
Received May 20, 2021, accepted June 25, 2021, date of publication July 27, 2021, date of current version August 10, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3100551

O2MD2: A New Post-Quantum Cryptosystem
With One-to-Many Distributed Key Management
Based on Prime Modulo Double Encapsulation
RICARDO NEFTALI PONTAZA RODAS 1, YING-DAR LIN 2, (Fellow, IEEE),
SHIH-LIEN LU3, AND KEH-JENG CHANG4
1College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
2Department of Computer Science, National Chiao Tung University, Hsinchu 30010, Taiwan
3PieceMakers Technology, Inc., Hsinchu 30070, Taiwan
4Taiwan Semiconductor Manufacturing Company (TSMC), Hsinchu 30075, Taiwan

Corresponding author: Ricardo Neftali Pontaza Rodas (pontaza.ricardo.05g@g2.nctu.edu.tw)

This work was supported in part by Taiwan Semiconductor Manufacturing Company (TSMC), and in part by the Ministry of Science and
Technology (MOST), Taiwan.

ABSTRACT Polynomial-time attacks designed to run on quantum computers and capable of breaking
RSA and AES are already known. It is imperative to develop quantum-resistant algorithms before quantum
computers become available. Computationally hard problems defined on lattices have been proposed as
the fundamental security bases for a new type of cryptography. The National Institute of Standards and
Technology (NIST) recently hosted the Post-Quantum Cryptography Standardization project, aiming to
create a roster of innovative post-quantum cryptosystems. These candidates have been publicly available
for testing since early 2017. As they are currently under analysis, new proposals are still desirable. As such,
we use the ring learning with errors (RLWE) problem combined with arithmetic functions to propose the
O2MD2 cryptosystem, which provides a one-to-many private/public key architecture having a distributed
key refresh for a network of users while working on multiple polynomial rings over different prime order
fields. Our solution has three different frameworks that reach AES-256 equivalent security, and provides
message integrity and message authenticity verifications. We compare our solution’s speed against the speed
of the twenty-six different implementations from seven popular candidates in the NIST project, and our
cryptosystem performs from 2 to 4 orders of magnitude faster than them. We also propose six different
implementations that reach the security levels 1, 3 and 5 proposed in the NIST competition. Finally, we used
the NIST Statistical Test Suite to verify the indistinguishability of our produced ciphertexts against randomly
generated noise.

INDEX TERMS Abstract algebra, cryptographic protocols, quantum cryptography, lattices, O2MD2,
post-quantum.

I. INTRODUCTION
Currently cryptographic protocols rely heavily on algorithms
that are expected to be broken when first generation quantum
computers become a reality. Algorithms which depend on
computationally hard problems like the integer factorization
problem (such as RSA) and the elliptic curve discrete loga-
rithm problem (for elliptic curves cryptography) will be seri-
ously affected. Shor’s algorithm can be used for these attacks,
as it is a fast quantum algorithm that can find the prime fac-
torization of any positive integer N [1]. Variations of Shor’s
algorithm lead to equally significant results. Beauregard’s
variation uses 2n+3 qubits to performO(n3 log n) operations

The associate editor coordinating the review of this manuscript and

approving it for publication was Giacomo Verticale .

to factorize N = pq with p and q primes, and it can also
be modified to perform n2+o(1) if N fits into n bits. Also,
by a simple algebraic transformation, Shor’s algorithm can
be used to solve the discrete logarithm problem [2].

Besides Shor’s algorithm, Grover’s algorithm has also been
studied. For a black box function f and a known output value
y = f (x), this algorithm finds the input x that generates
that specific output y by using O(

√
N) evaluations, where

N is the total number of possible inputs [3]. It can also be
used to find the roots of a function in a finite set, when we
can assume that one out of every N inputs is a root. This
can be used to attack AES implementations. For example,
when encoding two public messagesm1 andm2 under a secret
128-bit AES key k , we can produce a 256-bit cipher-
text c = (AESk (m1),AESk (m2)). Then by defining

109260 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-5858-8180
https://orcid.org/0000-0002-5226-4396
https://orcid.org/0000-0001-7508-9706

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

f (x) = (AESx(m1),AESx(m2)) − c, Grover’s algorithm
can be used to find a root of f using about 264 quantum
evaluations [4]. Grover’s algorithm can also be used to attack
cryptosystems that have a 2128 bits security, such as the
128-bit AES. Nowadays it is considered that doubling the size
of the keys is sufficient to prevent quantum attacks, but it is
unknown if it is a reliable long-term solution.

A. REPLACING THE INTEGER FACTORIZATION PROBLEM
Because Shor’s and Grover’s algorithms-based attacks will
have a speed advantage when attacking nowadays secure
instances of RSA and AES, different solutions have been
proposed. The first one is to double the size of the private
keys of existing cryptosystems. Some authors speculate that
doubling the size of current secure instances of RSA and AES
should be enough to resist attacks by quantum computers,
but if the development of quantum-based hardware has a
behavior similar to Moore’s law, doubling the size of the
private keys will prove to be only a temporary solution [2].

Cryptosystems based on computationally hard lattice prob-
lems have been proposed as new candidates to replace the
traditional algorithms based on the integer factorization and
discrete logarithm problems [5], [6]. Lattice-based cryptog-
raphy provides a wide diversity of algebraic structures that
can lead to extremely efficient and secure cryptosystems,
making it well received by the cryptographic community
[7], [8]. One of the major contributions of this new field of
research is the learning with errors (LWE) problem which
nowadays has evolved into different variations, such as the
module learning with errors (MLWE) problem, the integer
module learning with errors (I-MLWE) problem, and the ring
learning with errors (RLWE) problem. All these problems
have been used as the fundamental security bases for different
cryptosystems [9]– [14]. In this work, we focus on the ring
learning with errors (RLWE) problem, which is defined over
a polynomial ring, and asks to identify polynomials of a
specific form from a list of polynomials containing both
constructed and randomly generated ones. This problem has
been widely studied, and polynomial rings are ideal to build
robust cryptosystems.

B. O2MD2: A ONE-TO-MANY PRIVATE/PUBLIC KEY
QUANTUM-RESISTANT CRYPTOSYSTEM WITH
DISTRIBUTED KEY REFRESH
In this paper we utilize the ring learning with errors (RLWE)
problem to design a new quantum-resistant public key cryp-
tosystem which we refer to as O2MD2. O2MD2 stands for
its capabilities: A One-to-Many private/public key architec-
ture (referred as O2M), a Distributed key refresh capability
for all the users, and the use of different polynomial quo-
tient rings over fields of prime order, which we refer as
Double encapsulation using prime modulo operations. The
O2MD2 cryptosystem is based on arithmetic functions and
some custom algebraic structures that we call p-bases, and
uses the quotient rings Zb+1[x]/〈xm − 1〉,Zp1 [x]/〈xm − 1〉

and Zp2 [x]/〈xm − 1〉 where m, b, p1, p2 are positive integers
and p1, p2 primes.
We use ordered sets of positive integers and one-way hash

functions that we define as sessions in order to generate
the private and public keys. Our private keys’ coefficients
are non-negative integers and their values are not as strictly
bounded as the coefficients in other post-quantum cryptosys-
tems. This characteristic provides security against attacks that
focus on guessing the private key while using a given session.
Also, the use of our private function f allows us to generate
multiple persistent keys for different sessions. Our encryption
and decryption use operations in different polynomial quo-
tient rings, and they are performed in polynomial time. The
produced ciphertexts will be generated in a way that they are
indistinguishable against random noise, characteristic that is
explored by the use of the NIST Statistical Test Suite later in
this document.

The O2MD2 cryptosystem consists of three frameworks:
O2MD2-I, O2MD2-II and O2MD2-III, where each frame-
work provides stronger security capabilities than its prede-
cessor. The O2MD2-I framework is reliable, secure, and
easy to implement. The O2MD2-II framework is based on
its predecessor, and provides message integrity verifications.
TheO2MD2-III framework is the strongest framework out of
the three versions, and provides simultaneously both message
integrity and message authenticity verifications.

For traditional public key cryptosystems, one private key
kpriv generates one public key kpub and that public key kpub can
be only generated from the former private key kpriv [15]. If a
user A originally has

(
kprivA , kpubA

)
as his keys, and another

user B sends a message to A encrypted with kpubA , then if

A refreshes his keys to a new pair
(
k ′privA , k

′

pubA

)
while the

message is on its way, then A might have decryption failures
because the message was encrypted using his old public key.
Additionally, each user refreshing his keys must perform
a full key generation, which normally is computationally
expensive [16]. Unlike traditional public key cryptosystems,
the O2MD2-I framework provides a distributed key refresh
capability. Every entity can perform a key refresh while pre-
serving existing communication channels with other entities.
This means that if a message is already on its way, it can be
deciphered without failures by the recipient even though it
was originally encrypted with the recipient’s old public key.
This is extremely helpful because every user can refresh their
keys frequently, avoiding attacks aiming to guess their private
key based on the public key. The distributed key refresh
runs in polynomial time, and can be implemented on devices
where computation time and space are major constraints, as it
is with Internet of Things (IoT) devices.

We also provide twelve suggested configurations which
vary on their memory requirements and their provided secu-
rity level. Six implementations are designed for 64-bit archi-
tectures, while the other six for 32-bit architectures. The
six implementations in each architecture are classified as
Low, Middle, and High security, which are equivalent the

VOLUME 9, 2021 109261

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

NIST Post-Quantum Cryptography Standardization project’s
security levels 1, 3 and 5, respectively. Finally, six patents
of our framework describing all the previous characteristics
have been filed and published in Taiwan, China, the United
States, Japan, South Korea and the European Union [17].

In the next section we discuss some of the related work
that has been explored. Section III and IV formally describe
our solution and each framework with their key generation,
encryption and decryption algorithms. Section V contains all
the theorems and formulas related to the frameworks’ proofs
of correctness. Section VI presents a robust security analysis,
performs tests for indistinguishability against random noise
using the NIST Statistical Test Suite, formally proves the
message integrity and authenticity verification capabilities
of O2MD2-II and O2MD2-III, discusses about the security
against brute force attacks, and gives additional comments.
Section VII covers the speed test results, and Section VIII
presents some conclusions and plans for future work.

II. RELATED WORK
The National Institute of Standards and Technology (NIST)
started the Post-Quantum Cryptography Standardization
project, aiming to identify, to analyze, and to publish a list
of new quantum-resistant cryptosystems so they can be pub-
licly tested. This project has multiple candidates listed under
two categories:Public-key Encryption and Key-establishment
Algorithms, and Digital Signature Algorithms [18]. Since
its announcement, two classification rounds have been per-
formed. Almost every algorithm in the second round has a
public log of all the external reviewers’ comments, concerns
and suggestions, and the authors’ official replies to each
one of them [19]. Each algorithm also has a downloadable
repository with their implementations in c language, which
follows the ECRYPT Benchmarking of Cryptographic Sys-
tems (eBACS) interface proposed by the Virtual Application
and Implementation Research Lab (VAMPIRE) [20], [21].
Besides these repositories, the Open Quantum Safe Organi-
zation created the open source liboqs project, whose goal is to
provide development tools using the proposals submitted to
the NIST project [22]. Even though the liboqs project is a rec-
ollection of the NIST proposals, it gets frequently outdated,
as new versions of the algorithms are directly published on
the NIST project’s website [19].

Some of the candidates under the Public-key Encryp-
tion and Key-establishment Algorithms classification are
NTRU [10], NTRU Prime [11], FrodoKEM [12], Crystals-
Kyber [13], ThreeBears [14], LAC [23] and NewHope [24].
They differ in their security bases and used algebraic struc-
tures. For example, NTRU and NTRU Prime are lattice-based
systems, where NTRU uses the ring Zq[x]/〈xp − 1〉 with q a
power of 2, while NTRU Prime uses the ring Zq[x]/〈xp −
x − 1〉. For both systems, p is prime [10], [11]. For Crystals-
Kyber, it is based on themodule learningwith errors (MLWE)
problem, and it uses the ring Z7681[x]/〈x256 + 1〉 [25]. For
ThreeBears, it is based on the integer module learning with
errors (I-MLWE) problem, and it does not use cyclotomic

polynomials. Instead, it uses the ring Z/NZwith N = q312−
q156 − 1 and q = 210 [14]. Contrary to the previous four
candidates, FrodoKEM does not use any ring at all, and relies
on the learning with errors (LWE) problem [12]. LAC and
NewHope are based on the ring learning with errors (RLWE)
problem, but they need Number Theoretic Transforms (NTT)
to enable fast computations [23], [24]. A detailed comparison
of these cryptosystems is presented in Table 1.

Besides their security bases and algebraic structures,
some of these algorithms require specialized arithmetic
operations. For example, NTRU and NTRU Prime require
polynomial center-lifts when applying modulo reduction
[11], [31]. Crystals-Kyber, LAC and NewHope require NTT
to efficiently compute polynomial multiplications over a ring.
This impacts on the hardware, as native complex numbers
support is needed [25], [36]. Other limitations are also known.
For example, FrodoKEM uses the learning with errors (LWE)
problem and not any ring-like structure, which forces it to
use big-sized public keys [26]. Its authors also claim that it
is IND-CCA secure, but a great number of reviewers have
commented that the security proof presented in the NIST
project is flawed [28]. For ThreeBears, the integer module
learning with errors (I-MLWE) problem has not been studied
as extensively as the learning with errors (LWE) problem
nor the ring learning with errors (RLWE) problem [14]. For
NewHope, there are public concerns on the reuse of the pri-
vate keys in the CPA version, and for LAC, the key generation
and encryption algorithms may leak information on timing
attacks [23], [34], [35]. Finally, ThreeBears, NTRU, and
NTRU Prime accept that it is difficult to verify all possible
weaknesses, and it is unknown if vulnerabilities exist that are
still undiscovered [14], [30]– [49]. Despite all the advantages
and limitations of these candidates, they have been well
received and acclaimed as innovative, and they are highly
appreciated by the cryptographic community because they are
pioneers in the search of post-quantum robust solutions.

