discrimination Sensitive Learning Vector Quantiza-
tion (DSLVQ) training algorithm, and then, different combi-
nations of classifiers were employed. In the study, 14 different
classifiers were implemented: KNN, NN, and different com-
binations of the traditional SVM, generalized SVM called
Soft Margin SVM (SMSV), traditional RBF, and Generalized
RBF (GRBF). The results showed that the DSLVQ optimiza-
tion coefficients changed the CSP features, and the SMSVM
classifier using the generalized RBF (GRBF) kernel, namely
SMSVM-GRBEF, yielded the best results. The advantages are
1) optimizing the features by the DSLVQ iterative learning
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method. In the case of a low number of subjects, specifically
in single-trial experiments, the DSLVQ optimizes features,
which effectively overcomes the defects related to the lack
of subjects. 2) By implementing the GRBF kernel in the
SVM, the parameterized Gaussian function adds flexibility
to alter the Gaussian shape for covering the distribution of
the scattered features in each class, which leads to reliable
accuracies with low variations [25], [27]. 3) Adding flexibil-
ity to the traditional SVM by deploying free parameters in the
cost function and regular