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ABSTRACT Brain-Controlled Vehicle (BCV) is an already established technology usually designed for
disabled patients. This review focuses on the most relevant topics on brain-controlled vehicles, with a special
reference to the terrestrial BCV (e.g., the mobile car, car simulator, real car, graphical and gaming car) and
the aerial BCV, also called BCAV (e.g., real quadcopters, drones, fixed wings, graphical helicopter, and
aircraft) controlled by using bio-signals, such as electroencephalogram (EEG), Electrooculogram (EOG),
and Electromyogram (EMG). For instance, EEG-based algorithms detect patterns from the motor imaginary
cortex area of the brain for intention detection, patterns like event-related desynchronization/event-related
synchronization, steady-state visually evoked potentials, P300, and generated local evoked potential patterns.
We have identified that the reported best-performing approaches employ machine learning and artificial
intelligence optimization methods, namely support vector machine, neural network, linear discriminant
analysis, k-nearest neighbor, k-means, water drop optimization, and chaotic tug of war. We considered the
following metrics to analyze the efficiency of the different methods: type and combination of bio-signals,
time response, and accuracy values with statistical analysis. The present work provides an extensive literature
review of the key findings of the past ten years, indicating future perspectives in the field.

INDEX TERMS Bio-signal patterns, control, machine learning, artificial intelligence simulator, vehicle,
aerial vehicle.

NOMENCLATURE

BCA Brain-Controlled Aerial Vehicle
BCI Brain Computer Interface
BCV Brain-Controlled Vehicle
CCA Canonical Correlation Analysis
CI-CSP Complete Information Common Spatial Pattern
CNN Convolutional Neural Network
CSP Common Spatial Pattern
CTWO Chaotic Tug of War Optimization
DFA Detrended Fluctuation Analysis
DSLVQ Sensitive Learning Vector Quantization
DT Decision Tree
EBC Emergency Brakes Control
EEG Electroencephalogram
EMG Electromyogram
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EOG Electrooculogram
EP Evoke Potential
ERD Event-Related Desynchronization
ERP Event-Related Potentials
ERS Event-Related Synchronization
FBCCA Filter Bank Canonical Correlation Analysis
fMRI functional magnetic resonance imaging
FN False Negative
fNIRS functional Near-Infrared Spectroscopy
FP False Positive
GGAP Generalized Growing and Pruning
GHMM Gaussian mixture-hidden Markov model
GMM Gaussian Mixture Model
GPS Global Positioning System
GRBF Generalized RBF
HbO Oxy-hemoglobin
HbR Deoxy-hemoglobin
HMD Head-Mounted Device
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HMM Hidden Markov Model
HUD Head-Up Display
ICA Independent Component Analysis
IM Imaginary Movement
K-NN K-Nearest Neighbor
LDA Linear Discriminant Analysis
LEP Localized Evoked potential
LR Logistic Regression
MPC Model Predictive Control
NN Neural Network
OAC Obstacle Avoidance Control
PCA Principal Component Analysis
PSD Power spectrum Density
QN Queuing Network
RBF Radial Basis Function
RBFNN Radial Basis Function Neural Network
RLDA Regularized Linear Discriminant Analysis
RP Readiness Potentials
SCS Shared Control Strategy
semi-MIM Semi-Supervised Mutual Information

Maximization
SMSVM Soft Margin SVM
SNR Signal-to-Noise Ratio
SSVEP Steady-State Visually Evoked Potential
SVM Support Vector Machine
TN True Negative
TP True Positive
TSVM Transductive Support Vector Machine
VPA Vector Phase Analysis
WDO Water Drop Optimization

I. INTRODUCTION
The recent research in neuroscience supported by the devel-
opment of high-precision sensors and artificial intelligence
methods has significantly increased our knowledge about
how the human brain works. In particular, human body
movements activate neurons in the sensorimotor cortex area.
The activated neurons generate action potentials for different
actions, which have different patterns with specific prop-
erties. Several studies have been conducted to explore pat-
terns in electroencephalogram (EEG) signals. The patterns
would be related to voluntary movements or the human
body reaction based on the condition, such as stress that our
recent review paper on stress detection for drivers and heavy
equipment operators considered this phenomena comprehen-
sively [1]. Subsequently, automatic methods of identifying
and predicting these patterns specifically at the onset of a
voluntary movement have been introduced [2].

The Brain Computer Interface (BCI) science uses the
patterns in EEG signals for the control of applications,
such as bionic hands [3], [4], ankle foot orthosis [5], [6],
mobile robots [7], vehicles [8], and wheelchair [9]–[11].
These applications are useful for disabled people, who could
potentially enjoy a more convenient life. Among the vast

variety of BCI applications, this review focuses on the Brain-
Controlled Vehicle (BCV) and the Brain-Controlled Aerial
Vehicle (BCAV), mainly designed for non-disabled people
and in particular for those not having suffered a brain stroke.
The benefits of BCV and BCAV applications for skilled
workers are for instance easier and faster execution of var-
ious tasks, relatively low costs of missions, precision in
hazardous missions, remote access to remote locations and
research targets, such as safety checks of large areas, burned
areas, provision of first-aid equipment in accidents in remote
locations, and acquisition of weather information from areas
that are difficult to access (mountains, pole areas, or volca-
noes). Figs. 1 to 3 illustrate BCV and BCAV applications,
respectively.

In particular, the BCV aims at tasks related to car nav-
igation, viz. keeping the lane, passing and following cars,
turning, Obstacle Avoidance Control (OAC), and braking
in different situations, specifically the Emergency Brakes
Control (EBC). The same commands are computed for the
BCAVwith two more directions of moving upward (take-off)
and downward (landing). In general, the control of a BCAV
application is more challenging.

One of the most important bio-signals is the EEG, where
the first step is to know the EEG rhythms and changes after
tasks and stimulation. The important patterns to diagnose
the intentions of drivers are Event-Related Potentials (ERPs),
Steady-State Visually Evoked Potentials (SSVEP), Desyn-
chronization/ Event Related Synchronization (ERD/ERS),
Readiness Potentials (RP), and Local Evoked Potentials
(LEP). In the case of an intention of a movement, specific
patterns appear in the EEG about 0.5 s to 2 s before the
movement, and then, the intention turns into action [12]. The
objective in the studies reviewed in this paper has been to
develop novel algorithms for finding the onset of Imaginary
Movement (IM) patterns, such as ERD/ERS and RP.

Despite its widespread use, the resolution of EEG real-time
signals is usually not good enough for BCV and BCAV
applications. Therefore, hybrid methods have been devel-
oped to overcome the defects of the previous methods. For
example, the use of the EEG with other bio-signals, such
as Electromyogram (EMG), Electrooculogram (EOG), and
functional Near-Infrared Spectroscopy (fNIRS) has been pro-
posed to gain more information of human beings for control
applications. In addition to bio-signals, external sensors are
deployed for recording and analyzing the information about
the environment to facilitate a better analysis of the EEG and
the situation.

The aim of the present paper is to provide a comprehensive
review of BCV and BCAV studies over the past ten years.
Because there is a redundant of the algorithms and appli-
cations in published conferences and journals, a selection
of papers were performed to avoid repetition. Furthermore,
we expect that the present contribution would be helpful to
understand the recent history of the field, and how ideas and
studies have been developed further and improved. Thus, new
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ideas for future developments, based on recent technologies,
could be better contextualized. The papers covered in this
study are summarized in Tables 1 to 2, presented in Appendix,
to provide a systematic comparison between the different
contributions.

The rest of this paper is organized as follows: Section II
provides the background knowledge, mainly based on brain
rhythms with intention identification approaches and a data
acquisition model, both applied in the BCV and the BCAV,
as well as open questions and limitations of the study.
Section III addresses the algorithms for automatically pre-
dicting the intention of the drivers based on patterns from bio-
signals. Section IV introduces applications for training and
testing themodels in the real-timemode. Section V concludes
the review by presenting the already solved questions and
current limitations, while providing our future vision of the
topic.

II. BACKGROUND ON BCV
In the following, technologies deployed for recording
bio-signals are introduced. In addition, the rhythms related
to the control of BCV and BCAV applications are presented.