A. ABOUT THE RING LEARNING WITH ERRORS (RLWE)
PROBLEM
The ring learningwith errors (RLWE) problem is a ring-based
variation of the learning with errors (LWE) problem [37].
As with other variations of the learning with errors (LWE)
problem, it is also considered to be computationally safe
against quantum computers. Let {ai(x)} be a set of ran-
dom known polynomials from the polynomial quotient ring
Zq[x]/〈φ(x)〉 with φ(x) a polynomial, {ei(x)} be a set of
random unknown polynomials in Zq[x]/〈φ(x)〉, and s(x) be
an unknown polynomial also in Zq[x]/〈φ(x)〉. Given the set
{(ai(x), ei(x))} and s(x), then polynomials of the form

bi(x) = ai(x)s(x)+ ei(x) (1)

are constructed. Two variations of the ring learning with
errors (RLWE) problem are defined. The Decision version
gives to a challenger a list of polynomials

{
b̃i(x)

}
, and asks

him to decide which ones were constructed following (1)

109262 VOLUME 9, 2021

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

TABLE 1. Comparison of the O2MD2 cryptosystem against different post-quantum candidates in the NIST Post-Quantum Cryptography Standardization
project (Round 2). Cryptosystems using different security bases were selected, and representative advantages and limitations are mentioned for each
algorithm.

and which ones were randomly generated. The Search ver-
sion asks to calculate the polynomial s(x) given a list of
polynomial pairs {(ai(x), bi(x))}. In an average case scenario,
the ring learning with errors (RLWE) problem is known to
be at least NP-hard, and it is reducible into the approximate
shortest vector problem (α-SVP) [37].
The ring learning with errors (RLWE) problem has two

essential key points: First, as the polynomials are defined in
a ring, the addition and multiplication can be performed in
polynomial time. Second, the core of the ring learning with

errors (RLWE) problem is the indistinguishability of the gen-
erated polynomials against randomly generated ones, which
is advantageous when designing a secure cryptosystem.

III. PROBLEM STATEMENT AND SOLUTION OVERVIEW
Our main goal is to create a quantum-resistant public key
cryptosystem based on the ring learning with errors (RLWE)
problem and provides a one-private key / multiple-public
keys architecture (i.e., from one single private key, multi-
ple public keys can be generated). It should also perform a

VOLUME 9, 2021 109263

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

distributed public key refresh which does not affect existing
communication channels with other users, and its encryp-
tion and decryption protocols should run in polynomial time
and space. Finally, it should have a strong security level,
and provide message integrity and message authentication
verifications.

A. OVERVIEW OF OUR SOLUTION
Our proposal explores the use of arithmetic functions as seeds
of information, and use them to construct custom structures
that we call p-bases which are isomorphic toZm. By selecting
a random p-base, we define as b to its maximum compo-
nent. Later with a random prime p1 and b, we calculate
a second prime p2. With b, p1 and p2, we construct three
rings isomorphic to Zb+1[x]/〈xm − 1〉, Zp1 [x]/〈xm − 1〉 and
Zp2 [x]/〈xm − 1〉, where the polynomial ring addition and
product are performed.

Our solution provides a one-to-many private/public key
architecture. We create the concept of sessions, where each
session will allow one private key to generate multiple public
ones. This provides extra security against attacks aiming to
guess the private key. Our framework also has a distributed
key refresh mechanism. This refresh does not interfere with
previous communications, so when an entityA performs a key
refresh obtaining new keys, messages encrypted with the old
public key that are still on their way can be decrypted without
problems by the new key. This is extremely convenient for
networks where messages must pass through multiple hops
and networks with high latency, like the case of Internet of
Things (IoT) networks, where a centralized entity in charge
of coordinating the key refresh process might be difficult to
implement. Any entity B who wishes to send a message to
A does not need to retrieve A’s public key every time. B can
store A’s public key once, and keep using it without worries
of decryption failures.

Over and above the previous features, our cryptosystem
also shows how to generate persistent information from
an arithmetic function. This feature is ideal for low-level
hardware, where memory is a major constraint. Given an
arithmetic function (which could be embedded in hardware),
we create custom data structures called instances. For a
particular instance, the pair of the arithmetic function and the
calculated instance will work as our private key. One single
arithmetic function can generate innumerable instances, and
they can be calculated in polynomial time. This provides the
ability to generate multiple private keys from a single func-
tion. By saving the data of that instance, the same private key
can be obtained in the future. The ability of generating mul-
tiple private/public keys offers advantages against traditional
private keys: as stored-in-memory private keys are normally
static, they occupy memory which might be a constrained
resource in the device. Besides this, if an attacker guesses a
stored-in-memory key, a firmware update would be needed to
change the compromised private key.

Finally, our solution offers three different frameworks that
provide increasing security capabilities. Messages integrity

verifications are performed in order to verify if a ciphertext
was modified prior to its reception (by either noise or on
purpose), and messages authentication verifications allow to
determine if the sender of a message is its creator or not.

In the following sections we introduce the concept of
p-bases and we make the formal description for our cryp-
tosystem. Later we analyze its security and evaluate the
produced ciphertexts using the NIST Statistical Test Suite.
Finally, we compare the performance of our solution
against nineteen different implementations from the NIST
Post-Quantum Cryptography Standardization project.

B. PRELIMINARIES
Let f : N → N be an arithmetic function whose outputs are
uniformly distributed throughoutN. We define the associated
matrix of f as

[f] =


f (20) f (21) f (22) . . .
f (30) f (31) f (32) . . .
f (50) f (51) f (52) . . .
...

...
... . . .

 (2)

where the n-th row contains all the images of the powers of
the n-th prime, i.e., each row is of the form

−→
f p =

[
f (p0), f (p1), f (p2), f (p3), . . .

]
, (3)

where p is a prime. For prime p and positive integers s, t ,
we define an instance as I = (p, s, t), and for an instance
I we define the p-base of size m of f as

←→
f p

∣∣∣m
s,t
=
∑t

i=0
[
f
(
ps+im

)
, . . . , f

(
ps+im+(m−1)

)]
, (4)

i.e., for
−→
f p, starting from position s, we add t vectors of m

consecutive values. For example, for f defined as

f (pn) =the n-th digit in the fractional

part of
√
p, for n > 0,

(5)

and f (1) = 1, we have that

[f] =


1 4 1 4 2 1 3 . . .

1 7 3 2 0 5 0 . . .

1 2 3 6 0 6 7 . . .
...
...
...
...
...
...
...
. . .

 (6)

then by picking I = (p, s, t) = (3, 0, 1) and m = 5 we have

←→
f 3

∣∣∣5
0,1
= [1+ 5, 7+ 0, 3+ 8, 2+ 0, 0+ 7]

= [6, 7, 11, 2, 7] . (7)

The use of this notation has three main advantages: First,
any device that has f embedded in it can retrieve the same
base by saving I and m. This is useful for devices where
memory is a constraint, as it is for Internet of Things (IoT)
devices. Second, by changing the values of I , we can generate
multiple bases. This is the first step towards building a one-
to-many private/public key architecture. Third, if an attacker

109264 VOLUME 9, 2021

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

knows both the function f and a list of bases
{
←→
f p

∣∣∣m
s,t

}
,

it would be computationally difficult to guess the instances
{I } that generated them, as the attacker would need a poly-
nomial time oracle to solve the subset sum problem, which is
NP-complete (and, even more, most approaches to solve it by
quantum computers require exponential time) [38].

We define the concept of public session S as an ordered
set of integers and one-way hash functions that will provide
with parameters to configure the whole framework. We say
that a user joins the session if he uses S when generating his
keys andwhen communicatingwith other users. For any party
of participants, as long as they joined the same session, they
will be able to communicate. On the other hand, a user may
join into multiple sessions at the same time. Hence one user
with one arithmetic function can simultaneously join multiple
sessions and generate multiple private/public keys for each
one of those sessions.

For any two bases of size m, we use the usual addition and
multiplication from the quotient ring Z[x]/〈xm− 1〉, denoted
as + and ~, respectively. As the instance I should be kept
secret, we denote a p-base of size m as

←→
f
∣∣∣m. For primes

p1 and p2, we denote the multiplicative inverse of
←→
f
∣∣∣m in

Zp1 [x]/〈xm−1〉 andZp2 [x]/〈xm−1〉 as
←→
F p1

∣∣∣m and
←→
F p2

∣∣∣m,
respectively. In case

←→
f
∣∣∣m is not invertible inZp1 [x]/〈xm−1〉

or Zp2 [x]/〈xm − 1〉, we select a different p1 or p2.

As an example, let
←→
f
∣∣∣5 = [2, 81, 27, 9, 3] be result of a

secret function f and a secret instance I , and let p1 = 251 and
p2 = 18072001 be two primes. Then

←→
F 251

∣∣∣5 = [92, 223, 74, 164, 128],

←→
F 18072001

∣∣∣5 = [11798464, 16030112, 7407741,

1287507, 11026277], (8)

where
←→
f
∣∣∣5 ~ ←→F 251

∣∣∣5 = [17821, 16315, 13052, 22339, 13555]

= [0, 0, 0, 0, 1](mod 251), (9)

and
←→
f
∣∣∣5 ~ ←→F 18072001

∣∣∣5
= [506016028, 1066248059,

1319256073, 1734912096, 1174680066]

= [0, 0, 0, 0, 1](mod 18072001). (10)

For any base
←→
f
∣∣∣m, the notation

←→
f
∣∣∣m
[i,j]

will denote the
vector
←→
f
∣∣∣m
[i,j]
=

[
←→
f
∣∣∣m (i),

←→
f
∣∣∣m (i+ 1), . . . ,

←→
f
∣∣∣m (j)

]
, (11)

with 1 ≤ i ≤ j ≤ m. Finally, for two bases
←→
f
∣∣∣m1

and
←→g

∣∣m2 (of sizes m1 and m2, respectively), the concatenation

TABLE 2. Notation table.

←→
f
∣∣∣m1
⊕
←→g

∣∣m2 will be denoted as

←→
f
∣∣∣m1
⊕
←→g

∣∣m2
=

[
←→
f
∣∣∣m1

(1), . . . ,
←→
f
∣∣∣m1

(m1),

←→g
∣∣m2 (1), . . . ,←→g

∣∣m2 (m2)
]
, (12)

where
←→
f
∣∣∣m1
⊕
←→g

∣∣m2 is an array of size m1+m2. All these
notation conventions are presented in Table 2.

IV. SOLUTION
Our proposal is the O2MD2 system, consisting of
three frameworks: O2MD2-I (KeyGen-I, KeySoftReset-I,
Encrypt-I andDecrypt-I),O2MD2-II (KeyGen-II, Encrypt-II
and Decrypt-II), and O2MD2-III (KeyGen-III, Encrypt-III
and Decrypt-III). The security and capabilities provided by
each framework increase when compared to its predecessor.
The three frameworks share a sub-algorithm called Random-
ization, described in Algorithm 1. This algorithm requires to
use a discrete Gaussian sampling overZ in order to protect the
messages and the generated keys. Similarly, each framework
requires slightly different public session variables S, which
provide to each user with the parameters needed to per-
form a correct communication. In the following subsections,
we describe each framework, and in the next section we
perform a proof of correctness for each one of them.

There are three reasons why we define the randomization
operation as its own: First, this operation helps us to add
randomness in our protocols. Second, it is computationally
difficult for an attacker to recover the inputs of this operation
based on the components of the output. Finally, we use this
function as the soft key-reset algorithm for our public keys.

A. O2MD2-I
This framework requires a public session of the form

S = (m, b̃, r), (32)

where m, b̃ and r are positive integers, for which m describes
the size of the arrays to use for all users, b̃ is a constant
used for performing perfect decryption for all users, and r
is a constant used to let all the users know the maximum
size of the alphabet to use for the messages. Four algorithms
are proposed: key generation, soft key-reset, encryption and
decryption.

VOLUME 9, 2021 109265

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

FIGURE 1. O2MD2-I Key generation and soft key-reset working together. A single arithmetic function and multiple instances (I, I∗, . . .)
can generate multiple private keys via the key generation algorithm. For a fixed private key, the soft key-reset generates multiple public
keys in polynomial time. As long as the private key remains fixed, all messages encrypted with any public key generated by that specific
private key can be decrypted.

TABLE 3. Comparison of the three O2MD2 frameworks. The first column shows the requirements of OW (one-way) hash functions in the session.
The second column shows the amount of hash functions needed to be used. The third column shows if the framework performs message integrity checks
or not. The fourth column shows if the key generation creates signature keys, and the fifth column shows if the framework performs any message
authenticity check.

Algorithm 1 (O2MD2) Randomization. (This Function is Called by (O2MD2-I) Soft Key-Reset and Encryption, and Both
(O2MD2-II) and (O2MD2-III) Key Generation).

input : Array
←→
h
∣∣∣m, positive integers x and y.

output: Array
←→
h random

∣∣∣m.
Let
←→
R
∣∣∣m
(y)

be a m-sized vector where each element is sampled from a discrete Gaussian distribution on Z and reduced

modulo y.
Return

←→
h random

∣∣∣m = x
(
←→
h
∣∣∣m ~ ←→R ∣∣∣m

(y)

)
(13)

1) KEY GENERATION
The key generation is shown in Algorithm 2. It takes the
session S = (m, b̃, r), an instance

←→
f
∣∣∣m of f , a random

positive integer ã and a random prime p1 as input, with

r̃ = max(b̃, r) < p1. (33)

Define b as

b = max(
←→
f
∣∣∣m), (34)

and let p2 be any random prime holding

p2 > max(p1mãb̃,mbr̃). (35)

109266 VOLUME 9, 2021

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

Algorithm 2 (O2MD2-I) Key Generation.

input : Instance
←→
f
∣∣∣m, session S = (m, b̃, r), random

prime p1 with r̃ = max(b̃, r) < p1, and random
positive integer ã.

output: Message: Cannot construct keys based on the
inputs, or the set of keys
Kpublic =

(
←→
K public

∣∣∣m , p2) and
Kprivate =

(
←→
f
∣∣∣m , p1,←→F p1

∣∣∣m ,←→F p2

∣∣∣m , ã).
1 if
←→
f
∣∣∣m contains at least one negative component then

2 Return Cannot construct keys based on the inputs.
3 end
4 Calculate

b = max
(
←→
f
∣∣∣m) ,

r̃ = max
(
b̃, r

)
. (14)

5 Select a random prime p2 such that

p2 > max(p1mãb̃,mbr̃). (15)

6 if
←→
F p1

∣∣∣m or ←→F p2

∣∣∣m does not exist then
7 Select a different prime p1 or p2, respectively.
8 Restart Key Generation.
9 end
10 Calculate

←→
K public

∣∣∣m = Soft key reset
(
←→
F p2

∣∣∣m , p1, p2, ã) . (16)

11 Return

Kpublic =

(
←→
K public

∣∣∣m , p2) ,
Kprivate =

(
←→
f
∣∣∣m , p1,←→F p1

∣∣∣m ,←→F p2

∣∣∣m , ã) . (17)

Algorithm 3 (O2MD2-I) Soft key-reset.

input : Inverse
←→
F p2

∣∣∣m, primes p1, p2 and positive integer ã.

output: Public key
←→
K public

∣∣∣m.
1 Return

←→
K public

∣∣∣m = Randomization
(
←→
F p2

∣∣∣m , p1, ã) (mod p2). (18)

Algorithm 4 (O2MD2-I) Encryption.

input : Kpublic =

(
←→
K public

∣∣∣m , p2), session S = (m, b̃, r) and Message
←→
M
∣∣∣m.

output: Ciphertext
←−−→
Cipher

∣∣∣m.
1 Calculate

←→
R
∣∣∣m = Randomization

(
←→
K public

∣∣∣m , 1, b̃) . (19)

2 Return

←−−→
Cipher

∣∣∣m = (←→M ∣∣∣m + ←→R ∣∣∣m) (mod p2). (20)

The inequalities (33) and (35) guarantee a correct decryp-
tion of the ciphertexts. If the selected

←→
f
∣∣∣m is not invertible

in Zp1 [x]/〈xm − 1〉 or Zp2 [x]/〈xm − 1〉, we select different
random primes p1 and p2 satisfying both inequalities. After
finally selecting a pair of valid primes, we run the soft key-
reset algorithm (described below) over

←→
F p2

∣∣∣m, p1, p2 and ã,
which returns the public key

←→
K public

∣∣∣m.
Finally, we group

←→
K public

∣∣∣m and p2 as the public key, and
←→
f
∣∣∣m, p1,←→F p1

∣∣∣m,←→F p2

∣∣∣m and ã as the private key, returning

the following set of keys.

Kpublic = (
←→
K public

∣∣∣m , p2),
Kprivate = (

←→
f
∣∣∣m , p1,←→F p1

∣∣∣m ,←→F p2

∣∣∣m , ã). (36)

For two parties A and B, we will denote their public and
private keys as

KpublicA = (
←→
K publicA

∣∣∣m , p2),
KprivateA = (

←→
f
∣∣∣m , p1,←→F p1

∣∣∣m ,←→F p2

∣∣∣m , ã) (37)

VOLUME 9, 2021 109267

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

Algorithm 5 (O2MD2-I) Decryption.

input : Ciphertext
←−−→
Cipher

∣∣∣m, prime p2, inverse
←→
F p1

∣∣∣m and Kprivate =

(
←→
f
∣∣∣m , p1,←→F p1

∣∣∣m ,←→F p2

∣∣∣m , ã).
output: Message

←→
M1

∣∣∣m.
1 Calculate

←→
M0

∣∣∣m as

←→
M0

∣∣∣m = [(←−−→Cipher
∣∣∣m ~ ←→f ∣∣∣m) (mod p2)

]
(mod p1). (21)

2 Return

←→
M1

∣∣∣m = ←→M0

∣∣∣m ~ ←→F p1

∣∣∣m (mod p1). (22)

Algorithm 6 (O2MD2-II) Key generation.

input : Instance
←→
f
∣∣∣m, session S = (m, b̃, r,H) with 2 | m,

random prime p1 with r̃ = max(b̃, r) < p1, and
random positive integer ã.

output: Message: Cannot construct keys based on the
inputs, or the set of keys
Kpublic =

(
←→
K public

∣∣∣m , p2) and
Kprivate =

(
←→
f
∣∣∣m , p1,←→F p1

∣∣∣m ,←→F p2

∣∣∣m , ã).
1 if
←→
f
∣∣∣m contains at least one negative component then

2 Return Cannot construct keys based on the inputs.
3 end
4 Calculate

b = max
(
←→
f
∣∣∣m) ,

r̃ = max
(
b̃, r

)
. (23)

5 Select a random prime p2 such that

p2 > max(p1mãb̃,mbr̃). (24)

6 if
←→
F p1

∣∣∣m or ←→F p2

∣∣∣m do not exist then
7 Select a different prime p1 or p2, respectively. Restart

Key Generation.
8 end
9 Calculate

←→
K public

∣∣∣m = Randomization
(
←→
F p2

∣∣∣m , p1, ã)(mod p2).

(25)

10 Return

Kpublic =

(
←→
K public

∣∣∣m , p2) ,
Kprivate =

(
←→
f
∣∣∣m , p1,←→F p1

∣∣∣m ,←→F p2

∣∣∣m , ã) . (26)

Algorithm 7 (O2MD2-II) Encryption.

input : Kpublic =

(
←→
K public

∣∣∣m , p2), session
S = (m, b̃, r,H) and Message

←→
M
∣∣∣m2 .

output: Ciphertext
←−−→
Cipher

∣∣∣m.
1 Let

←→
R
∣∣∣m2 be a m

2 -sized vector where each element is
sampled from a discrete Gaussian distribution on Z and
reduced modulo r .

2 Calculate

←→
M∗

∣∣∣m = ←→M ∣∣∣m2 ⊕ ←→R ∣∣∣m2 ,
←→
HM∗

∣∣∣m = H
(←→
M∗

∣∣∣m) . (27)

3 Return

←−−→
Cipher

∣∣∣m = (←→K public

∣∣∣m ~ ←→HM∗ ∣∣∣m + ←→M∗∣∣∣m) (mod p2).

(28)

for A, and

KpublicB = (
←→
K publicB

∣∣∣m , q2),
KprivateB = (←→g

∣∣m , q1,←→G q1

∣∣∣m ,←→G q2

∣∣∣m , α̃) (38)

for B, where p1 and p2 are the selected primes for A, and q1
and q2 the selected primes for B.

Finally, it is worth to mention that the private key shown
in (36) can be shorter. The alternative private keys

Kprivate = (
←→
f
∣∣∣m , p1, ã), (39)

109268 VOLUME 9, 2021

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

Algorithm 8 (O2MD2-II) Decryption.

input : Ciphertext
←−−→
Cipher

∣∣∣m, session S = (m, b̃, r,H), Kpublic = (
←→
K public

∣∣∣m , p2), inverse ←→F p1

∣∣∣m and

Kprivate = (
←→
f
∣∣∣m , p1,←→F p1

∣∣∣m ,←→F p2

∣∣∣m , ã).
output: Message

←→
M ′
∣∣∣m2 .

1 Calculate
←→
M0

∣∣∣m, ←→M1

∣∣∣m and
←→
HM1

∣∣∣m as

←→
M0

∣∣∣m = [(
←−−→
Cipher

∣∣∣m ~ ←→f ∣∣∣m)(mod p2)](mod p1),

←→
M1

∣∣∣m = ←→M0

∣∣∣m ~ ←→F p1

∣∣∣m (mod p1),

←→
HM1

∣∣∣m = H (
←→
M1

∣∣∣m).
(29)

2 Calculate
←→
M ′
∣∣∣m2 as

←→
M ′
∣∣∣m2 = ←→M1

∣∣∣m
[1,m2]

. (30)

3 Calculate
←−−−→
Cipher ′

∣∣∣m as

←−−−→
Cipher ′

∣∣∣m = (
←→
K public

∣∣∣m ~ ←→HM1

∣∣∣m + ←→M1

∣∣∣m)(mod p2).

(31)

4 if
←−−−→
Cipher ′

∣∣∣m == ←−−→Cipher
∣∣∣m And 0 ≤ ←→M1

∣∣∣m (i) < r, for

i = 1, . . . ,m then

5 Return
←→
M ′
∣∣∣m2 ,

6 else
7 Return Invalid ciphertext received.
8 end

and

Kprivate = (f , I , p1, ã), (40)

can be used for different scenarios. By only storing (f , I) or
←→
f
∣∣∣m, the values of ←→F p1

∣∣∣m and
←→
F p2

∣∣∣m can be calculated

on-demand, but this would require a space-time trade-off.
Either we store more information in the private key and
avoid re-calculations, or we save memory by only storing
either (f , I) or

←→
f
∣∣∣m but we would require additional time

to re-calculate
←→
F p1

∣∣∣m and
←→
F p2

∣∣∣m when needed. The keys
(39) and (40) can be useful in devices where memory storage
is an issue, and where latency in the key generation is not a
problem.

2) SOFT KEY-RESET
The soft key-reset algorithm produces an array that will work
as the public key. It allows the users to generate a new public
key in polynomial time without modifying the private key.
This algorithmworks in a distributed way, so no central entity
is needed to coordinate a key refresh for all the entities in
the network. This means that it can be executed on-demand,
so any entity can perform the soft key-reset as needed.
Finally, this algorithm provides backwards compatibility for
decryption, meaning that if a message was encrypted using
one public key and a ciphertext is received after performing
multiple soft key-resets, as long as the public keys have
been generated by the soft key-reset, the ciphertext can be
deciphered correctly.

A diagram on how this algorithm is embedded in the key
generation is shown in Fig. 1, and its formal description is
shown in Algorithm 3.

3) ENCRYPTION
For our encryption algorithm, as all the users joined the same
public session S = (m, b̃, r), we require all the plaintexts to

be of the form
←→
M
∣∣∣m ∈ (Zr)m with 0 ≤

←→
M
∣∣∣m (i) < r ,

for i = 1, . . . ,m. This algorithm is shown in Algorithm 4.
As with the Soft key-reset, the encryption algorithm also
uses the Randomization function which requires to sample
from the discrete Gaussian distribution in order to protect the
message.

4) DECRYPTION
Finally, the decryption algorithm shown in Algorithm 5 uses
the private key and the received ciphertext to decrypt the mes-
sage. As long as p1 and p2 satisfy inequalities (33) and (35),
perfect decryption is always achieved.

B. O2MD2-II
This framework, unlike O2MD2-I, consist of three algo-
rithms: key generation, encryption and decryption algorithm.
It requires a public session of the form

S = (m, b̃, r,H), (41)

wherem, b̃ and r follow the same rules and purposes as in the
session forO2MD2-I, with the addition that 2 | m. Addition-
ally, the O2MD2-II public session requires a one-way hash
function H of the form

H : Zm→
(
Zb̃
)m
. (42)

The O2MD2-II framework provides a stronger security
compared toO2MD2-I. By the use ofH in its encryption and
decryption stages, O2MD2-II provides ciphertext integrity
check, so whenmodified ciphertexts are received, the decryp-
tion algorithm rejects them.

1) KEY GENERATION
The key generation for O2MD2-II is shown in Algorithm 6.
It is similar to the key generation for O2MD2-I, but with the
difference that the randomization function is called directly,
so no soft key-reset is used in this framework. Additionally,

VOLUME 9, 2021 109269

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

both p1 and p2 follow the inequalities (33) and (35) as in
O2MD2-I. Finally, for two parties A and B, we will denote
their public and private keys using the same notation as shown
in (37) and (38).

2) ENCRYPTION
The encryption algorithm for O2MD2-II (shown in Algo-
rithm 7) requires all the users to use the same session S
described in (41). All the plaintexts must be of the form
←→
M
∣∣∣m2 ∈ (Zr)

m
2 with 0 ≤

←→
M
∣∣∣m (i) < r , for i =

1, . . . , m2 . Before encrypting
←→
M
∣∣∣m2 , an m

2 -sized vector
←→
R
∣∣∣m2

is selected, for which each element is sampled from a dis-
crete Gaussian distribution on Z and reduced modulo r .

Then the two vectors
←→
M∗

∣∣∣m and
←→
HM∗

∣∣∣m are calculated as

shown in Equation (27), where
←→
M∗

∣∣∣m is the concatenation

of
←→
M
∣∣∣m2 and

←→
R
∣∣∣m2 . Finally, ←→K public

∣∣∣m and
←→
HM∗

∣∣∣m are

used to encrypt
←→
M∗

∣∣∣m.
3) DECRYPTION
The decryption algorithm for O2MD2-II is shown in Algo-
rithm 8. It uses the private key, the session S described in (41)
and the received ciphertext

←−−→
Cipher

∣∣∣m to decrypt the mes-
sage. This algorithm has two main parts: plaintext retrieval,
which obtains the plaintext, and ciphertext verification, which
checks if the ciphertext was altered after its creation. First,
the message

←→
M1

∣∣∣m is generated as shown in Equation (29).

Then, by using H over
←→
M1

∣∣∣m, the array ←→HM1

∣∣∣m is calculated.
The original plaintext can be recovered from the first half

of
←→
M1

∣∣∣m as shown in Equation (30), and a pivot cipher-

text
←−−−→
Cipher ′

∣∣∣m can be calculated. If the received ciphertext
←−−→
Cipher

∣∣∣m and the pivot ciphertext
←−−−→
Cipher ′

∣∣∣m match, then
we know that the received ciphertext was not altered and
the algorithm returns the deciphered plaintext. If

←−−→
Cipher

∣∣∣m
and
←−−−→
Cipher ′

∣∣∣m do not match, then the received ciphertext
←−−→
Cipher

∣∣∣m was modified after its creation, so the algorithm
returns the message Invalid ciphertext received.

C. O2MD2-III
This framework is the strongest variation of our system. The
O2MD2-III framework not only provides ciphertext integrity
verifications, but it also provides message authentication. The
key generation and encryption algorithms have been designed
in such a way, that the decryption algorithm can determine
if a ciphertext was modified after its creation, and it also
determines if a received ciphertext from an specific user was
truly generated by him or not. This framework requires a

public session of the form

S = (m, b̃, r,H , H̃ , h̃, k̃, s̃), (43)

where m, b̃, r and H follow the same rules as in O2MD2-II,
recalling that 2 | m.
The positive integers h̃, k̃ and s̃ satisfy

max(s̃[mk̃ + 1], s̃[
h̃m
2
+ 1]) < r, (44)

and the one-way hash function H̃ has the form

H̃ : Zm→
(
Zh̃
)m
2 . (45)

1) KEY GENERATION
The key generation is shown in Algorithm 9. It takes the
public session S described in (43), an instance

←→
f
∣∣∣m of f ,

a random positive integer ã and a random prime p1 as input
following inequality (33). This algorithm will generate four
keys: two public keys Kpublic and Kσ , and two private keys
Kprivate and Ks, as described in Equation (154). The new
keys Ks and Kσ allow to perform message authentication,
while the combination of these two and both Kprivate and
Kpublic keep the message integrity check already provided
by O2MD2-II. The key Ks consist of three m

2 -sized arrays
←→
f +
∣∣∣m2 ,←→f − ∣∣∣m2 , and ←→f ± ∣∣∣m2 , and the key Kσ consists of three

arrays
←→
Kσ+

∣∣∣m2 ,←→Kσ− ∣∣∣m2 , and ←→Kσ ∣∣∣m2 , as described in (148)

and (150), respectively. For two users A and B, if A wants to
send a message to B, then he must encrypt the message using
his signature private keyKsA andB’s public keyKpublicB ; when
B receives the ciphertext, he must use his private key KprivateB
and A’s public signature key KσA to decrypt it.