A. BRAIN RHYTHMS AND PATTERNS FOR THE BCV AND
THE BCVA
Brain is an organ composed of neurons that generate differ-
ent rhythms with specific features. The detectable rhythms
change based on the type of action and stimulation. Changes
in the rhythms are also a key clue for early diagnosis of
a disease and serious health condition. By focusing on the
sensorimotor cortex area rhythms it is possible to predict
the subject’s intention of movement. Some of the patterns
studied for intention detection (thinking) are ERD [13],
ERP [14], ERS [13], and SSVEP [15], and they are defined as
follows.

1) ERD/ERS PATTERN
ERD is a cognitive pattern, which occurs after an intention
to move, and ERS is the second pattern, which occurs imme-
diately after the ERD if the intention turns into action. The
location where the pattern is recorded is the sensorimotor
cortex area of the brain [5].

2) SSVEP PATTERN
The SSVEP is a response pattern, which occurs when a visual
stimulation is applied to a human. By applying a visual stim-
ulation in a specific range, the same evoked potential patterns
called SSVEP will occur in the visual cortex. The advantages
of the SSVEP are the high Signal-to-Noise Ratio (SNR)
compared with other patterns [15].

3) ERP PATTERN
ERPs are the measured electrophysiological response by the
EEG to a specific stimulation. The P300 ERP is a known brain
response to a cognitive event after 300 ms. Some of the other
patterns are, e.g., N100, N200, and P100. The P300 is the

pattern aimed at in the control applications [13]. For example,
the P300 pattern has been used for typing applications (pre-
diction, decision-making) for disabled patients, concentrating
on the letters. In BCV applications, the P300 is employed for
destination selection.

4) LEP PATTERN
Some studies have focused on searching for new ERPs for
better control systems. To this end, new tasks, such as audi-
tory tasks, have been designed and applied to stimulate neu-
rons other than sensorimotor cortex area, and the obtained
patterns, named as LEP have been employed for further
computations and control applications [16].

5) RP PATTERNS
Readiness Potential (RP) is a pattern generated about 1.5 s to
1 s before a real movement. The RP is associated with repeti-
tive voluntarymovements, such as walking. In the processing,
the RP is divided into early and late RPs. The early RP occurs
about 1.5 s before a voluntary movement in the central area of
the cortex, and the late RP about 500 ms before the voluntary
movement in the primary motor cortex area [17], [18].

B. DATA ACQUISITION
In order to control a BCI application using bio-signals,
amplifiers to measure the human body changes during the
experiments are required. Well-known devices are EEG,
EMG, EOG amplifiers (suitable for real-time process-
ing), fNIRS, and functional Magnetic Resonance Imag-
ing (fMRI) devices, the details of which are presented as
follows:

1) EEG, EMG, AND EOG AMPLIFIERS
To measure noninvasive signals from heart, brain activities,
and muscles, ECG, EEG, and EMG amplifiers, respectively,
are deployed. The usual electrodes for acquiring EEG, EMG,
and ECG signals are the Ag/AgCl, known as nonpolarized
electrodes. The other popular electrode is disposable (single-
use) electrode, called a gel-based or Bio-Potential (BP) elec-
trode. In theory, the BP electrode senses ion flow on the
tissue surface and then converts it into electron current.
For the EMG measurement using BP electrodes, the ion
distribution is generated by applying nervous stimuli and
muscle contraction. The electrodes deployed are categorized
as nonpolarized and polarized. The nonpolarized electrodes
(Ag/Agcl) pass the current across the electrolyte interface.
Thus, less noise is recorded compared with polarized elec-
trodes in the case of movement noise. Furthermore, nonpo-
larized electrodes are easy to manufacture, and they have
a very low half-cell potential termed as dc offset. There-
fore, Ag/Agcl electrodes are popular for the EEG recording
compared with other electrodes. The polarized electrodes do
not let the current move freely across the interface between
the electrode and the electrolyte, which acts similar to
capacitors.
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2) fNIRS
The fNIRS is a noninvasive imaging system formeasuring the
hemoglobin (Hb) concentration changes in the neurovascula-
ture system of the brain. The Hb concentration changes are
measured by optical intensity measurements (characteristic
absorption spectra) by near-infrared light. The studies apply-
ing the fNIRS are usually hybrid methods with EEG signals
for real-time control of the BCVA applications. The fNIRS
has been used for the primarymotor cortex area for imaginary
tasks to determine accurately the areas the brain activity takes
place and use them for identification procedures [19].

3) fMRI
The fMRI is an accurate noninvasive imaging system for
demonstrating the localized power in a brain map with a
high resolution. The mechanism is based on hemodynamic
changes of the brain that are associated with neuronal activ-
ity [20]. In the present review, the fMRI is employed for the
control of BCAV applications. The fMRI is usually employed
as a hybrid method with the EEG to obtain significant results
in real-time systems.

4) EXTERNAL SENSORS
Hybrid methods are a combination of different signals to
improve the significance of the results. In some methods,
a combination of different bio-signals with non-bio-signals
are used to identify the driver’s intention and to navigate
accurately, such as a combination of the EEG with the EMG,
Global Positioning System (GPS), cameras, fNIRS, google
glasses, and motion sensors known as external sensors (e.g.,
acceleration, velocity, and wind speed) [21], [22].

C. CHALLENGES OF BRAIN SIGNAL PROCESSING
Here, an identification algorithm steps are introduced and the
challenges in each step is considered and the details of the
algorithm in each step is explained in details in section III.
In order to control a vehicle, either by the BCV or the BCAV
by using bio-signals, the following main steps are required:

1) preprocessing,
2) feature extraction,
3) optimization (can be applied to features and classifiers)
4) feature selection,
5) classifiers,
6) statistical analysis,
7) real-time experiments.

Fig. 1 provides a description of those steps and possible
options to be considered. These options will be described
next.

At present, some of the initial BCV EEG-based questions
and limitations have been solved; for instance, the area of the
cortex for recording the EEG related to specific tasks such
as hand movement, the frequency range of neuron activities,
and the specific patterns related to the applied stimulation,
and how to develop algorithms for automatically finding the
patterns.

The unsolved problems are mathematical algorithms for
noise rejection and automatic identification of specific pat-
terns with a high precision. In particular, development of
effective algorithms for feature extraction and classification
for automatic pattern identification are challenging tasks.
Further questions associated with neuron connectivity are, for
instance: which neurons are connected in a specific task, and
how neurons communicate after the stimulation.

Other challenges are related to the mathematical
approaches for prediction of patterns, design of real-
time algorithms, and speeding up the processing of time-
consuming methods, such as wavelet-based methods. The
key problems in the BCV applications based on the EEG are
(i) the nonlinearity of the brain, generating patterns of dif-
ferent varieties for individual participants; (ii) the denoising
of the EEG signals affected by white noise (which is highly
nonlinear, and is similar to the EEG); (iii) hardware limita-
tions (distance and speed) of communication for portable and
wireless devices (irrespective of Bluetooth andWi-Fi) in real-
time applications.

In the following, we explain themethods applied to identify
the intentions of drivers based on brain signals.

III. IDENTIFICATION OF THE DRIVER’s INTENTION
To detect and predict the driver’s intention for the control
of a BCV and a BCAV, the steps presented in Section II-C
have to be followed. We will provide a brief review of each
step in this section (supported by the information presented in
Tables 1 to 2 in Appendix).

A. STEPS OF IDENTIFICATION ALGORITHMS
Conceptually, automatic identification algorithms are defined
in offline and real-time processing, where the offline mode is
used for training a classifier for the real-time processing; a
list of classifiers that are used in identification problems and
optimizers that can be used in training are shown in 1. In the
offline processing, the steps listed in Section II-C have to be
followed. The steps are well-known, and they are presented
in brief as follows:

1. Preprocessing: proposed for removing unwanted signals
that include segmentation, filtering, and normalization; all
these techniques depend on the targeted patterns. For exam-
ple, Alpha band (8–14 Hz) and Beta band (14–30 Hz) are
usually used for movement and IM patterns.