For two parties A and B, we will denote A’s public and
private keys as

KpublicA = (
←→
K publicA

∣∣∣m , p2),
KprivateA = (

←→
f
∣∣∣m , p1,←→F p1

∣∣∣m ,←→F p2

∣∣∣m , ã),
KσA = (

←−→
KσA+

∣∣∣m2 ,←−→KσA− ∣∣∣m2 ,←→KσA ∣∣∣m2),
KsA = (

←→
f +
∣∣∣∣m2 ,←→f − ∣∣∣∣m2 ,←→f ± ∣∣∣∣m2), (46)

and B’s keys as

KpublicB = (
←→
K publicB

∣∣∣m , q2),
KprivateB = (←→g

∣∣m , q1,←→G q1

∣∣∣m ,←→G q2

∣∣∣m , α̃),
KσB = (

←−→
KσB+

∣∣∣m2 ,←−→KσB− ∣∣∣m2 ,←→KσB ∣∣∣m2),
KsB = (

←→
g+
∣∣∣∣m2 ,←→g− ∣∣∣∣m2 ,←→g± ∣∣∣∣m2), (47)

where p1 and p2 are the selected primes for A, and q1 and q2
the selected primes for B, with

r̃ = max(b̃, r) < q1, (48)

109270 VOLUME 9, 2021

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

and by defining β as

β = max(←→g
∣∣m), (49)

we have that

q2 > max(q1mα̃b̃,mβ r̃). (50)

2) ENCRYPTION
The encryption algorithm for O2MD2-III is shown in Algo-
rithm 10. It requires a session S as shown in (43), the sender’s
private signature key and receiver’s public key to encrypt

the message. The original message
←→
M
∣∣∣m2 and a signature

random salt ←→σ
∣∣m2 are combined, and two different images

←−→
HM ,σ

∣∣∣m and
←−→
H̃M ,σ

∣∣∣∣m2 under both one-way hash functions

H and H̃ are generated. Then
←−→
HM ,σ

∣∣∣m is used to generate

a first sub-ciphertext, while the second image
←−→
H̃M ,σ

∣∣∣∣m2 is

used to generate three signature arrays
←→
σ+M

∣∣∣∣m2 , ←→σ−M ∣∣∣∣m2 and

←→
σ±M

∣∣∣∣m2 . The one-way has function H is used over these three

signature arrays to generate three additional sub-ciphertexts,
and finally all sub-ciphertexts are combined to generate the
final ciphertext.

3) DECRYPTION
The decryption algorithm for O2MD2-III is shown in
Algorithm 11. It requires a session S as shown in (43),
the receiver’s private key and sender’s public signa-
ture key to decrypt the message. The received cipher-
text is split in four sub-ciphertexts and decrypted using
the receiver’s private key, generating four decrypted

sub-messages
←→
M1

∣∣∣m, ←→M+1 ∣∣∣∣m, ←→M−1 ∣∣∣∣m and
←→
M±1

∣∣∣∣m. These mes-

sages are later used to check for the message authenticity
and integrity. If both security checks pass, then a final

message
←→
M ′
∣∣∣m2 equal to the original encrypted message

is returned.

D. NOTES
Note that the O2MD2-I soft key-reset is embedded in the
O2MD2-I key generation algorithm. If a user wants to refresh
his keys, he can either run the soft key-reset and keep the same
private key, or run the full key generation and generate a new
pair of keys. Also, for all three frameworks, increasing the
value ofm by just some units will increase both the key space
size and the cipherspace size exponentially. In the next section
we present the proof of correctness for the decryption for the
three frameworks.

V. PROOF OF CORRECTNESS
In this section we prove that the decryption algorithms for the
three frameworks work correctly. Before doing so, we need
to prove some additional minor theorems.
Theorem 1: Let r, ã, b̃ ∈ Z+ and primes p1 and p2

satisfy (33) and (35), and let
←→
R
∣∣∣m
(ã)

and
←→
R
∣∣∣m
(b̃)

be two

ephemeral arrays sampled from a discrete Gaussian distribu-
tion on Z and reduced modulo ã and b̃, respectively. Then
they satisfy

[p1(
←→
R
∣∣∣m
(ã)
~
←→
R
∣∣∣m
(b̃)
)](mod p2)

= p1(
←→
R
∣∣∣m
(ã)
~
←→
R
∣∣∣m
(b̃)
), (51)

i.e.,

0 ≤ (p1(
←→
R
∣∣∣m
(ã)
~
←→
R
∣∣∣m
(b̃)
))(i) < p2, (52)

for i = 1, . . . ,m.
Proof 1: For

←→
R
∣∣∣m
(ã)

and
←→
R
∣∣∣m
(b̃)

sampled from a discrete

Gaussian distribution on Z and reduced modulo ã and b̃,
respectively, we know that they have the form

←→
R
∣∣∣m
(ã)
=

[r1, . . . , rm] and
←→
R
∣∣∣m
(b̃)
=
[
r ′1, . . . , r

′
m
]
, with 0 ≤ ri < ã

and 0 ≤ r ′i < b̃, for i = 1, . . . ,m. Because all ri and r ′i
are non-negatives, the maximum value for any component of
←→
R
∣∣∣m
(ã)
~
←→
R
∣∣∣m
(b̃)

is reached when ri = ã− 1 and r ′i = b̃− 1,

for i = 1, . . . ,m. Then themaximum value of any component
of the product is given by

←→
R
∣∣∣m
(ã)
~
←→
R
∣∣∣m
(b̃)

=

[
m(ã− 1)(b̃− 1), . . . ,m(ã− 1)(b̃− 1)

]
︸ ︷︷ ︸

m times

, (53)

hence the maximum value for any component of p1(
←→
R
∣∣∣m
(ã)
~

←→
R
∣∣∣m
(b̃)
) is p1m(ã− 1)(b̃− 1) and

p1m(ã− 1)(b̃− 1) < p1mãb̃, (54)

but we picked p1 and p2 satisfying (35), then any component
of p1(

←→
R
∣∣∣m
(ã)
~
←→
R
∣∣∣m
(b̃)
) is between 0 and p2, proving Equa-

tions (51) and (52). �
Theorem 2: For inputs r, ã, b̃ ∈ Z+ and for primes p1 and

p2 following Equations (33) and (35), we have that

[
←→
f
∣∣∣m ~ ←→M ∣∣∣m](mod p2) =

←→
f
∣∣∣m ~ ←→M ∣∣∣m (55)

i.e.,

0 ≤ (
←→
f
∣∣∣m ~ ←→M ∣∣∣m)(i) < p2, (56)

for i = 1, . . . ,m.
Proof 2: Similarly to the previous proof, each component

of
←→
f
∣∣∣m is a nonnegative integer bounded by b and each

VOLUME 9, 2021 109271

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

component of
←→
M
∣∣∣m is a nonnegative integer bounded by r ,

hence the maximum value of any component of
←→
f
∣∣∣m ~

←→
M
∣∣∣m is mbr . Finally, because p1 and p2 follow the inequal-

ities (33) and (35), then the values of all the components of
←→
f
∣∣∣m~←→M ∣∣∣m are between 0 and p2, proving Equations (55)

and (56). �
Theorem 3: The decryption algorithm for O2MD2-I gen-

erates a message
←→
M1

∣∣∣m such that
←→
M1

∣∣∣m = ←→M ∣∣∣m.
Proof 3: From Equations (13), (16) and (18) inO2MD2-I,

we get

←→
K public

∣∣∣m ≡ Randomization
(
←→
F p2

∣∣∣m , p1, a) (mod p2)

≡ p1(
←→
F p2

∣∣∣m ~ ←→R ∣∣∣m
(ã)
)(mod p2) (57)

Using this in Equation (19), we get

←→
R
∣∣∣m ≡ ←→K public

∣∣∣m ~ ←→R ∣∣∣m
(b̃)

(mod p2)

≡ p1(
←→
F p2

∣∣∣m ~ ←→R ∣∣∣m
(ã)
~
←→
R
∣∣∣m
(b̃)
)(mod p2) (58)

and using this in Equation (20),

←−−→
Cipher

∣∣∣m ≡ [p1(
←→
F p2

∣∣∣m ~ ←→R ∣∣∣m
(ã)
~
←→
R
∣∣∣m
(b̃)
)

+
←→
M
∣∣∣m](mod p2). (59)

Using Equation (59) in
←→
M0

∣∣∣m from (22),

←→
M0

∣∣∣m = [(
←−−→
Cipher

∣∣∣m ~ ←→f ∣∣∣m)(mod p2)](mod p1)

≡ [(p1(
←→
R
∣∣∣m
(ã)
~
←→
R
∣∣∣m
(b̃)
))(mod p2)](mod p1)

+[(
←→
M
∣∣∣m ~ ←→f ∣∣∣m)(mod p2)](mod p1). (60)

By using Theorem 1 and Theorem 2 in the expression
above,

←→
M0

∣∣∣m ≡ [
←→
M
∣∣∣m ~ ←→f ∣∣∣m](mod p1)

+[p1(
←→
R
∣∣∣m
(ã)
~
←→
R
∣∣∣m
(b̃)
)](mod p1), (61)

but p1(
←→
R
∣∣∣m
(ã)
~
←→
R
∣∣∣m
(b̃)
) ≡ 0(mod p1), so

←→
M0

∣∣∣m ≡ [
←→
M
∣∣∣m ~ ←→f ∣∣∣m](mod p1). (62)

hence,

←→
M1

∣∣∣m ≡ ←→M0

∣∣∣m ~ ←→F p1

∣∣∣m ≡ ←→M ∣∣∣m (mod p1). (63)

Finally, p1 satisfies (33), so
←→
M
∣∣∣m (mod p1) =

←→
M
∣∣∣m,

hence
←→
M1

∣∣∣m = ←→M ∣∣∣m. �
Theorem 4: The decryption algorithm forO2MD2-II gen-

erates a message
←→
M ′
∣∣∣m2 such that

←→
M ′
∣∣∣m2 = ←→M ∣∣∣m2 .

Proof 4: Similarly to the previous proof, from Equa-
tion (13) and (25) in O2MD2-II, we get

←→
K public

∣∣∣m ≡ p1(
←→
F p2

∣∣∣m ~ ←→R ∣∣∣m
(ã)
)(mod p2), (64)

hence
←→
K public

∣∣∣m ~ ←→HM∗ ∣∣∣m (mod p2)

≡ p1(
←→
F p2

∣∣∣m ~ ←→R ∣∣∣m
(ã)
~
←→
HM∗

∣∣∣m)(mod p2), (65)

and using (65) in (28), we get

←−−→
Cipher

∣∣∣m ≡ [p1(
←→
F p2

∣∣∣m ~ ←→R ∣∣∣m
(ã)
~
←→
HM∗

∣∣∣m)
+
←→
M∗

∣∣∣m](mod p2). (66)

And, from (29) in O2MD2-II decryption, we get

←→
M0

∣∣∣m ≡ [(p1(
←→
R
∣∣∣m
(ã)
~
←→
HM∗

∣∣∣m))(mod p2)](mod p1)

+[(
←→
M∗

∣∣∣m ~ ←→f ∣∣∣m)(mod p2)](mod p1). (67)

Now, from (27) we know that every component of the
m-sized vector

←→
HM∗

∣∣∣m is between 0 and b̃, and every com-

ponent of
←→
M∗

∣∣∣m is between 0 and r . Therefore by using
Theorem 1 and Theorem 2 in the expression above,

←→
M0

∣∣∣m ≡ [
←→
M∗

∣∣∣m ~ ←→f ∣∣∣m](mod p1)

+[p1(
←→
R
∣∣∣m
(ã)
~
←→
HM∗

∣∣∣m)](mod p1), (68)

but p1(
←→
R
∣∣∣m
(ã)
~
←→
R
∣∣∣m
(b̃)
) ≡ 0(mod p1), so

←→
M0

∣∣∣m ≡ [
←→
M∗

∣∣∣m ~ ←→f ∣∣∣m](mod p1), (69)

hence
←→
M1

∣∣∣m ≡ ←→M0

∣∣∣m ~ ←→F p1

∣∣∣m ≡ ←→M∗∣∣∣m (mod p1), (70)

but p1 satisfies (33), so
←→
M∗

∣∣∣m (mod p1) =
←→
M∗

∣∣∣m, and
by (27),

←→
M1

∣∣∣m = ←→M∗∣∣∣m = ←→M ∣∣∣m2 ⊕ ←→R ∣∣∣m2 . (71)

Then, the value of
←→
HM1

∣∣∣m in (27) will be

←→
HM1

∣∣∣m = H (
←→
M1

∣∣∣m) = H (
←→
M∗

∣∣∣m) = ←→HM∗ ∣∣∣m , (72)

so the value of
←−−−→
Cipher ′

∣∣∣m is

←−−−→
Cipher ′

∣∣∣m = (
←→
K public

∣∣∣m ~ ←→HM1

∣∣∣m + ←→M1

∣∣∣m)(mod p2)

= (
←→
K public

∣∣∣m ~ ←→HM∗ ∣∣∣m + ←→M∗∣∣∣m)(mod p2)

=
←−−→
Cipher

∣∣∣m , (73)

109272 VOLUME 9, 2021

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

so the condition
←−−−→
Cipher ′

∣∣∣m == ←−−→Cipher
∣∣∣m holds, hence the

O2MD2-II’s decryption must return
←→
M ′
∣∣∣m2 , and by (30),

we know that

←→
M ′
∣∣∣m2 = ←→M1

∣∣∣m
[1,m2]
=
←→
M∗

∣∣∣m
[1,m2]
=
←→
M
∣∣∣m2 . (74)

�

Theorem 5: Let max(←→σ
∣∣m2 ,←→σ+M ∣∣∣∣m2 ,←→σ−M ∣∣∣∣m2 ,←→σ±M ∣∣∣∣m2) be

the maximum value of any component of ←→σ
∣∣m2 , ←→σ+M ∣∣∣∣m2 ,

←→
σ−M

∣∣∣∣m2 , and ←→σ±M ∣∣∣∣m2 in (155) and (158). Then

max(←→σ
∣∣m2 ,←→σ+M ∣∣∣∣m2 ,←→σ−M ∣∣∣∣m2 ,←→σ±M ∣∣∣∣m2) < r . (75)