2. Feature extraction: a good feature algorithm shows
high distinction for a specific part of a signal against other
parts of the signal. A short list of features for the BCV
and BCAV applications are average, median, power, ampli-
tude, variance, PSD, FFT, autoregressive, long-term correla-
tion, cross-correlation, spectral amplitude, frequency-filtered
signal (Alpha and Beta waves), Common Spatial Pattern
(CSP), Independent Component Analysis (ICA), FastICA,
wavelet, Detrended Fluctuation Analysis (DFA), chaotic
algorithms, such as the largest Lyapunov exponent, and HbO
and HbR (hemoglobin concentration) changes for the fNIRS.
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FIGURE 1. Algorithm’s (features and classifiers) diagram for identifying the driver’s intention for BCV and BCAV applications.

In some algorithms, the initial values of the features require
optimization.

3. Feature selection: removing the irrelevant features by
using feature selection algorithms. The irrelevant features are
generated by noise. The feature selection algorithms used for
BCV and BCAV applications are the Principal component
Analysis (PCA) and the Linear Discriminant Analysis (LDA).
The selected features are then fed into the classifiers for
categorization.

4. Classifiers are decision-makers for the categorization of
features. Classifiers are divided into supervised and unsu-
pervised types. In the supervised algorithms, the labels
of segmented signals for different classes are determined,
whereas in unsupervised classifiers the labels are enig-
matic. In the present review, supervised and unsupervised
classifiers used for the BCV and BCAV applications are
K-Nearest Neighbor (K-NN), LDA and Regularized LDA
(RLDA), Neural Network (NN), a combination of RBFNN
with GGAP-RBFNN, different combinations and modifica-
tions of (Soft Margin) Support Vector Machine (SMSVM)
with (Generalized) Radial Basis Function (GRBF), threshold-
based classifiers, such as Vector Phase Analysis (VPA),
Queuing Network (QN), Logistic Regression (LR), Convo-
lutional Neural Network (CNN), Ensemble Classifier (EC),
Model Predictive Control (MPC), K-means, Gaussian Mix-
ture Model (GMM), and Hidden Markov Model (HMM),
which are discussed in Section IV, and whose details are
summarized in Tables 1 to 2.

5. In order to increase the efficiency of features and
classifiers, optimization algorithms are used. Optimization

algorithms enable flexibility of the consistent parameters to
overcome limitations of traditional features and classifiers.
For example, Water Drop Optimization (WDO) and Chaotic
Tug of War Optimization (CTWO) have been developed
recently. Conceptually, theWDO is an evolutionary algorithm
that has been developed based on the behavior of water in
a river, the objective of which is to search for optimum
values in functions. The idea of the algorithm is based on two
characteristics of the water flow; 1) velocity and 2) number
of soils conveyed by water. The advantage of this approach is
high-speed convergence [23]. The second recently developed
optimization algorithm is the CTWO, conceptually inspired
by the rope pulling competition. The CTWO selects two
teams as solution candidates for applying pulling forces
(interaction between teams), and the magnitude of forces is
relative to the quality of solutions. The algorithm has five
steps; 1) initialization, 2) weight assignment, 3) competition,
4) new generation, and 5) termination. The advantage of
the CTWO is its higher speed compared with the stochastic
searches [3], [24].

6. Statistical analysis: in order to measure the efficiency
of the classifiers, statistical measures, such as accuracy, sen-
sitivity, and specificity are employed. In these algorithms,
the computations are based on four parameters as follows:
TP is the correct features that are correctly categorized as
positive, TN is the false features (incorrect) that are correctly
categorized as false, FP is the false features (incorrect) that
are incorrectly categorized as positive, and FN is the correct
features that are incorrectly categorized as false [25]–[27].
TP is an outcome where the model correctly predicts the
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positive class, TN is an outcome where the model correctly
predicts the negative class, FP is an outcome where the model
incorrectly predicts the positive class, and FN is an outcome
where the model incorrectly predicts the negative class. If the
results obtained are satisfactory, the trained classifiers are
then saved and used for real-time-experiments.

7. Real-time mode applications: In the reviewed papers,
the following real-time BCV and BCAV applications were
presented: a vehicle simulator, a graphical game, a real car in
the real world, a mobile robot, a quadcopter, a drone, a heli-
copter, and an aircraft. In the following section, we describe
studies on the control of BCV and BCAV applications in
detail.

IV. STUDIES ON BCV AND BCAV
In order to control a vehicle by using bio-signals, differ-
ent simulators and algorithms have been used as illustrated
in Tables 1 and 2. Studies published on BCV and BCAV
topics are related to detection of the driver’s intentions to
control a vehicle for navigation, changing the lane, steering
control, [28], [29], the EBC [30], [31], and the OAC [22],
[32]. The studies discussed here are divided into two parts;
BCV and BCAV studies, which are organized into successful
initial ideas (exploring patterns and how to generate patterns
by using appropriate tasks), mathematical developments, and
improvements to the current situation step by step. Some
studies report accuracy results based on individual subjects;
considering such studies, we have computed the average
values of accuracies and report them in Tables 1 to 2.

A. TECHNIQUES EMPLOYED FOR BCV APPLICATIONS
AND THEIR EFFICIENCIES
In the initial generation of key series studies, Haufe et al. [33]
implemented an EBC system for BCV applications by using
EEG and EMG signals in a graphical racing car task in the
real-time mode. In the algorithm, the areas under the ERP
patterns relative to the emergency brakes were computed and
categorized using the RLDA classifier, and the efficiency
was considered by accuracy and response time (reaction)
parameters. The cons of the method are the low number of
features, the limited ERP patterns for feature extraction, and
the use of the linear classification RLDA. Therefore, different
types and a larger number of ERPs for training of a nonlinear
classifier for such a complicated signal (EEG) are highly
recommended. It is noted that the ERPs vary over time in
various situations.

In the study by Kim et al. [35], the objective was to over-
come the limitations of previous studies by increasing the
number of states for identification (soft and sharp braking)
based on the driver’s intentions. Each state has different task
scenarios; soft braking refers to normal driving conditions,
and sharp braking to a scenario with an obstacle on the road.
In order to overcome the disadvantages mentioned earlier,
features were extracted from three different patterns, such
as RPs (time interval from 300 ms before the stimulation to
600 ms after the stimulation), the IM (ERD/ERS obtained

by filtering EEG data between 5 and 35 Hz) and the ERP
(obtained by Hilbert transformation). The results showed
a higher accuracy to ‘‘. . . compared to the previous study
in [33]. In addition, the authors reported that the area of
the cortex which produce the ERP patterns relative to the
emergency cases were determined. The limitation in the study
of [35] was the low rate of robustness and the use of
the binary RLDA classifier for categorizing more than two
classes. The RLDA principle is based on the LDA algorithm,
which is a linear classifier designed for binary identification.
The LDA maximizes between-group scattering over within-
group scattering. In other words, the algorithm searches for
the projections by optimizing the feature space coordination,
which reduces the inter-class variance whilst increases the
distance between classes. By regularizing the LDA (RLDA),
scattering of the inter-class features is regularized and enables
a nonsingular matrix, which has the capability of employing
a large number of features for the classification. The main
limitations of the RLDA are the linearity of the algorithm and
confinement to two state identifications [32], [36]–[38].

To solve the low robustness in the real-time experiment,
Haufe et al. [39] extracted new features from the auditory
signals in a vehicle-following graphical task for training of
a RLDA classifier. The new trained algorithm was tested
for the EBC in a real-world traffic case. The results did not
report the accuracy and robustness of the algorithm. Overall,
the presented series of studies aimed to extend the results
by using patterns from EEG, EMG, and auditory signals.
The significant advantages are variations of ERP patterns
generated in different situations by using scenario tasks. The
main drawback of the studies is that a larger number of
subjects was not employed when using different classifiers.