Proof 5: Note that every component f̂ +i , f̂
−

i , and f̂ ±i of
←→
f̂ +
∣∣∣∣m2 , ←→f̂ − ∣∣∣∣m2 , ←→f̂ ± ∣∣∣∣m2 , and every component kσ

+

i , and kσ
−

i

of
←→
Kσ+A

∣∣∣m2 and
←→
Kσ−A

∣∣∣m2 in (155) satisfy 0 ≤ f̂ +i , f̂
−

i , f̂
±

i < s̃

and 0 ≤ kσ
+

i , kσ
−

i < k̃ , for i = 1, . . . , m2 . Then

max(
←→
f̂ +
∣∣∣∣m2 ~ ←→Kσ+A ∣∣∣m2) = m

2
(s̃− 1)(k̃ − 1),

max(
←→
f̂ −
∣∣∣∣m2 ~ ←→Kσ−A ∣∣∣m2) = m

2
(s̃− 1)(k̃ − 1),

max(
←→
f̂ ±
∣∣∣∣m2) = s̃− 1, (76)

so for ←→σ
∣∣m2 in (155)

max(←→σ
∣∣m2) = 2[

m
2
(s̃− 1)(k̃ − 1)]+ (s̃− 1)

= (s̃− 1)[m(k̃ − 1)+ 1] < s̃[mk̃ + 1],

(77)

and by (44), we know that

max(←→σ
∣∣m2) < s̃[mk̃ + 1] < r . (78)

Proceeding in a similar matter, every component fi of
←→
f +
∣∣∣m2 ,←→f − ∣∣∣m2 and

←→
f ±
∣∣∣m2 in (148) satisfy 0 ≤ fi < s̃,

for i = 1, . . . , m2 . From (45), we also know that every com-

ponent h̃i of
←−→
H̃M ,σ

∣∣∣∣m2 satisfy 0 ≤ h̃i < h̃. Hence from (158)

we know that

max(
←→
σ+M

∣∣∣∣m2) = max(
←→
σ−M

∣∣∣∣m2) = max(
←→
σ±M

∣∣∣∣m2) (79)

and

max(
←→
σ+M

∣∣∣∣m2) = m
2
(s̃− 1)(h̃− 1)+ (s̃− 1)

= (s̃− 1)[
m
2
(h̃− 1)+ 1] < s̃[

mh̃
2
+ 1],

(80)

and by (44), we get

max(
←→
σ+M

∣∣∣∣m2) < s̃[h̃m2 + 1] < r . (81)

Combining (81) with (79), then we know that

max(
←→
σ+M

∣∣∣∣m2) = max(
←→
σ−M

∣∣∣∣m2) = max(
←→
σ±M

∣∣∣∣m2) < r .

(82)

Finally, from the expression above and (78), we deduct the
inequality (75), proving the theorem. �
Theorem 6: The decryption algorithm for O2MD2-III

generates a message
←→
M ′
∣∣∣m2 such that

←→
M ′
∣∣∣m2 = ←→M ∣∣∣m2 .

Proof 6: Note that
←→
C0

∣∣∣m ,←→C+0 ∣∣∣∣m ,←→C−0 ∣∣∣∣m and
←→
C±0

∣∣∣∣m
in (161) are equal to

←−−−→
Cipher0

∣∣∣m ,←−−−→Cipher1
∣∣∣m ,←−−−→Cipher2

∣∣∣m and
←−−−→
Cipher3

∣∣∣m in (157) and (159). From (13) and (153) in
O2MD2-III, using the notation in (47) for B, we get

←→
K publicB

∣∣∣m ≡ q1(
←→
G q2

∣∣∣m ~ ←→R ∣∣∣m
(α̃)

)(mod q2). (83)

Define the setM as

M = {
←→
M
∣∣∣m2 ⊕ ←→σ ∣∣m2 ,←→σ+M ∣∣∣∣m2 ⊕ ←→R+ ∣∣∣∣m2 ,
←→
σ−M

∣∣∣∣m2 ⊕ ←→R− ∣∣∣∣m2 ,←→σ±M ∣∣∣∣m2 ⊕ ←→R± ∣∣∣∣m2 }. (84)

Let
←→
M∗

∣∣∣m ∈M and define
←→
HM∗

∣∣∣m and
←→
C∗0

∣∣∣m as

←→
HM∗

∣∣∣m = H (
←→
M∗

∣∣∣m), (85)

and
←→
C∗0
∣∣∣m = (

←→
K publicB

∣∣∣m ~ ←→HM∗ ∣∣∣m + ←→M∗∣∣∣m)(mod q2). (86)

Then by using (83) in (86), we have
←→
C∗0
∣∣∣m = (

←→
K publicB

∣∣∣m ~ ←→HM∗ ∣∣∣m + ←→M∗ ∣∣∣m)(mod q2)

≡ [q1(
←→
G q2

∣∣∣m ~ ←→R ∣∣∣m
(α̃)
~
←→
HM∗

∣∣∣m)
+
←→
M∗

∣∣∣m](mod q2), (87)

and for
←→
M∗0

∣∣∣m defined as

←→
M∗0

∣∣∣m = [(
←→
C∗0
∣∣∣m ~ ←→g ∣∣m)(mod q2)](mod q1), (88)

VOLUME 9, 2021 109273

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

we have
←→
M∗0

∣∣∣m = [(
←→
C∗0
∣∣∣m ~ ←→g ∣∣m)(mod q2)](mod q1)

≡ [(q1(
←→
R
∣∣∣m
(α̃)
~
←→
HM∗

∣∣∣m))(mod q2)](mod q1)

+[(
←→
M∗

∣∣∣m ~ ←→g ∣∣m)(mod q2)](mod q1). (89)

From O2MD2-III encryption, by definition, all the com-

ponents of
←→
M
∣∣∣m2 , ←→R+ ∣∣∣m2 , ←→R+ ∣∣∣m2 and

←→
R±
∣∣∣m2 are between

0 and r . Also, from Theorem 5, all the components of ←→σ
∣∣m2 ,

←→
σ+M

∣∣∣∣m2 , ←→σ−M ∣∣∣∣m2 , and ←→σ±M ∣∣∣∣m2 are also between 0 and r . There-

fore, for all
←→
M∗

∣∣∣m ∈ M, all its components are between
0 and r . On the other hand, by (42), all the components of
←→
HM∗

∣∣∣m in (85) are between 0 and b̃. Then by Theorem 1 and
Theorem 2, we know

←→
M∗0

∣∣∣m ≡ [q1(
←→
R
∣∣∣m
(α̃)
~
←→
HM∗

∣∣∣m)](mod q1)

+[
←→
M∗

∣∣∣m ~ ←→g ∣∣m](mod q1), (90)

but q1(
←→
R
∣∣∣m
(α̃)
~
←→
HM∗

∣∣∣m) ≡ 0(mod q1), so

←→
M∗0

∣∣∣m ≡ [
←→
M∗

∣∣∣m ~ ←→g ∣∣m](mod q1), (91)

hence
←→
M∗1

∣∣∣m ≡ ←→M∗0 ∣∣∣m ~ ←→G q1

∣∣∣m (mod q1) ≡
←→
M∗

∣∣∣m (mod q1),

(92)

and q1 satisfies (48), so
←→
M∗

∣∣∣m (mod q1) =
←→
M∗

∣∣∣m, therefore
←→
M∗1

∣∣∣m = ←→M∗∣∣∣m . (93)

Notice that, while
←→
M∗

∣∣∣m takes all the possible values

←→
M
∣∣∣m2 ⊕←→σ ∣∣m2 ,←→σ+M ∣∣∣∣m2 ⊕←→R+ ∣∣∣m2 ,←→σ−M ∣∣∣∣m2 ⊕←→R− ∣∣∣m2 and

←→
σ±M

∣∣∣∣m2 ⊕
←→
R±
∣∣∣m2 in (84), then from (86), (157) and (161), we know that

←→
C∗0

∣∣∣m takes all the possible values of
←→
C0

∣∣∣m, ←→C+0 ∣∣∣∣m, ←→C−0 ∣∣∣∣m
and
←→
C±0

∣∣∣∣m, respectively. Also, from (88) and (162), x
←→
M∗0

∣∣∣m
takes all the values of

←→
M0

∣∣∣m, ←→M+0 ∣∣∣∣m, ←→M−0 ∣∣∣∣m and
←→
M±0

∣∣∣∣m and

from (92) and (163),
←→
M∗1

∣∣∣m takes all the values of
←→
M1

∣∣∣m,
←→
M+1

∣∣∣∣m,←→M−1 ∣∣∣∣m and
←→
M±1

∣∣∣∣m, respectively. Therefore, from (93):

←→
M1

∣∣∣m = ←→M ∣∣∣m2 ⊕ ←→σ ∣∣m2 ; ←→M+1 ∣∣∣∣m = ←→σ+M ∣∣∣∣m2 ⊕ ←→R+ ∣∣∣∣m2 ,
←→
M−1

∣∣∣∣m = ←→σ−M ∣∣∣∣m2 ⊕ ←→R− ∣∣∣∣m2 ; ←→M±1 ∣∣∣∣m = ←→σ±M ∣∣∣∣m2 ⊕ ←→R± ∣∣∣∣m2 ,
(94)

and by using H on all the values of (94), from (164), we get

←→
HM1

∣∣∣m = H (
←→
M1

∣∣∣m) = H (
←→
M
∣∣∣m2 ⊕ ←→σ ∣∣m2),

←−→
HM+1

∣∣∣m = H (
←→
M+1

∣∣∣∣m) = H (
←→
σ+M

∣∣∣∣m2 ⊕ ←→R+ ∣∣∣∣m2),
←−→
HM−1

∣∣∣m = H (
←→
M−1

∣∣∣∣m) = H (
←→
σ−M

∣∣∣∣m2 ⊕ ←→R− ∣∣∣∣m2),
←−→
HM±1

∣∣∣m = H (
←→
M±1

∣∣∣∣m) = H (
←→
σ±M

∣∣∣∣m2 ⊕ ←→R± ∣∣∣∣m2). (95)

By using (94) and (95) on (167), for
←→
C ′
∣∣∣m we get

←→
C ′
∣∣∣m = (

←→
K publicB

∣∣∣m ~ ←→HM1

∣∣∣m + ←→M1

∣∣∣m)(mod q2),

= [
←→
K publicB

∣∣∣m ~ H (
←→
M
∣∣∣m2 ⊕ ←→σ ∣∣m2)

+
←→
M
∣∣∣m2 ⊕ ←→σ ∣∣m2](mod q2),

=
←−−−→
Cipher0

∣∣∣m = ←→C0

∣∣∣m , (96)

hence
←→
C ′
∣∣∣m = ←→C0

∣∣∣m. In a similar matter, for
←→
C+1

∣∣∣∣m, ←→C−1 ∣∣∣∣m
and
←→
C±1

∣∣∣∣m defined in (167), we get
←→
C+1

∣∣∣∣m = ←→C+0 ∣∣∣∣m and

←→
C−1

∣∣∣∣m = ←→C−0 ∣∣∣∣m and
←→
C±1

∣∣∣∣m = ←→C±0 ∣∣∣∣m. Now, by using on (94)

on (165) and (166), we get

←→
M ′
∣∣∣m2 = ←→M1

∣∣∣m
[1,m2]
=
←→
M
∣∣∣m2 ,

←→
M+2

∣∣∣∣m2 = ←→M+1 ∣∣∣∣m
[1,m2]
=
←→
σ+M

∣∣∣∣m2 ,
←→
M−2

∣∣∣∣m2 = ←→M−1 ∣∣∣∣m
[1,m2]
=
←→
σ−M

∣∣∣∣m2 ,
←→
M±2

∣∣∣∣m2 = ←→M±1 ∣∣∣∣m
[1,m2]
=
←→
σ±M

∣∣∣∣m2 ,
←→σ0

∣∣m2 = ←→M1

∣∣∣m
[m2 +1,m]

=
←→σ

∣∣m2 . (97)

Also, by (94) and (156),we get

H̃ (
←→
M1

∣∣∣m) = H̃ (
←→
M
∣∣∣m2 ⊕ ←→σ ∣∣m2) = ←−→H̃M ,σ

∣∣∣∣m2 . (98)

The expressions
←→
Kσ+A

∣∣∣m2 ~ ←→M+2 ∣∣∣∣m2 , ←→Kσ−A ∣∣∣m2 ~ ←→M−2
∣∣∣∣m2 and

←→
KσA

∣∣∣m2 ~ H̃ (
←→
M1

∣∣∣m) in (165) satisfy

←→
Kσ+A

∣∣∣m2 ~ ←→M+2 ∣∣∣∣m2
=
←→
Kσ+A

∣∣∣m2 ~ ←→σ+M ∣∣∣∣m2
109274 VOLUME 9, 2021

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

=
←→
Kσ+A

∣∣∣m2 ~ (
←→
f +
∣∣∣∣m2 ~ ←−→H̃M ,σ

∣∣∣∣m2 + ←→f̂ + ∣∣∣∣m2)
=
←→
Kσ+A

∣∣∣m2 ~ ←→f + ∣∣∣∣m2 ~ ←−→H̃M ,σ

∣∣∣∣m2 + ←→Kσ+A ∣∣∣m2 ~ ←→f̂ +
∣∣∣∣m2 ,

(99)

and

←→
Kσ−A

∣∣∣m2 ~ ←→M−2 ∣∣∣∣m2
=
←→
Kσ−A

∣∣∣m2 ~ ←→σ−M ∣∣∣∣m2
=
←→
Kσ−A

∣∣∣m2 ~ (
←→
f −
∣∣∣∣m2 ~ ←−→H̃M ,σ

∣∣∣∣m2 + ←→f̂ − ∣∣∣∣m2)
=
←→
Kσ−A

∣∣∣m2 ~ ←→f − ∣∣∣∣m2 ~ ←−→H̃M ,σ

∣∣∣∣m2 + ←→Kσ−A ∣∣∣m2 ~ ←→f̂ −
∣∣∣∣m2 ,
(100)

and

←→
KσA

∣∣∣m2 ~ H̃ (
←→
M1

∣∣∣m)
=
←→
KσA

∣∣∣m2 ~ ←−→H̃M ,σ

∣∣∣∣m2
=
←→
f ±
∣∣∣∣m2 ~ ←−→H̃M ,σ

∣∣∣∣m2 + ←→f + ∣∣∣∣m2 ~ ←→Kσ+A ∣∣∣m2 ~ ←−→H̃M ,σ

∣∣∣∣m2
+
←→
f −
∣∣∣∣m2 ~ ←→Kσ−A ∣∣∣m2 ~ ←−→H̃M ,σ

∣∣∣∣m2 . (101)

By (99), (100), (101), and (158), for
←→
σ ′
∣∣∣m2 defined

in (165), we get

←→
σ ′
∣∣∣m2 = ←→Kσ+A ∣∣∣m2 ~ ←→M+2

∣∣∣∣m2 + ←→Kσ−A ∣∣∣m2 ~ ←→M−2
∣∣∣∣m2

+
←→
M±2

∣∣∣∣m2 − ←→KσA ∣∣∣m2 ~ H̃ (
←→
M1

∣∣∣m)
= [
←→
Kσ+A

∣∣∣m2 ~ ←→f + ∣∣∣∣m2 ~ ←−→H̃M ,σ

∣∣∣∣m2
+
←→
Kσ+A

∣∣∣m2 ~ ←→f̂ + ∣∣∣∣m2]
+[
←→
Kσ−A

∣∣∣m2 ~ ←→f − ∣∣∣∣m2 ~ ←−→H̃M ,σ

∣∣∣∣m2
+
←→
Kσ−A

∣∣∣m2 ~ ←→f̂ − ∣∣∣∣m2]
+[
←→
f ±
∣∣∣∣m2 ~ ←−→H̃M ,σ

∣∣∣∣m2 + ←→f̂ ± ∣∣∣∣m2]
−[
←→
f ±
∣∣∣∣m2 ~←−→H̃M ,σ

∣∣∣∣m2 +←→f + ∣∣∣∣m2 ~←→Kσ+A ∣∣∣m2 ~←−→H̃M ,σ

∣∣∣∣m2
+
←→
f −
∣∣∣∣m2 ~ ←→Kσ−A ∣∣∣m2 ~ ←−→H̃M ,σ

∣∣∣∣m2]

=
←→
Kσ+A

∣∣∣m2 ~ ←→f̂ + ∣∣∣∣m2 + ←→Kσ−A ∣∣∣m2 ~ ←→f̂ −
∣∣∣∣m2 + ←→f̂ ± ∣∣∣∣m2

=
←→σ

∣∣m2 , (102)

hence
←→
σ ′
∣∣∣m2 = ←→σ

∣∣m2 . Finally, by (166), the equality
←→
σ ′
∣∣∣m2 = ←→σ0 ∣∣m2 holds, so O2MD2-III decryption returns

←→
M ′
∣∣∣m2 , and ←→M ′ ∣∣∣m2 satisfies (97), therefore the decryption

algorithm returns the original message
←→
M
∣∣∣m2 as expected.�

VI. SECURITY ANALYSIS
We perform a strong security analysis consisting of three
different sections. First, we present the results of testing
for indistinguishability over the generated ciphertexts against
random noise. These tests are done by using the NIST Statis-
tical Test Suite. Second, we provide twelve configurations to
reach the security levels of AES-128, AES-192 and AES-256
(equivalent to the NIST Post-Quantum Cryptography Stan-
dardization project’s security levels 1, 3 and 5, respectively).
Third, we formally prove the message integrity and message
authenticity verification capabilities of the O2MD2-II and
O2MD2-III frameworks. Finally, we end this section with
comments on additional types of attacks.

A. ANALYSIS FOR RANDOMNESS USING THE NIST
STATISTICAL TEST SUITE
We used the NIST Statistical Test Suite (Special Publication
800-22 Revision 1a) to evaluate the indistinguishability of
the generated ciphertexts against random noise [39], [41].
The NIST Statistical Test Suite takes a file as input, and
performs a series of fifteen different tests on this input to
check for various randomness-related properties. The input
file must contain multiple lines of text already in binary form,
and all these lines must have the same number of bits. The
NIST Statistical Test Suite’s official documentation refers to
these lines of text as bit streams and to the used number of
bits as length [39]. The tests are then performed on each
individual bit stream, and a final analysis report is given at the
end. Examples of the performed tests are the Frequency Test,
which calculates the proportion of zeros and ones, the Fre-
quency Within A Block Test, which calculates the proportion
of zeros and ones in blocks of different bit sizes, theRuns Test,
which calculates the total number of uninterrupted sequences
of identical bits, and others [40].

Our experiment was implemented on Ubuntu 20.04 LTS
using the official NIST Statistical Test Suite repository and
it was built with gcc 7.0.5 [41]. We followed the ECRYPT
Benchmarking of Cryptographic Systems (eBACS) interface
proposed by the Virtual Application and Implementation
Research Lab (VAMPIRE) to make a c program that gen-
erates 100 ciphertexts for 100 random plaintexts [20], [21].
These 100 ciphertexts are then converted into binary form
and stacked in a single file, which is finally fed to the NIST
Statistical Test Suite software.

VOLUME 9, 2021 109275

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

TABLE 4. Results of our experiment using the NIST Statistical Test Suite over 100 different ciphertexts to test for indistinguishability against random
noise (most of the NonOverlappingTemplate results were trimmed for display purposes). A statistical test is considered to be passed if at least 96 out of
the 100 bit streams pass it.

Based on the NIST Statistical Test Suite final analysis
report, the input file passes a given test if at least 96 out
of the 100 bit streams pass that specific test. A summary
of the output report obtained after our experiment is shown
in Table 4. From this table, we know that our ciphertexts
pass the following tests: (1) The Frequency Test, (2) The
Frequency Within A Block Test, (3) The Cumulative Sum
Test, (4) The Runs Test, (5) The Longest Run of Ones In A
Block Test, (6) The Random Binary Matrix Rank Test, (7) The
Discrete Fourier Transform Test, (8) The Overlapping Tem-
plate Matching Test, (9) The Approximate Entropy Test,
and (10) The Serial Test. Brief descriptions of these ten
tests are shown in Table 5, and more detailed explanations
are provided in the NIST Statistical Test Suite’s official
documentation [39], [40].

B. COMPARISON AGAINST THE OTHER NIST CANDIDATES
The NIST Post-Quantum Cryptography Standardization
project officially proposes five different security levels in
its Security Evaluation Criteria section, and they are sorted
in an increasing order based on their strength [42]. Secu-
rity level 1 attacks, security level 3 attacks and security
level 5 attacks must be equivalent to perform key searches
on block ciphers with 128-bit keys, 192-bit keys and 256-bit
keys, respectively. Security level 2 attacks and security
level 4 attacks must be equivalent to perform collision
searches on 256-bit and 384-bit hash functions, respectively.
In other words, security level 1, security level 3 and security
level 5 compliant cryptosystems must be as hard to break
as AES-128, AES-192 and AES-256, respectively. Similarly,
security level 2 and security level 4 compliant cryptosys-
tems must be as hard to break as SHA256/SHA3-256 and
SHA384/SHA3-384 [42].

We compared our framework against seven popular can-
didates on the second round of the NIST Post-Quantum
Cryptography Standardization project. These cryptosys-
tems are NTRU, NTRU Prime, FrodoKEM, Crystals-
Kyber, ThreeBears, NewHope and LAC [14], [23]–[26],
[31], [32]. These seven cryptosystems proposed a total of
twenty-six different implementations. The proposed four
implementations for NTRU are ntru-hps2048509, ntru-
hps2048677, ntru-hrs701, and ntru-hps4096821 [31]. The six

proposed ones for NTRU Prime are ntrulpr653, sntrup653,
ntrulpr761, sntrup761, ntrulpr857, and sntrup857 [32]. The
three proposed ones for FrodoKEM are FrodoKEM-640,
FrodoKEM-976, and FrodoKEM-1344, while the three
proposals for Crystals-Kyber are kyber512, kyber768 and
kyber1024 [25], [26]. The three implementations pro-
posed for ThreeBears are BabyBear, MamaBear and
PapaBear [14], while the four proposed ones for NewHope
are NewHope512cca, NewHope512cpa, NewHope1024cca,
and NewHope1024cpa [24]. Finally, the three implementa-
tions proposed for LAC are LAC-KEM-128, LAC-KEM-
195 and LAC-KEM-256 [23]. Table 6 shows how all these
twenty-six implementations cover the five security levels
for the NIST Post-Quantum Cryptography Standardization
project.

We propose different configurations that reach the NIST
Post-Quantum Cryptography Standardization project’s secu-
rity levels 1, 3 and 5. Because we want to implement
our framework in high-end devices and low-level hardware,
our configurations also have different memory requirements
between them. We consider as low-level hardware to all
the devices that support a 32-bit datatype. For example,
the Arduino and Raspberry pi devices support the unsigned
long datatype which stores 32 bits (4 bytes) [43]. Similarly,
we consider as high-end devices to all the devices that support
a 64-bit datatype. For example, personal computers with
64-bit CPUs support the 64 bits (8 bytes) unsigned long long
datatype.

Our framework’s key generation algorithm depends on the
session variable S (described in Equations (32), (41) and (43)
for O2MD2-I, O2MD2-II and O2MD2-III, respectively),
the values of ã, b, p1 and p2 (for O2MD2-I, O2MD2-II
and O2MD2-III), and h̃ k̃ and s̃ (for O2MD2-III). As dif-
ferent security levels can be attained by modifying all these
parameters, we provide six different configurations based on
their memory sizes. We classify as Low Security, Middle
Security and High Security to our configurations capable
of reaching the NIST Post-Quantum Cryptography Stan-
dardization project’s security levels 1, 3 and 5, respec-
tively. Our configurations’ names follow the notation code
OXYZAB, where O stands for O2MD2, XYZ may have
L32 or H64 as their value, depending if it is designed for

109276 VOLUME 9, 2021

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

TABLE 5. Brief descriptions of the ten tests of the NIST Statistical Test Suite that were successfully passed by the generated ciphertexts in our
experiment. More detailed descriptions are provided in the NIST Statistical Test Suite’s official documentation [39], [40].

TABLE 6. Classification of the twenty-six implementations of the NIST Post-Quantum Cryptography Standardization project candidates in terms of their
security levels. The twelve proposed implementations for our framework are also shown.

a low-level hardware (capable of storing 32-bit variables) or
high-end devices (capable of storing 64-bit variables), and
AB may be 16, 32 or 64, depending on the desired size
for m.

For low-level hardware, we propose the configurations
OL3216, OL3232 and OL3264, while for high-end devices
we propose the configurations OH6416, OH6432 and
OH6464. Besides these six implementations, we also pro-
pose their Fast Fourier Transform (FFT) versions (which use
the Number Theoretic Transform NTT). As with Crystals-
Kyber, NewHope and LAC, the Number Theoretic Trans-
form could be used to perform polynomial multiplications
over a ring. We propose then the OL3216FFT, OL3232FFT
and OL3264FFT configurations for low-level hardware,

and OH6416FFT, OH6432FFT and OH6464FFT high-end
devices. One important requirement for a device to implement
the FFT version is that it needs to support floating point
operations, as complex roots of unity are needed to perform
the NTT products.

Finally, all twelve proposed configurations are classified
into different security levels. For the Low Security Level we
have OL3216, OH6416 and their FFT versions OL3216FFT
and OH6416FFT. For the Middle Security Level we have
OL3232, OH6432 and their FFT versions OL3232FFT
and OH6432FFT. For the High Security Level we have
OL3264, OH6464 and their FFT versions OL3264FFT and
OH6464FFT. All these twelve configurations’ security levels
and memory requirements are shown in Table 7. Finally,

VOLUME 9, 2021 109277

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

TABLE 7. Twelve different configurations of the O2MD2 cryptosystem. These configurations are categorized by their security level and usage of Fast
Fourier Transform (FFT) when performing the multiplication operation. The necessary bit sizes for all the variables are also displayed.

Figure 2 shows the security levels of the non-FFT configu-
rations against AES-128, AES-192 and AES-256.

C. ABOUT MESSAGE INTEGRITY AND MESSAGE
AUTHENTICITY VERIFICATIONS
The O2MD2-II and O2MD2-III frameworks only decrypt
valid ciphertexts generated from valid messages. In the
decryption algorithms, several integrity verification clauses
are checked for different parts of the ciphertexts prior to
return a plaintext, and if one of these verifications fails,
an error message is returned. Below we formally prove that
the probability of randomly guessing a valid ciphertext for
both frameworks becomes negligible as m increases. Also,
we prove that the probability of randomly guessing a valid
ciphertext that satisfies the authenticity verification check in
the O2MD2-III framework is also negligible as m increases.
Theorem 7: TheO2MD2-II andO2MD2-III frameworks

only decrypt valid ciphertexts that pass the integrity check,
and an adversary cannot randomly generate a valid ciphertext,
except with negligible probability.
Proof 7: For the O2MD2-II framework, let

←−−→
Cipher

∣∣∣m be

a received ciphertext. FromO2MD2-II decryption, we know

that a message
←→
M ′
∣∣∣m2 is returned only if

←−−→
Cipher

∣∣∣m passes the

validation of
←−−→
Cipher

∣∣∣m == ←−−−→Cipher ′
∣∣∣m, where ←−−−→Cipher ′

∣∣∣m is

defined in (31), and 0 ≤
←→
M ′
∣∣∣m2 (i) < r , for i = 1, . . . ,m.

Hence,
←−−→
Cipher

∣∣∣m must be a valid ciphertext of a valid mes-
sage. Now, denote asGuessII to the event of randomly guess-
ing a valid ciphertext from all the possible ciphertext space.
Then Pr[GuessII] is uper bounded by

Pr[GuessII] ≤ (rp2)
m, (103)

but from (35) and (33) we know that

p2 > max(p1mãb̃,mbr̃) > rmmax(ãb̃, b), (104)

and by taking ã ≥ 2, b̃ ≥ 2 and b ≥ 2, we know that

p2 > rmmax(ãb̃, b) > rmmax(4, 2) > 2rm, (105)

FIGURE 2. Six of the twelve proposed implementations of the O2MD2

system. These are: (1) Low Security: OL3216 and OH6416. (2) Middle
Security: OL3232 and OH6432. (3) High Security: OL3264 and OH6464.
The FFT versions are omitted. The Low Security level, Middle Security
Level and High Security Level comply with the NIST Post-Quantum
Cryptography Standardization project’s security levels 1, 3 and 5,
respectively. The benchmarks for AES-128, AES-192 and AES-256 are also
shown for clarity purposes.

so

1
2rm

> 1
p2
, (106)

hence

Pr[GuessII] ≤ (rp2)
m < (r

2rm)
m
=

1
(2m)m , (107)

so for any ε > 0, we can always find a value of mε of m for
which Pr[GuessII] < ε holds for all m > mε.