External sensors, such as velocity, acceleration, wheel,
and brake pedal angle sensors, and camera instruments,
have been used to increase the accuracy of the method.
Gohring et al. [21] employed a set of 16 external sensors
with a camera for semiautomatic vehicle navigation on the
road. To control steering and braking, ERD/ERS patterns
from the EEG signal were extracted regarding the OAC and
normal driving scenarios. The camera and external sensors
used in the study helped significantly in decreasing the Evoke
Potential (EP) detection error rates. The algorithm was then
applied to a real vehicle, resulting in somewhat improved
results. However, the reliability can still be considered insuf-
ficient because of the use of a low number of subjects and
a threshold classifier, which is a known problem for single-
trial algorithms. Even though a threshold classifier was used,
the obtained accuracy is high enough.

The second generation of continuous studies aimed to
overcome the defects of the previous studies by designing
different tasks for generating new EEG patterns and devel-
oping mathematical algorithms for signal denoising, feature
extraction, and selection. Bi et al. [34] designed a Head-Up
Display (HUD) task and extracted SSVEP patterns to control
a vehicle simulator. In the experiment, the first step was
to identify the Alpha waves by using the LDA classifier to
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FIGURE 2. Different BCV applications: a) vehicle simulator [33], b) vehicle with different external sensors and a
camera [21], c) real vehicle [22], d) video game vehicle [34], and e) mobile vehicle controlled by the EEG [29].

turn the vehicle on and off. Next, vehicle navigation (turn
right, left, and move forward) based on the SVM classifier
was implemented for the OAC. The results for the OAC
and turning the vehicle on and off in the real-time mode
were promising, but the results for the navigation in three
directions showed high variation in accuracy. Limitations of
the study were the small number of participants, the use of
the SVM binary classifier for more than two classes, and
neglecting the response time. Because of the constraints,
the recommended speed for the algorithm was 30–40 km/h.
In a subsequent work, Bi et al. [40] used an alternative pat-
tern, viz. the P300 pattern for selecting the driver’s intended
destination for the same experiment as in [34]; the obtained
results showed a higher accuracy with double the number of
participants.

In the next subsequent study, Fan et al. [41] combined the
SSVEP pattern and alpha EEG waves with the previous
methods to control the vehicle simulator for the following
commands: start, stop, stay on the lane, the OAC, and curve
control. In the algorithm, the PSD features were extracted
and categorized by the binary LDA algorithm, which has the
same above-mentioned limitations. After this, Bi et al. [42]
proposed a mathematical model for controlling the BCV
steering in the same application [34] and [40]. The model
was designed based on the QN algorithm for predicting the
driver’s intentions to navigate the vehicle in order to move
forward and turn left and right. The QN was fed by the
SSVEP patterns, velocity, acceleration, road information, and
vehicle position in the road features to control the steering
of a vehicle. The performance improved in comparison with
the previous attempts, but compared with the other studies,
the response time and robustness of the model were not
reliable. The hallmark of the study is the use of an effective
method for analytic equation solving, namely QN. The idea
of the QN is to construct different models for predicting

the waiting time in queues. For this purpose, the QN is
constructed of three modules, known as preview, predict,
and control modules. The input of the preview module is
the path to determine the desired vehicle position, and the
input of the predictive module is the road information and the
vehicle state input provided by external sensors to determine
the predictive position. The input of the control module is
the subtraction of the preview from the predictive module to
compute the error for the steering command computations.
Therefore, the QN model is well constructed based on infor-
mative external features [42], but the algorithmwould require
more subjects to achieve a precise model. On the other hand,
the EEG patterns vary considerably over time and in different
situations, and thus, the PSD is not an adequate feature to
predict the driver’s intentions.

In a subsequent work, Bi et al. [22] limited the applica-
tion to emergency brakes only. In the experiment, a set of
above-mentioned and new external sensors (Table 1) were
embedded into the system to analyze the conditions of the
environment, resulting in a significantly higher accuracy
and faster response in comparison with previous experi-
ments [34], [40], [42]. The reason for the better result is the
use of more sensors that provide more features, definition
of only two states in the task, the use of the CSP algorithm,
which is a powerful feature tool for binary states, and the use
of the binary RLDA classifier. In total, the number of features
increased and the number of classes decreased, which led to
higher accuracy with less variation. The major concept of
the CSP is to increase the feature space dimensions to max-
imize differences in variance between two classes, because
the scattered features are divided into two categories; the
reader is referred to more details in [37]. The SVM classifier
made decisions based on features that are located at the
margin of the two categories, namely the support vectors
with a linear/nonlinear kernel. The main drawbacks were the
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principle of the CSP algorithm, which is based on binary
classifications. The idea of employing road data, as a future
world-wide road map, is still open; to expand the method
presented by Bi et al., the road model has to be connected to
a database, such as google maps, to obtain road information
and weather forecasts with high-speed connection. Regarding
the considerations of the study, the next telecommunication
generations have the potential of solving the distance and
speed constraints.

The same team, Lu and Bi [43] designed a controlling
method to increase the safety of the user during longitudi-
nal brain-control driving. The proposed method maintains
the rear-end safety of the BCV while the user concentrat-
ing on the brain-controlling of the vehicle. In the algo-
rithm, three models are defined as follows: 1- Longitudinal
brain-control driving model for the driver decision behavior
and brain-control operation behavior, 2- Vehicle longitudinal
model for dynamicmodels of the host and preceding vehicles,
and 3- Driver’s behavior model for predicting the driver’s
decision. In the algorithm, predicting the driver’s decision
found from the SSVEP pattern at 12 Hz and 15 Hz, that
features computed and feed into the SVM classifier. In this
method, the safety ismeasured based on twomeasurements of
minimum safe distance and a minimum time to collision. The
obtained accuracy results were significant consequently the
safety of the system were considered and achieved noticeable
results.

Later on, the same team continued [44] and developed a
controller named as robust sliding-mode nonlinear predictive
for control of a mobile robot based on the EEG and HUD.
Authors used the same HUD-based SSVEP as in their previ-
ous study [34] to increase the efficiency of the results in [43].
In the controlling algorithm, a cascading predictive controller
which is for identifying the human intention is combined
by a smooth sliding-mode controller which is designed for
robust velocity tracking. In the algorithm, three classes were
identified (forward, turn right and left) using the SVM (one
vs others) algorithm. The results showed significant enhanced
performance, higher safety, and robustness for control of a
mobile vehicle. The safety has two points of view in the study,
which are the distance safety of the vehicle during driving by
use of a laser sensor and tracking the user attention during
the task based on the SSVEP patterns at 12 Hz to 15 Hz. The
obtained accuracy results showed significant improvement in
comparison with their previous study [43]. It would be inter-
esting if the researchers would use the Deep learning algo-
rithm, which has potential of multi-class identification, even
though the Deep Learning algorithm requires large number of
input values for training. It might be covered using the large
number of sensors. The disadvantage of the SSVEP-based
methods is staring at the blinking lights for a long time for
control a vehicle is not convenient.

The same team in a series studies, the aim was to
increase the SNR and accuracy rate by combining classifiers.
Lu and Bi [8] designed an algorithm based on the longitude
control system to control the speed of a simulated vehicle.

In the algorithm, the CSP was employed for augmenting the
EEG signal SNR, and then, PSD features were extracted from
the SSVEP patterns and classified using the traditional SVM
classifier with the traditional RBF kernel. The accuracy of
the results has high variations (low robustness) for individual
subjects. Later, Lu and Bi [28] amended the previous study
for longitude and lateral control. The idea was to extend the
two classes to three classes with the same identification clas-
sifier, namely changing lane, selecting path, and following.
Also in this case, the accuracy results showed the same high
variation for the subjects. The studies had several drawbacks,
as discussed above.