Similarly for the O2MD2-III framework, let
←→
C
∣∣∣4m be a

received ciphertext. From O2MD2-III decryption, we know

that if a message
←→
M ′
∣∣∣m2 is returned, then the conditions φ1

109278 VOLUME 9, 2021

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

and φ2 defined as

φ1 = (
←→
C ′
∣∣∣m == ←→C0

∣∣∣m) ∧ (
←→
C+1

∣∣∣∣m == ←→C+0 ∣∣∣∣m)
∧(
←→
C−1

∣∣∣∣m == ←→C−0 ∣∣∣∣m) ∧ (
←→
C±1

∣∣∣∣m == ←→C±0 ∣∣∣∣m),
(108)

φ2 =

m∧
i=1

[(0 ≤
←→
M1

∣∣∣m (i) < r) ∧ (0 ≤
←→
M+1

∣∣∣∣m (i) < r)

∧(0 ≤
←→
M−1

∣∣∣∣m (i) < r) ∧ (0 ≤
←→
M±1

∣∣∣∣m (i) < r)],

(109)

are both true. From (109) we know that
←→
M1

∣∣∣m,←→M+1 ∣∣∣∣m,←→M−1 ∣∣∣∣m
and
←→
M±1

∣∣∣∣m are valid messages, and by (167), the calculated

←→
C ′
∣∣∣m, ←→C+1 ∣∣∣∣m, ←→C−1 ∣∣∣∣m and

←→
C±1

∣∣∣∣m are valid ciphertexts from

valid messages. Then by (108), we know that
←→
C0

∣∣∣m, ←→C+0 ∣∣∣∣m,
←→
C−0

∣∣∣∣m and
←→
C±0

∣∣∣∣m are also valid ciphertexts of valid messages.

But they are the four different parts of the received
←→
C
∣∣∣4m,

as shown in (161). Therefore, the received
←→
C
∣∣∣4m must be

a valid ciphertext of a valid original message
←→
M
∣∣∣m2 . Now,

denote as GuessIII to the event of randomly guessing a valid

ciphertext
←→
C
∣∣∣4m for the O2MD2-III framework. Note that

←→
C
∣∣∣4m is a valid ciphertext if and only if its four parts

←→
C0

∣∣∣m,
←→
C+0

∣∣∣∣m, ←→C−0 ∣∣∣∣m and
←→
C±0

∣∣∣∣m are also valid ciphertexts built from

the O2MD2-III encryption. By denoting as GuessIII ≥ N to
the event of randomly guessing at least N valid parts out of
the four, we have
Pr[GuessIII] < Pr[GuessIII ≥ 1] = 1− Pr[GuessIII = 0].

(110)

For each one of the four parts of a valid ciphertext, there
are rm valid sub-ciphertexts out of pm2 possible ones, hence

Pr[GuessIII = 0] = (
pm2 − r

m

pm2
)4 = (1+ [−

rm

pm2
])4.

(111)

Let

x = −
rm

pm2
. (112)

From (33) and (35), we know that r < p2, so r
p2
< 1, hence

−
r
p2
> −1. Therefore x > −1, and by using the Bernoulli’s

inequality over (111), we get

Pr[GuessIII = 0] = (1+ [−
rm

pm2
])4 ≥ 1+ 4[−

rm

pm2
],

(113)

then

−Pr[GuessIII = 0] ≤ −1+ 4rm
pm2
. (114)

By using (114) with (110), we get

Pr[GuessIII] < 1− Pr[GuessIII = 0]

< 1− 1+
4rm

pm2
=

4rm

pm2
, (115)

and from (106), we get a higher upper bound

Pr[GuessIII] < 4rm
pm2

< 4(r
2rm)

m
=

4
(2m)m , (116)

so for any ε > 0, we can always find a value of mε of m for
which Pr[GuessIII] < ε holds for all m > mε.
Therefore both O2MD2-II and O2MD2-III frameworks

only decrypt valid ciphertexts that pass the integrity check,
and an adversary cannot randomly generate a valid ciphertext,
except with negligible probability. �
Theorem 8: The O2MD2-III framework only decrypts

valid ciphertexts that satisfy the authenticity check performed
over the sender’s public signature key, and an adversary
cannot randomly generate such ciphertexts, except with neg-
ligible probability.
Proof 8: From (99), (100), (101) and (102) in the proof

of correctness of O2MD2-III framework, we know that the
decryption algorithm only decrypts ciphertexts that satisfy
the authenticity check performed over the sender’s public
signature key. For an adversary to randomly guess such a

ciphertext, he must correctly guess all
←→
M+2

∣∣∣∣m2 ,←→M−2 ∣∣∣∣m2 ,←→M±2 ∣∣∣∣m2
and H̃ (

←→
M1

∣∣∣m) simultaneously. Denote as Guess∗III to the
event of correctly guessing these four messages. Then we
know that

Pr[Guess∗III] < (1

r
m
2
)3 × (1

h̃
m
2
) = (1

r3h̃
)
m
2 , (117)

so for any ε > 0, we can always find a value of mε of m for
which Pr[Guess∗III] < ε holds for all m > mε. �
Theorem 9: The O2MD2-III framework only decrypts

valid ciphertexts that satisfy both the integrity and authentic-
ity checks, and an adversary cannot randomly generate such
ciphertexts, except with negligible probability.

Proof 9: Let
←→
C
∣∣∣4m be a ciphertext that the

O2MD2-III framework can decipher correctly. Then by
Theorem 7, it must pass the integrity check. At the same
time, by Theorem 8, it must also pass the authenticity check.

Therefore,
←→
C
∣∣∣4m must pass both verifications simultane-

ously. Denote as Guess′III to the event of correctly guessing
a ciphertext that pass both checks. Then

Pr[Guess′III] ≤ Pr[GuessIII]× Pr[Guess∗III], (118)

by using (116) and (117) on (118), we get

Pr[Guess′III] ≤ Pr[GuessIII]× Pr[Guess∗III]

< (
4

(2m)m
)(

1

r3h̃
)
m
2 =

4

(4m2r3h̃)
m
2
,

(119)

VOLUME 9, 2021 109279

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

FIGURE 3. Speed comparison of the six configurations proposed for high-end devices (OH6416, OH6432, OH6464, OH6416FFT, OH6432FFT, and
OH6464FFT using the O2MD2-I framework), and the twenty-six implementations for NTRU, NTRU Prime, Crystals-Kyber, FrodoKEM, ThreeBears,
NewHope and LAC (making a total of thirty-two implementations). One hundred different cycles consisting of key generation, encryption and
decryption were made for each implementation, and the average execution time for each algorithm is shown in nanoseconds (logarithmic scale is used
in this diagram for the ordinate axis). The reached NIST security level for each implementation is also shown.

so for any ε > 0, we can always find a value of mε of m for
which Pr[Guess′III] < ε holds for all m > mε. �

D. FINAL NOTES ABOUT THE SECURITY ANALYSIS
As the O2MD2-II and O2MD2-III frameworks require to
use one-way hash functions, the security of the message
integrity and message authenticity verifications will depend
on how strong the selected one-way hash functions are. In an
already implemented system, if a vulnerability of the used
one-way hash functions is discovered, a re-implementation
of the system is suggested.

Also, we use the rings Zp1 [x]/〈xm − 1〉 and Zp2 [x]/〈xm −
1〉 while encrypting and decrypting. These types of rings
have been widely studied and are considered secure, but
similarly to the authors of ThreeBears, NTRU and NTRU
Prime, we also claim that it is difficult to verify all possible
weaknesses, and it is unknown if vulnerabilities over the ring
learning with errors (RLWE) problem exist that have not been
discovered yet.

Similar to what was done by the ThreeBears authors,
our Middle Security Level and High Security Level con-
figurations exceed the requirements proposed by the NIST
Post-Quantum Cryptography Standardization project for

security levels 3 and 5. This was done as a failsafe in case
that any new quantum-based attack is discovered in the future
which forces to re-design all the post-quantum candidates.

Finally, linear differential attacks have also been con-
sidered. Since we use both rings Zp1 [x]/〈xm − 1〉 and
Zp2 [x]/〈xm − 1〉 (and add random salts in the O2MD2-II
andO2MD2-III encryption algorithms), for bigm, p1 and p2,
any linear property between the plaintext and ciphertext is
lost, making it difficult to perform any kind of attacks based
on small differences in plaintexts. Differential attacks require
as much work as brute force attacks, and with the correct
set up of the initial parameters and a periodical key refresh,
the message space can be impossible to scan entirely.

VII. PERFORMANCE ANALYSIS
We created a testing environment to test our configura-
tions (non-FFT and FFT versions) for high-end devices
against the twenty-six official implementations provided by
NTRU, NTRU Prime, FrodoKEM, Crystals-Kyber, Three-
Bears, HewHope and LAC in the NIST Post-Quantum Cryp-
tography Standardization project website [19]. We used
Ubuntu 20.04 on a machine with an Intel i7-7700HQ CPU
and 32 Gb of RAM.

109280 VOLUME 9, 2021

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

Our implementations followed the ECRYPT Benchmark-
ing of Cryptographic Systems (eBACS) interface. Tests
of 100 cycles were performed. Each cycle consists of a key
generation, encryption of a randomly generated plaintext,
decryption of the resulting ciphertext and comparison of
the original plaintext and deciphered message. The NIST
Post-Quantum Cryptography Standardization project candi-
dates used plaintexts of 48 bytes, while our implementa-
tions used plaintexts of 64 bytes. The execution times of
the key generation, encryption and decryption of all the
thirty-two tested algorithms were measured in nanoseconds.
Figure 3 shows the average result of a side-by-side speed
test of our implementations of OH6416, OH6432, OH6464,
OH6416FFT, OH6432FFT, and OH6464FFT (using the
O2MD2-I framework) against all the other twenty-six imple-
mentations (logarithmic scale is used for the ordinate axis).
On average, our implementations perform their key gen-
eration, encryption and decryption from 2 to 4 orders
of magnitude faster than the twenty-six tested NIST
Post-Quantum Cryptography Standardization project candi-
dates’ implementations.

Finally, we must mention that our framework, unlike the
tested candidates, can be implemented using only unsigned
integers. We use the rings Zp1 [x]/〈xm−1〉 and Zp2 [x]/〈xm−
1〉, so all of the operations always use non-negative values.
This creates a significant advantage in terms of memory
management, as bit packing can be performed easier and less
memory is needed to reach a desired security level compared
to the tested candidates. All the code for our experiment is
published in our GitHub’s official repository [44].

VIII. CONCLUSION AND FUTURE WORK
The O2MD2 cryptosystem is an innovative post-quantum
cryptosystem that uses the concept of arithmetic functions
to construct a one-to-many private/public key architecture.
It provides a distributed key refresh to all the users in a
network. It is based in the ring learning with errors (RLWE)
problem, defined over the rings Zp1 [x]/〈xm − 1〉 and
Zp2 [x]/〈xm − 1〉.

Our cryptosystem has three different frameworks:
O2MD2-I, O2MD2-II and O2MD2-III, and each one of
them provides useful capabilities. The O2MD2-I framework
has a distributed and backwards-compatible key refresh,
while the O2MD2-II and O2MD2-III frameworks provide
message integrity verifications, which are useful to identify
modified ciphertexts. Additionally, the O2MD2-III frame-
work also performs message authenticity verifications, so a
receiver can determine if a message was created by the sender
or not.

Our solution also creates ciphertexts that are indistinguish-
able from random noise. By use of the NIST Statistical
Test Suite over 100 ciphertexts of 100 randomly generated
plaintexts, we prove that the generated ciphertexts have ten
fundamental properties of random noise.

We provide twelve suggested configurations that can
reach the NISTPost-QuantumCryptography Standardization

project’s security levels 1, 3 and 5. These configurations
are also classified by their memory requirements, where
six of them are designed to run in high-end devices, while
the other six on low-level hardware. After testing against
twenty-six different implementations of seven popular cryp-
tosystems from the Post-Quantum Cryptography Standard-
ization project Round 2, we checked that our implementations
perform their key generation, encryption and decryption from
2 to 4 orders of magnitude faster than the tested candidates.

Based on the algebraic properties we used throughout
this work, we have observed that the O2MD2 cryptosystem
offers several interesting characteristics. The one-to-many
private/public key approach, the distributed key refresh,
the use of arithmetic functions as private keys, the message
integrity and authenticity verifications, the indistinguishabil-
ity of the ciphertexts against random noise, and the flexibility
to reach different security levels and fast performance make
this proposal a valuable contribution for the cryptographic
community.

For future work, we will address several topics. First,
we will fully explore the IND-CPA and IND-CCA1/IND-
CCA2 game scenarios. The O2MD2-II and O2MD2-III
frameworks were designed in such a way that, when ana-
lyzing the IND-CPA game scenario, the Fujisaki-Okamoto
transformation could be used to reach IND-CCA security in
the random oracle model. Also, we will analyze lattice-based
attacks (for example, LLL-based attacks). Second, we will
create hardware implementations using FPGAs and ASICs.
Third, we will develop communication and handshake proto-
cols considering the key refresh in a network of users with
high latency. Furthermore, we plan to explore the use of
O2MD2 on the Internet of Things (IoT) world, as the key
generation can be modified to work as a block chain process.
Finally, we will explore on how to create a chain-of-trust in a
network of users while retaining secure communication.

APPENDIX
EXAMPLE
This is an example using O2MD2-I. Define the session as
S = (m, b̃, r) = (5, 120, 120). Let f be a secret arithmetic
function. Assume that, for a secret instance I , the device

generated
←→
f
∣∣∣5 = [2, 81, 27, 9, 3].

A. KEY GENERATION

All the entries of
←→
f
∣∣∣5 are non-negatives. Select p1 = 251

and ã = 120. Note that

b = max(
←→
f
∣∣∣5) = 81,

r̃ = max(b̃, r) = 120, (120)

Let p2 be a random prime satisfying inequality (35), i.e.,

p2 > max(p1mãb̃,mbr̃) = max(18072000, 48600).(121)

VOLUME 9, 2021 109281

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

The prime 18072001 satisfies1 the inequality (121).
From (8) we know that

←→
F 251

∣∣∣5 = [92, 223, 74, 164, 128],

←→
F 18072001

∣∣∣5 = [11798464, 16030112, 7407741,

1287507, 11026277]. (122)

Our private key is

Kprivate = (
←→
f
∣∣∣5 , 251,←→F 251

∣∣∣5 ,←→F 18072001

∣∣∣5 , 120),
(123)

and we have to run the soft key-reset algorithm to generate
our public key.