Later, the same team developed a control model
including an optimization approach called MPC was by
Lu et al. [45], [46] to increase the identification performance
of the driver’s intentions. The MPC was designed based on
penalty values, which are obtained with a cost function for
safety criterion parameters. The MPC model was a combina-
tion of two virtual scenarios; control of the road-keeping test
and the OAC. The performance still has high variations. The
novelty of the study was the use of the MPC method, which
is an algorithm for controlling a process while satisfying the
equation criterion. The remarkable advantages of the MPC
are its flexibility and open formula for linear, nonlinear,
and multi variable equations without a need to change the
MPC control algorithm. One main disadvantage of the study
is the use of traditional features and classifiers with low
efficiencies, such as SVM and RBF. In the recent studies of
the same team, Fei et al. [47] used a semi-supervised method
based on adaptive algorithm for control of a vehicle. The
adaptive method initialized the input values using a small
labeled feature for a training set. Then, the initial values
adjust automatically during updating with unlabeled new
coming selected inputs. The study employed EEG patterns
related to nine-character flashes for the users and extracting
Mutual Information Maximization (MIM) features. The key
points of the algorithm was employing a semi-supervised
mutual information maximization (semi-MIM) feature selec-
tion algorithm that classified by Transductive Support Vector
Machine (TSVM) classifier. The cons of the study were
employing two subjects for the research, which is difficult
to figure out how much the method is effective and small
number of features.

In a set of different studies, various ideas based on com-
binations of sensors and traditional classifiers were imple-
mented to increase the accuracies with higher reliability.
Stawiki et al. [7] developed the control of a mobile vehicle by
using a graphical user interface and a live camera feedback
system based on the SSVEP patterns. The novelty of the
algorithm was the adoption of a computational approach to
remove noise and increase the amplitude of the SSVEP pat-
terns before feature extraction, namely the refined minimum
energy algorithm, which significantly affected the results.

Later, Hernandez et al. [30] designed an identifier for
a vehicle brake system for considering different driving
situations based on different scenarios. The preprocessed
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EEG signals were the time-domain features, which were
categorized by the SVM and CNN classifiers. The obtained
response times for braking in the emergency cases (high
speed) were insignificant.

In another recent study, Nguyen and Chung [48] devel-
oped a method for identifying the driver’s intentions for the
EBC in a vehicle. The algorithm consists of the EEG band
power, auto-regressive model features, and an NN classifier.
The results showed high accuracy and a significant improve-
ment in the response time. The results have the potential
for improvement if some of the features and classifiers are
optimized. In general, the lack of subjects and nonoptimized
algorithms is obvious, andmoreover, improving the results by
using simple models, such as auto-regressive, would require
more considerations.

Recently, Dindorf andWos [49] a system for the EBC using
the EMG signals, named as dual brake pedals. Also, authors
designed a new application using a Pneumatic Actuator as a
secondary foot brake pedal to increase the safety by increas-
ing stopping power. In the method, muscular signals from the
partcipant’s face and eyelids, clenching of jaws, and pressing
tongue on the palate were measured for controlling the brake
pedal. In the algorithm, feature extracted from a low pass fil-
ter (15 Hz) signal and spectral analysis. The evaluation of the
results was based on the brake pedal deflection that computes
by the lowess method filter and lase sensor. In the presented
method, the reaction response for the signal processing was
0.02-0.05 s and the reaction time for the pneumatic system
was 0.23 s, the best obtained response time was 0.24 s. The
cons of the method are due to the use of pneumatic system
instead of electrical break the reaction time is high and expose
the diver in dangerous situation. Also, statistical analysis
such as accuracy, sensitivity and specificity did not evaluated.
In the next study, Dindorf et al. [50] used the EEG, EMG and
eye movement signals to increase the efficiency and safety
of the user. In the study, it is claimed that the user safety is
improved by decreasing the reaction time of the system in an
EBC task.

In another study, supervised and unsupervised classifiers
were combined to raise the accuracy rate. Zhao et al. [51],
designed models for the driver’s intention for braking. The
model was a combination of theGHMM/GGAPwith RBFNN
(GHMM/GGAP-RBFNN). The algorithm was designed for
identifying slight and normal braking states and then tested
in a real vehicle. The results obtained were significantly
improved compared with their previous work [52], but the
time response was not taken into consideration. The novelty
of the method is the optimization of the network connections
in an NN by using GHMM/GGAP approaches, where the
GHMM is a combination of the unsupervised GMM and
HMMalgorithms. Conceptually, the GMMassumes that each
class has a Gaussian distribution, and the feature space con-
sists of a mixture of a number of Gaussian classes, which
follows the rule of mixing finite Gaussian distributions, each
Gaussian having a specific center and width. In the study,
some GHMM parameters were computed using the HMM

clustering algorithm. In short, the HMM is an extension of
the Markov Model (MM), the principle of which is based on
the Markov Chain (MC). Conceptually, the HMM is based on
observable patterns that are relative to unobservable interior
factors, namely patterns and states, respectively. The algo-
rithm has two random processes for the layers, called hidden
and visible processes for the hidden states and observable pat-
terns, respectively. The hidden states compute theMC and the
probability distribution of the patterns relative to the states.
The features are then categorized based on the probability
computations [53]. Next, the GHMM is then employed to
compute the parameters in the GGAP algorithm that links the
aim of desired accuracy of the RBFNN with the importance
measurements of the closest added new neuron, which is
computed using the average content of the specific neurons.
In general, the RBFNN is a supervised classifier, based on
the feed forward NNwith the traditional RBF activation func-
tion. The RBFNN contains input, hidden, and output layers,
in which connections between the RBF activation functions
have been pruned using the GHMM/GGAP-RBFNNmethod.
In such a combination of complex and unsupervised meth-
ods, disadvantages are the delay for real-time processing,
a high error rate, and low robustness. One easier approach to
improve the results is to optimize the sensitive initial values
in the features and classifiers.

Later on, Liu et al. [54] employed lidar simultaneous
localization/mapping technique for navigating. In the algo-
rithm, the SSVEP patterns used for control of a vehicle.
The SSVEP patterns where generated using four different
frequencies and the patterns were recorded by eight EEG
sensors. Then, features classified by Filter Bank Canoni-
cal Correlation Analysis (FBCCA) that improved the CCA
method results in previous their study [55]. Because the
correlation is the main decision maker, no training set pro-
cedure is required. The achieved results for such a high speed
processing method showed significant improvements.

In a recent continuing complementary study, optimiza-
tion approaches included identification algorithms for adjust-
ing features such as CSP and chaotic features and tuning
classifiers such as traditional SVM and Radial Basis Func-
tion (RBF) for the BCV applications. In our previous exper-
iment [37], [56], a method for controlling a mobile vehicle
was implemented for moving forward and braking states, and
the same method was applied to a prosthetic hand. In the pro-
cedure, Filter Bank CSP (FBCSP) features were optimized
using theDiscrimination Sensitive LearningVector Quantiza-
tion (DSLVQ) training algorithm, and then, different combi-
nations of classifiers were employed. In the study, 14 different
classifiers were implemented: KNN, NN, and different com-
binations of the traditional SVM, generalized SVM called
Soft Margin SVM (SMSV), traditional RBF, and Generalized
RBF (GRBF). The results showed that the DSLVQ optimiza-
tion coefficients changed the CSP features, and the SMSVM
classifier using the generalized RBF (GRBF) kernel, namely
SMSVM-GRBF, yielded the best results. The advantages are
1) optimizing the features by the DSLVQ iterative learning
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method. In the case of a low number of subjects, specifically
in single-trial experiments, the DSLVQ optimizes features,
which effectively overcomes the defects related to the lack
of subjects. 2) By implementing the GRBF kernel in the
SVM, the parameterized Gaussian function adds flexibility
to alter the Gaussian shape for covering the distribution of
the scattered features in each class, which leads to reliable
accuracies with low variations [25], [27]. 3) Adding flexibil-
ity to the traditional SVM by deploying free parameters in the
cost function and regularization algorithms. The drawbacks
of [37] was the use of the CSP and the SVM, which are,
in principle, designed for two classes as mentioned above,
and therefore, the extended CSP approaches for multi-classes
significantly increase the error rates.

Later on, we employed nonlinear features for identifying
the ERD/ERS patterns for braking and moving a remote
vehicle forward [5], [6], [29]. In the algorithm, the ERD/ERS
patterns of individual subjects were employed as a mother
wavelet in the wavelet packet. Then, the Detrended Fluctua-
tion Analysis (DFA) method was used for computing a new
time series based on the wavelet components. The long-term
correlation features were then extracted and classified by
the SMSVM-GRBF [37]. The advantage of this method is
the use of an individual’s ERD patterns to compute wavelet
components, the results of which were shown to be well
optimized. The drawbacks of this method are the delay in the
real-time experiment, which was about 1.5 s because of the
wavelet. Furthermore, the limitation of the 12 m distance for
controlling the vehicle was a further limitation that was due
to the XBEE bluetooth chipset, yet it can be solved by using
Internet of Things (IoT) and 5G technologies.

In the next step, the objective of our team [3], [26] was
to improve a nonlinear chaotic feature extraction method
for the same application based on the ERD/ERS patterns.
In the algorithm, the Largest Lyapunov Exponent (LLE) was
computed, and then, the initial values were optimized by
using the WDO [57] and CTWO [3] optimization methods.
The results were improved in comparison with the normal
LLE only in the offlinemode, but the algorithmwas not useful
in the real-time mode because of the LLE limitations. The
LLE is well optimized only for a signal length of more than
1.5 s, which causes delay in real-time systems. The advantage
of this method is the use of evolutionary and chaotic opti-
mization methods, known as the WDO and the CTWO. The
drawbacks of the evolutionary optimization algorithms are
that the proposed optimized answers are not always the best
values, and they are highly dependent on where the search
engine starts for seeking the optimized values, and further,
the onset points are selected randomly as explained in III-A.

A close complementary series of study is related to the
identification of the driver’s emotions, where the emo-
tions during driving are termed as nervous and relaxed.
Zhang et al. [58] designed a real-time algorithm based on
error-related potentials to control a simulator and a real vehi-
cle. The LDA classifier was then applied to control speed,
lane change, and dynamics of a vehicle. The results could

not provide remarkable improvements in comparison with the
previous studies. The drawbacks of the studies are similar
to the above-mentioned methods; in short, a low number
of subjects and features, and using a very basic binary lin-
ear classifier to identify more than two states. Therefore,
Yang et al. [59] limited the previous study [58] by designing
a binary classifier for predicting only two states of the driver’s
emotions, namely, aggressive and unaggressive. In addition,
a larger number of features, viz. amplitude, long-transformed
power, and PSD from different frequency bands were com-
puted. The final model was a driver assistant for lateral
(changing lane) and longitudinal control (speed acceleration).
The novelty of the method was the design of two identifica-
tion layers, which consist of two supervised (SVM, KNN-
based on voting) and one nonsupervised learning (K-means)
classifiers. The K-means algorithm concept solves a mini-
mizing within-cluster variance enigma to reach a K number
of clusters. In this context, we should bear in mind that the
unsupervised methods usually have higher error rates, yet
they are effective when integrated with supervised methods.
The limitations applied to the number of classes and the use
of a binary classifier improved the results, even though fea-
ture selection and optimization for classifiers was not used.
The tuned classifier means adjusting the initial values and
correcting error rate coefficients in the classifiers to mini-
mize the error rates. The tuned coefficients result in effective
selection of support vectors in the SVM, which play a crit-
ical role in fixing the margin and the decision hyperplane.
Regarding the presented studies, the traditional features
and classifiers required optimization that was addressed in
detail [37].

Next, Zhuang et al. [31] implemented an EEG-based algo-
rithm with real-time visual feedback to control a simulated
vehicle for controlling a BCV in three states of right and
left steering and acceleration for the OAC task. Zhuang et al.
employed a combination of wavelet and Canonical Correla-
tion Analysis (CCA) to reveal the ERD/ERS patterns. The
PSD features were then identified by using ensemble, SVM,
and CNN classifiers. The CNN is a three-layer classifier
in the DBL, namely convolution and pooling layers. The
constructed CNN has an ability of having several convolution
and pooling layers that the number of layers requires to be
adjusted. The convolution layer is employed to produce fea-
tures from the input data. The pooling layer is then employed
for dimension reduction of the convolution layer and the
NN for classification. The CNN approach is highly effec-
tive when a large number of features are available. Finally,
the EC reaches the best result, which is a combination of
several learning algorithms in a classifier. The EC is known
as a generalized approach to increase the efficiency of any
classifiers in comparison with individual classifiers, such as
boosting and bagging methods. Boosting is a popular method
in the EC for reducing bias to obtain a strong dependence in
the data [31]. The drawbacks of the study is the use of a time-
consuming algorithm, called wavelet, which causes delay in
real-time systems.
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The second interesting type of vehicle is aerial vehicles.
Many attempts have been made to control the BCAV by using
bio-signals. In the next section, the methods used to control a
BCAV are considered in detail.

B. TECHNIQUES EMPLOYED FOR BCAV APPLICATIONS
AND THEIR EFFICIENCIES
In the present review, examples of the second type of vehicle,
aerial vehicles, are illustrated in Fig. 3, including drones,
quadcopters, helicopters, and airplanes. A review of aerial
vehicles controlled by BCI [60] was published in 2018, which
presented studies published before the year 2015. The publi-
cations between years 2013 and 2015 are mostly conference
papers focusing on categorization of types of aerial vehicle,
applications, and control methods in general contexts. Here,
we present a detailed complementary methodological review
based on effective bio-signal processing studies over the past
ten years.

Drone technology is a commercialized application that
many industries and organizations have been deployed to
increase their productivity and efficiency. The combina-
tion of unmanned aerial vehicles and BCI is a new idea.
The advantages of using drones are significant; e.g., low-
cost production, transport and maintenance, readiness to fly
quickly, exploitability in perilous situation, use of clean
energy, and suitability for demanding applications, such as
spacecraft [64]. There are many categories of aerial vehicles
for different applications, such as health care andmilitary use.
In the present survey, the focus is on the review of bio-signal
processing techniques for the control of BCAV applications
in the nonmilitary use. Considering other types of aerial
unmanned vehicles, structures and electronics, the reader is
referred to [64]–[66].

Recently, hybrid methods have been employed to control
aerial vehicles, such as EEG, (f)MRI, and (f)NIRS measure-
ments. The fNIRS and fMRI methods have the limitation of
real-time mode usage, but they have a high resolution. On the
other hand, the EEG can be used in the real-time mode, but
it does not have as high a resolution as the fNIRS and fMRI
instruments. Therefore, some studies combine the advantages
of the both techniques simultaneously and introduce hybrid
methods, such as the EEGwith the fNIRS [67], [68], the EEG
with the fMRI, and the EEG with the eye tracker [69]. In the
EEG-based aerial control algorithms, the following patterns
employed for feature extraction are the ERD/ERS, ERPs,
SSVEP, eyemovements, and blinking. The features computed
for the above-mentioned patterns are cross-correlation, LR,
mean, peaks, and PSD, which are classified with different
classifiers, such as the SVM [67], [70] and the LDA [68].

In general, the control algorithms of the BCV applications
are well explored and could be employed in the BCAV appli-
cations. The difference between the control of the BCV and
BCAV applications is four navigation commands, such as
take-off (up for drones), landing (down for drones), rotations
for drones (different from turning), and keeping balance,
which are not considered yet. The preliminary navigation

commands employed for the fixed wings and helicopter
control the four main directions after manually taking off,
which is the most similar navigation to the BCV control
applications.

In a continuous series study, Royer et al. [61] aimed to
establish a control for a graphical helicopter in four main
directions using the ERD /ERS patterns. In the algorithm,
the extracted features were cross-correlation and difference of
the auto-regressive spectral amplitude between the right and
left hemispheres. Three weaknesses of the algorithm were a
delay of 2.1 s in reaction time, the use of a linear classifier for
four states, and low precision.

In another study, Akce et al. [62] used the ERD /ERS pat-
terns to control a fixed-wing aerial vehicle. In the experiment,
the fixed wings were controlled based on selecting a trajec-
tory of a flying path through a binary classifier. The algorithm
has the same limitations as in [61]. As an open study, we sug-
gest that in the case of specifying flying path methods, it is
possible to use methods similar to the inverse kinematics to
optimize the feature values in the control system to let the
fixed wings reach the end point. Doud et al. [71] improved
the results of Royer et al. [61] by using a control of a virtual
helicopter for six directions based on the time-frequency
analysis and PSD features.

Finally, the helicopter accuracy results were improved by
Lafleur et al. [63] for the control in six directions based on
the IM patters (SSVEP, ERD/ERS). The limitations of BCAV
methods are the same as the BCVmethods, which are consid-
ered in IV-A.
In a continuous hybrid series study, Kim et al. [69] devel-

oped the control of a quadcopter in eight directions based
on eye gaze in nine points by using an eye tracker and
EEG signals. The selected features were pupils of eyes from
the camera, power of the EEG, and EOG paradigms. The
main drawbacks of the study were the use of the traditional
SVM classifier with a linear kernel and a low number of
features and subjects. A different approach was provided
by Shi et al. [72], who controlled a hex-copter with a live
feedback camera for the OAC application. The application
was controlled by using the ERD/ERS patterns. In the algo-
rithm, cross-correlation features and LR classification were
used. The LR is a variable-dependent binary linear supervised
classifier, which is based on a logistic function (S-shaped
function) in a statistical model. The objective of the LR
model is to model the probability of the features related to
individual classes, such as imagination of right- and left-
hand movements. In other words, the function of the LR
is to find a linear decision boundary between classes by
using the parameters that are assigned to the features. The
computations are based on the relation between the dependent
binary variables of the classes and the maximum likelihood
estimation. The weights are then adjusted and applied to the
features for classification. The idea was developed further by
Coenen [16], who limited the number of classes and used dif-
ferent techniques of response to mental task patterns accuracy
to control a drone in two directions. The signal was recorded
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FIGURE 3. Some applications used for BCAV: a) virtual helicopter [61], b) fixed wings [62], c) control based on
following a selected path [21], and d) quadcopter [63].

in an auditory imagination and spatial navigation mental task.
The different patterns generated and the low number of states
were the key improvements to the results. Next, the objective
of Kosmyna et al. [73], [74] was to control a quadcopter in
three directions by using a hybrid EEG and EMG bio-signals.
In the task, left- and right-hand IM and foot tapping were
employed to generate the patterns to control turning right
and left and moving down, respectively. In the algorithm,
the IM patterns with the facial patterns were extracted from
the EEG and EMG signals, respectively. The features were
then identified by using the KNN algorithm and adaptive
recurrent NN classifiers. In the results, despite having a low
variation, the reported accuracy was relatively low, which
leaves room for improvements.

In a study, Duarte et al. [75] implemented an algorithm
based on the CSP features and the LDA classifier for control
of a drone in two directions. The aim of authors was imple-
menting a low cost method for a brain-controlled drone using
an open source software. The algorithm has limitations of
number of subjects, classes and features. Study has potential
of using other frequencies and EEG patterns and optimized
methods. Then, Vishwanath et al. [76] implement an algo-
rithm to control a quadcopter. In the algorithm, the CSP
algorithmwas used for computing features and then classified
using a nonlinear SVM-based and LDA classifier. The LDA
obtained the best average results. The drawback of the study
was not mentioned what type of movements used for control-
ling and the results of a two-class classifier is compared with
a four-class classifier.

Some studies have used the same BCV experimental tasks
to produce different patterns; for instance, Kryger et al. [77]

controlled an aircraft simulator in six directions by using the
EEG. In the experiment there was only one subject participat-
ing in the study, and the authors did not report the mathemati-
cal methods applied in the study. Regarding the achievements
of different patterns the SSVEP become a key point for
brain-controlled navigation. For example, Wang et al. [55]
proposed a method based on four different flickering LEDs
for generating SSVEP patterns for the control of a quadcopter
in four directions. The authors employed a Head-Mounted
Device (HMD) in a virtual task. In order to identify the
SSVEP patterns, the CCA with a threshold classifier was
used. The reported accuracy for one subject was high, and
it is suggested that only the threshold classifier would require
critical considerations.

In another study, Chiuzbaian et al. [78] used the SSVEP
features for a multi-class system to navigate a drone.
In the algorithm, frequency features used for identifying four
classes. The classifier was a threshold-based classifier that the
edges were computed based on the maximum and minimum
frequencies for each task. The simple threshold classifier
reaches to a significant TP results. The drawback of the study
was accuracy, t-test statistical analysis were not computed
and results were not compared with other studies. In the
next study, Duan et al. [79] combined the previous studies for
navigating a quadcopter. In the algorithm, raw EEG signal,
SSVEP and eye blinking patterns form EEG were employed
for features computations. The computed features were as
follows; 1- Complete information common spatial pattern
(CI-CSP) features extracted from the raw EEG signal for
turning left and right actions; 2- CCA features extracted from
the ERD/ERS SSVEP patterns for takeoff and landing; and
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3- Eye blinking features for switching between two flight
modes of turning in part 1 and landing and/or take of in part 2.
Significant results showed the efficiency of the CCA and
SSVEP for controlling a quadcopter. The advantages of the
study were employing the powerful features CSP and CCA.
The results would be increased and be more stable if larger
number of subjects were used.

An idea of combining the EEG and fNIRS signals in the
real-time mode has been proposed. The first series study was
performed by Lin and Jiang [80] to control a quadcopter
in six directions. In the algorithm, EEG and EMG signals
were recorded in a facial gesture task. The features were
computed based on the EEG signals, and the numbers of fea-
tures were then reduced by using the PCA feature selection.
The achieved accuracies using this approach have not led to
significant improvements with respect to the original work.
Moreover, Khan et al. [81] recorded data based on the IM
tasks for two directions. A combination of the ERD/ERS and
SSVEP patterns was used for computing the PSD features.
Oxygenated and deoxygenated hemoglobin features were
extracted from the NIRS data. The results showed significant
changes. After that, Jackson [82] developed further the idea
of Khan et al. [81] to control a quadcopter in six directions by
a Google glass with the EEG signals. In the experiment, a task
based on head posture movement imagination was designed.
Spectral features of the ERD/ERS and SSVEP were then
computed as in [81] and selected by the PCA. The identifica-
tion algorithm was also a combination of 14 external sensors
for navigation. The accuracy results were not significant. The
main downside of this study was the use of a traditional SVM
classifier with the traditional RBF kernel for multiple-class
identification. Furthermore, the presence of the PCA was not
considered, because the PCA removes the effective feature
space.

In the next step the same group, Khan et al. [83] used
the EEG, EOG, and FNIRS data for extracting features in
four directions and conducted tests in a real-time experiment.
In the algorithm, left-hand IM and left- and right-eye move-
ments were used to navigate the quadcopter with live video
feedback. In addition, an OAC algorithm was developed by
using the SSVEP patterns. This method has the constraint of
using only three subjects and binary classes.

After this, Khan and Hong [68] focused on generating
new EEG patterns based on different brain stimulators, such
as mental arithmetic, mental counting, word formation, and
mental rotation. The features were peak, skewness, mean,
and power from the EEG and mean, peak, slope, peak, min-
imum, and skewness of the fNIRS signals. The results were
improved by comparing them with the previous approaches
reported in [81]. The number of features reduced the limita-
tions of the study; nevertheless, different classifiers were not
considered.

Next, Khan and Hong [68] enhanced the EEG-fNIRS
method by exceeding the number of decoded commands to
eight commands (clockwise and counterclockwise rotations
added) for the control of a quadcopter. In the experiment, two

LDAs were employed for classification. One LDA was used
to classify the fNIRS features, and the others for the EEG
features. The decision to divide data into two sections for the
use of the LDA improved the identification results. However,
the lack of using nonlinear and optimized classifiers for
multi-classes is obvious.

In a subsequent work, [67], used only fNIRS signals to
control a quadcopter for one state of moving forward. In the
algorithm, mean, slope, peak, changes of HbO and HbR, and
HbT and COE features were used and categorized by the
traditional SVM, threshold circle, and vector phase analysis
classifiers. A weakness of the study is the low number of sub-
jects, unoptimized classifiers, and a delay of 2.3 s. Therefore,
the same team, Zafar et al. [70], conducted another study for
controlling the drone for three states of up, down, and moving
forward. To this end, mental arithmetic and mental counting
tasks were employed with the same algorithm as in [67].
Improved results were achieved compared with their previous
study [67], but the limitations remained as before; there was
a 2.3 s delay in the real-time system, which is inefficient.
Recently, Kavichai et al. [84] were able to reduce the time
delay in [68] by using the Shared Control Strategy (SCS)
method. The SCS method employed environment informa-
tion by using external sensors. Therefore, Kavichai et al.
combined the fNIRS and EEG features with the following
three measurements: eye movement, distance (measurement
sensor), and Global Positioning System (GPS). Finally, four
commands were controlled by the fNIRS signals, and four
other commands by the EEG. The aim of the approach was
the OAC and reducing the time response delay. Based on the
studies, the topic is still open and has a high potential for
improvements.

In recent studies, Chen et al. [85] combined the EEG and
EOG signals to navigate a quadcopter. In the algorithm, three
types of features were computed as follows: 1- CSP features
from imaginary (ERD/ERS) patterns of right- and left hands;
2- First set of dual-tree complexwavelet transform (DTCWT)
from the EOG and 3- Second set of EOG features which
are eye blinks, Vertical EOG (VEOG), Horizontal (HEOG)
and waveform features. The key point in computing the EOG
features is first computing dual-tree complex wavelet trans-
form (DTCWT) coefficients to obtain the maximum wavelet
coefficients, area under the curve, amplitude, and velocity.
The third types of features were computed by differential
counting algorithm to identify the number of consecutive eye
blinks. The proposed method reach significant accuracy rates
for a limited number of subjects. To evaluate the accuracy
and precision results larger number of subjects is needed.
In the next recent study, Kim et al. [86] used imaginary tasks
for controlling formations of swarm drones in four classes of
Hovering, Splitting, Dispersing, and Aggregating, the details
of definitions are available in the presented reference. In the
algorithm, CSP features, power of Alpha waves for different
frequencies were extracted and classified using the LDA,
SVM, KNN, Decision Tree (DT), and ensemble methods.
Results showed that the EEG in 8-13 Hz has the most
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informative imaginary information. The advantage of the
method was reach to significant accuracy results using the
basic LDA classifier by use of low number of features and
subjects.

Later on, Kogava and Kai et al. [87]–[89] developed a
method for controlling a drone for amyotrophic lateral scle-
rosis patients in a three-step studies. In the approach, only
microsaccades eye movements used for operating the drone
using an eye tracker. The study focus on designing a the
experimental setup and task. In the experiment, six subjects
attended to take control of a drone by performing a task on a
monitor for five degree of freedom, the data was transferred
by internet. The AI algorithm for identifying the commands
and employed statistical analysis such as accuracy and pre-
cision is absent, the study focused on the experimental setup
details. Next, Kapgate [90] utilized SSVEP and P300 patterns
simultaneously to control a quadcopter in the real world.
In the task four main directions navigated using the SSVEP
and P300 features. In the algorithm, the SSVEP pattern were
extracted from the Alpha (8–13 Hz) and Beta (14–26 Hz)
frequency bands and then the PSD features were computed.
At the same time, the p300 waves extracted from 0.1-12 Hz
frequency band. The signals were discriminated using the
CSP algorithm and then classified by the LDA classifier. The
results were well-analyzed statically and significant results
were obtained. The limitations of the study could be named
as variation of accuracies for individual subjects, more num-
ber of classes are needed for complete control of a quad-
copter. Also, more number of features for higher accuracies
is recommended.

There are differences in the control principles of the BCV
and BCAV applications. The BCAVs have eight degrees of
freedom for flight, but the BCVs are limited to four main
directions. The main challenge in the BCAV is keeping bal-
ance whilst moving in any direction; none of the studies have
considered this aspect. Therefore, more error rates to control
BCAVs are generated, which requires more accurate features
and classifiers. All in all, the advantages of the methods are
designing new tasks for identifying patterns relative to the
specified actions. Also, some of the employed algorithms
achieved good accuracy results for finding imaginary move-
ment patterns, but the variation of the subjects is still high
which can be controlled for some levels using regularization
methods. The challenging points for the BCV and BCAV
applications are associated with finding nonvariant patterns,
reducing response time, and optimizing features and classes.
Multi-class identification for higher precision and robust-
ness are still problematic and cause error rates for offline
and real-time systems. The drawback of most of methods
were using the traditional methods with no optimization and
no creative ideas in the classifications step. Also, employ-
ing advantages of different methods in previous successful
methods is seen in a few studies, which has high potential
of future research. In summary, according to the presented
studies and achievements, the DSLVQ, for instance, could
be considered an efficient method for enriching the features

(and similar algorithms for future research), and the best
known classifiers for controlling the BCV and BCAV appli-
cations could be EC, DBL, and SMSVM with GRBF kernel
classifiers.

V. FUTURE PERSPECTIVES
In the presented BCI studies, bio-signal patterns have been
deployed to control BCV and BCAV applications. Detecting
the driver’s intention for emergency braking is a challenging
task in the real world, where stress, fatigue, mental workload,
different emotions, and environmental noise are present and
vary individually. The second challenge in the BCV and
BCAV applications, specifically related to emergency brak-
ing based on bio-signals, is the response time. The question
is how much time is needed to prevent a collision at different
speeds; this is a topic that requires further considerations.
Furthermore, reducing the delay of time-consuming algo-
rithms in real-time systems with high accuracy and robust-
ness is yet another challenge, which has great potential for
investigation. Despite the above-mentioned noise, identifying
the emergency braking situation based on the EEG involves
high risks. Emergency cases such as obstacle avoidance have
certain limitations: 1) identifying an obstacle is different from
predicting an obstacle, which is a difference between a real
dangerous situation or something with a potential of danger;
2) environment has a highly negative influence on the results,
which increases the risk rate.

The third critical issue is the limitation of distance for com-
munication systems in the BCV and BCAV applications. The
solution would be to integrate the BCV and BCAV with new
technologies that are supported by 5G systems (e.g., [91])
that have great potential for a higher quality of communi-
cation with virtually no delay as in real-time processing.
The high-speed communications enable the applications to
load a high amount of data in cloud/edge servers to store
and use them within strict time constraints. Moreover, it is
more applicable to use road information through the Internet
for different applications. The fourth critical limitation is the
issue of the reliability of the application security [92], which
is a crucial topic for future research. The security investi-
gations have two aspects: 1) security of a system against
hacker attacks; and 2) security of a system when a fault
happens during the control of an application. Before using the
BCV and BCAV applications in the real world, the security
issues related to decision-making in fault situations have to be
solved to avoid irreparable damages. The fifth critical issue
is developing accurate systems for alerting the user when
the user’s concentration drops [93]. If a paralyzed patient
want to use a BCI system as a carrier, the user should con-
centrate for a long period of time, for example eight hours.
Therefore, an accurate alerting system is required to analyze
the feeling of the user during work such as alpha waves
monitoring, eye tracker and/or video processing to inform
how is the user situation and how the user should proceed
the work. The sixth future issue of the BCAV applications
is the air traffic challenges [94]. The solution would be
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TABLE 1. The reviewed studies over the past ten years.

developing an air traffic system for control of drones how
and where to move to prevent air crashes. Also, the UCAV
systems required to be equipped with different systems in
case of UCAV accident situations. By solving constraints

and reaching the highest accuracy and reliability, potentially
new jobs and technologies may be launched, some skilled
disabled people may be able to return to their previous duties,
various tasks in remote locations can be performed faster,
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TABLE 1. (Continued.) The reviewed studies over the past ten years.
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TABLE 2. The BCAV review studies in the past 10 years.

many maintenance operations will be safer to carry out and
their costs can be reduced, safety at work in hazardous con-
ditions (e.g., provision of first aid in remote or dangerous
locations) can be enhanced, and checking and guaranteeing

the security of large areas and factories will be easier. Further,
new solutions will facilitate, for instance, weather monitoring
in inaccessible areas (mountains, pole areas) or the delivery of
post.
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TABLE 2. (Continued.) The BCAV review studies in the past 10 years.

APPENDIX
In this appendix, we provide a systematic presentation
of the most significant literature in the topic

of BCV and BCAV from the past ten years, pre-
sented in Tables 1 and 2 in the following pages,
respectively.
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