B. SOFT KEY-RESET
Note that ã = 120. By sampling five different integers from
a discrete Gaussian distribution over Z and reducing them

modulo ã, we perform a randomization over
←→
F 18072001

∣∣∣5
with the array

←→
R
∣∣∣5
(120)
= [98, 83, 38, 114, 4] , (124)

getting

←→
K public

∣∣∣5 = [5728821, 15683333, 5171087,

12284834, 13126654]. (125)

We can perform a secondary randomization over
←→
F 18072001

∣∣∣5 with a new array

←→
R∗
∣∣∣5
(120)
= [58, 53, 77, 85, 90] , (126)

generating an alternative public key

←→
K∗ public

∣∣∣5 = [12818350, 12426167, 13811533,

10953056, 17687579]. (127)

Finally, set Kpublic and K∗public as

Kpublic = (
←→
K public

∣∣∣5 , 18072001),
K∗public = (

←→
K∗ public

∣∣∣5 , 18072001). (128)

We will use both public keys in the encryption algorithm
to show that the O2MD2-I one-to-many private/public key
architecture works correctly.

1Any prime greater than 18072001 will also be a valid candidate prime
for p2.

C. ENCRYPTION
We encrypt the ASCII code of the message Hello, obtaining

←→
M
∣∣∣5 = [72, 101, 108, 108, 111] . (129)

Note that b̃ = 120. By sampling five different integers
from a discrete Gaussian distribution over Z and reducing

them modulo b̃, we make a randomization over
←→
K public

∣∣∣5
from (121) with the array

←−−−→
Rencrypt1

∣∣∣5
(120)
= [52, 45, 91, 95, 22] , (130)

getting

←→
R
∣∣∣5 = Randomization

(
←→
K public

∣∣∣5 , 1, 120)
= [3321923152, 2842804607, 3548678919,

3013267698, 3131717969], (131)

then the ciphertext is given by

←−−→
Cipher

∣∣∣5 = (
←→
M
∣∣∣5 + ←→R ∣∣∣5)(mod 18072001)

13315640, 5261907]. (132)

We also make a new randomization again over
←→
K public

∣∣∣5
from (125) but with a second random vector

←−−−→
Rencrypt2

∣∣∣5
(120)
= [17, 23, 45, 90, 2] , (133)

getting

←→
R1
∣∣∣5 = Randomization

(
←→
K public

∣∣∣5 , 1, 120)
= [2161360827, 1448885025, 2105056208,

1912390611, 1575374362], (134)

where we can generate the alternative ciphertext

←−−−→
Cipher1

∣∣∣5 = (
←→
M
∣∣∣5 + ←→R1 ∣∣∣5)(mod 18072001)

= [10792780, 3125046, 8704200,

14830614, 3110386]. (135)

By using the alternative second public key
←→
K∗ public

∣∣∣5
from (127), if we use the random vectors

←−−−→
Rencrypt3

∣∣∣5
(120)
= [33, 81, 78, 19, 14] ,

←−−−→
Rencrypt4

∣∣∣5
(120)
= [13, 25, 19, 92, 54] , (136)

we generate two new alternative ciphertexts:

←−−−→
Cipher∗

∣∣∣5 = [18005199, 1895209, 12634479,

5802146, 12936752],
←−−−→
Cipher∗1

∣∣∣5 = [17286247, 11666092, 5342822,

6738991, 2816645]. (137)

109282 VOLUME 9, 2021

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

Algorithm 9 (O2MD2-III) Key generation.

input : Instance
←→
f
∣∣∣m, session S = (m, b̃, r,H , H̃ , k̃, s̃) with 2 | m, random prime p1 with r̃ = max(b̃, r) < p1, and

random positive integer ã.
output: Message: Cannot construct keys based on the inputs, or the set of keys

Kpublic = (
←→
K public

∣∣∣m , p2); Kprivate = (
←→
f
∣∣∣m , p1,←→F p1

∣∣∣m ,←→F p2

∣∣∣m , ã),
Kσ = (

←→
Kσ+

∣∣∣m2 ,←→Kσ− ∣∣∣m2 ,←→Kσ ∣∣∣m2); Ks = (
←→
f +
∣∣∣∣m2 ,←→f − ∣∣∣∣m2 ,←→f ± ∣∣∣∣m2).

1 if
←→
f
∣∣∣m contains at least one negative component then

2 Return Cannot construct keys based on the inputs.
3 end

4 Let
←→
f +
∣∣∣m2 ,←→f − ∣∣∣m2 , and ←→f ± ∣∣∣m2 be three m

2 -sized vectors where each element is sampled from a discrete Gaussian
distribution on Z and reduced modulo s̃.

5 Define Ks as

Ks = (
←→
f +
∣∣∣∣m2 ,←→f − ∣∣∣∣m2 ,←→f ± ∣∣∣∣m2). (148)

6 Let
←→
Kσ+

∣∣∣m2 and
←→
Kσ−

∣∣∣m2 be two m
2 -sized vectors where each element is sampled from a discrete Gaussian distribution on Z

and reduced modulo k̃ .
7 Calculate

←→
Kσ
∣∣∣m2 = ←→f + ∣∣∣∣m2 ~ ←→Kσ+ ∣∣∣m2 + ←→f − ∣∣∣∣m2 ~ ←→Kσ− ∣∣∣m2 + ←→f ± ∣∣∣∣m2 . (149)

8 Define Kσ as

Kσ = (
←→
Kσ+

∣∣∣m2 ,←→Kσ− ∣∣∣m2 ,←→Kσ ∣∣∣m2) (150)

9 Calculate

b = max(
←→
f
∣∣∣m),

r̃ = max(b̃, r).
(151)

10 Select a random prime p2 such that

p2 > max(p1mãb̃,mbr̃). (152)

11 if
←→
F p1

∣∣∣m or ←→F p2

∣∣∣m do not exist then
12 Select a different prime p1 or p2, respectively. Restart Key Generation.
13 end
14 Calculate

←→
K public

∣∣∣m = Randomization
(
←→
F p2

∣∣∣m , p1, ã) (mod p2). (153)

15 Return

Kpublic = (
←→
K public

∣∣∣m , p2); Kprivate = (
←→
f
∣∣∣m , p1, ã),

Kσ = (
←→
Kσ+

∣∣∣m2 ,←→Kσ− ∣∣∣m2 ,←→Kσ ∣∣∣m2); Ks = (
←→
f +
∣∣∣∣m2 ,←→f − ∣∣∣∣m2 ,←→f ± ∣∣∣∣m2). (154)

VOLUME 9, 2021 109283

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

Algorithm 10 (O2MD2-III) Encryption. An entity A sends a message to an entity B.

input : Receiver’s public key KpublicB = (
←→
K publicB

∣∣∣m , q2), session S = (m, b̃, r,H , H̃ , k̃, s̃), sender’s public signature

key KσA = (
←→
Kσ+A

∣∣∣m2 ,←→Kσ−A ∣∣∣m2 ,←→KσA ∣∣∣m2), sender’s private signature key KsA = (
←→
f +
∣∣∣m2 ,←→f − ∣∣∣m2 ,←→f ± ∣∣∣m2), and

Message
←→
M
∣∣∣m2 .

output: Ciphertext
←−−→
Cipher

∣∣∣4m.
1 Let

←→
f̂ +
∣∣∣∣m2 ,←→f̂ − ∣∣∣∣m2 , and ←→f̂ ± ∣∣∣∣m2 be three m

2 -sized vectors where each element is sampled from a discrete Gaussian

distribution on Z and reduced modulo s̃.
2 Calculate

←→σ
∣∣m2 = ←→f̂ + ∣∣∣∣m2 ~ ←→Kσ+A ∣∣∣m2 + ←→f̂ −

∣∣∣∣m2 ~ ←→Kσ−A ∣∣∣m2 + ←→f̂ ±
∣∣∣∣m2 . (155)

3 Calculate

←−→
HM ,σ

∣∣∣m = H (
←→
M
∣∣∣m2 ⊕ ←→σ ∣∣m2),

←−→
H̃M ,σ

∣∣∣∣m2 = H̃ (
←→
M
∣∣∣m2 ⊕ ←→σ ∣∣m2). (156)

4 Calculate

←−−−→
Cipher0

∣∣∣m = (
←→
K publicB

∣∣∣m ~ ←−→HM ,σ
∣∣∣m + ←→M ∣∣∣m2 ⊕ ←→σ ∣∣m2)(mod q2). (157)

5 Calculate

←→
σ+M

∣∣∣∣m2 = ←→
f +
∣∣∣∣m2 ~ ←−→H̃M ,σ

∣∣∣∣m2 + ←→f̂ + ∣∣∣∣m2 ,
←→
σ−M

∣∣∣∣m2 = ←→
f −
∣∣∣∣m2 ~ ←−→H̃M ,σ

∣∣∣∣m2 + ←→f̂ − ∣∣∣∣m2 ,
←→
σ±M

∣∣∣∣m2 = ←→
f ±
∣∣∣∣m2 ~ ←−→H̃M ,σ

∣∣∣∣m2 + ←→f̂ ± ∣∣∣∣m2 .
(158)

6 Let
←→
R+
∣∣∣m2 , ←→R− ∣∣∣m2 and

←→
R±
∣∣∣m2 be three m

2 -sized vectors where each element is sampled from a discrete Gaussian
distribution on Z and reduced modulo r .

7 Calculate

←−−−→
Cipher1

∣∣∣m = (
←→
K publicB

∣∣∣m ~ H (
←→
σ+M

∣∣∣∣m2 ⊕ ←→R+ ∣∣∣∣m2)+ ←→σ+M ∣∣∣∣m2 ⊕ ←→R+ ∣∣∣∣m2)(mod q2),

←−−−→
Cipher2

∣∣∣m = (
←→
K publicB

∣∣∣m ~ H (
←→
σ−M

∣∣∣∣m2 ⊕ ←→R− ∣∣∣∣m2)+ ←→σ−M ∣∣∣∣m2 ⊕ ←→R− ∣∣∣∣m2)(mod q2),

←−−−→
Cipher3

∣∣∣m = (
←→
K publicB

∣∣∣m ~ H (
←→
σ±M

∣∣∣∣m2 ⊕ ←→R± ∣∣∣∣m2)+ ←→σ±M ∣∣∣∣m2 ⊕ ←→R± ∣∣∣∣m2)(mod q2).

(159)

8 Return

←−−→
Cipher

∣∣∣4m = ←−−−→Cipher0
∣∣∣m ⊕ ←−−−→Cipher1

∣∣∣m ⊕ ←−−−→Cipher2
∣∣∣m ⊕ ←−−−→Cipher3

∣∣∣m . (160)

109284 VOLUME 9, 2021

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

Algorithm 11 (O2MD2-III) Decryption. An entity B decrypts a message submitted by an entity A

input : Ciphertext
←→
C
∣∣∣4m, session

S = (m, b̃, r,H , H̃ , k̃, s̃), receiver’s public key
KpublicB = (

←→
K publicB

∣∣∣m , q2), receiver’s private key
KprivateB = (←→g

∣∣m , q1, α̃), and sender’s public

signature key KσA = (
←→
Kσ+A

∣∣∣m2 ,←→Kσ−A ∣∣∣m2 ,←→KσA ∣∣∣m2).
output: Message

←→
M ′
∣∣∣m2 .

1 Define
←→
C0

∣∣∣m, ←→C+0 ∣∣∣∣m, ←→C−0 ∣∣∣∣m and
←→
C±0

∣∣∣∣m as

←→
C0

∣∣∣m = ←→C ∣∣∣4m
[1,m]
;
←→
C+0

∣∣∣∣m = ←→C ∣∣∣4m
[m+1,2m]

,

←→
C−0

∣∣∣∣m = ←→C ∣∣∣4m
[2m+1,3m]

;
←→
C±0

∣∣∣∣m = ←→C ∣∣∣4m
[3m+1,4m]

.

(161)

2 Calculate
←→
M0

∣∣∣m, ←→M+0 ∣∣∣∣m, ←→M−0 ∣∣∣∣m and
←→
M±0

∣∣∣∣m as

←→
M0

∣∣∣m = [(
←→
C0

∣∣∣m ~ ←→g ∣∣m)(mod q2)](mod q1),

←→
M+0

∣∣∣∣m = [(
←→
C+0

∣∣∣∣m ~ ←→g ∣∣m)(mod q2)](mod q1),

←→
M−0

∣∣∣∣m = [(
←→
C−0

∣∣∣∣m ~ ←→g ∣∣m)(mod q2)](mod q1),

←→
M±0

∣∣∣∣m = [(
←→
C±0

∣∣∣∣m ~ ←→g ∣∣m)(mod q2)](mod q1).

(162)

3 Calculate
←→
M1

∣∣∣m, ←→M+1 ∣∣∣∣m, ←→M−1 ∣∣∣∣m and
←→
M±1

∣∣∣∣m as

←→
M1

∣∣∣m = ←→M0

∣∣∣m ~ ←→G q1

∣∣∣m (mod q1),

←→
M+1

∣∣∣∣m = ←→M+0 ∣∣∣∣m ~ ←→G q1

∣∣∣m (mod q1),

←→
M−1

∣∣∣∣m = ←→M−0 ∣∣∣∣m ~ ←→G q1

∣∣∣m (mod q1),

←→
M±1

∣∣∣∣m = ←→M±0 ∣∣∣∣m ~ ←→G q1

∣∣∣m (mod q1). (163)

4 Calculate
←→
HM1

∣∣∣m, ←−→HM+1 ∣∣∣m, ←−→HM−1 ∣∣∣m and
←−→
HM±1

∣∣∣m as

←→
HM1

∣∣∣m = H (
←→
M1

∣∣∣m); ←−→HM+1 ∣∣∣m = H (
←→
M+1

∣∣∣∣m),
←−→
HM−1

∣∣∣m = H (
←→
M−1

∣∣∣∣m); ←−→HM±1 ∣∣∣m = H (
←→
M±1

∣∣∣∣m). (164)

5 Define
←→
M ′
∣∣∣m2 , ←→M+2 ∣∣∣∣m2 , ←→M−2 ∣∣∣∣m2 and

←→
M±2

∣∣∣∣m2 as

←→
M ′
∣∣∣m2 = ←→M1

∣∣∣m
[1,m2]
;
←→
M+2

∣∣∣∣m2 = ←→M+1 ∣∣∣∣m
[1,m2]

,

←→
M−2

∣∣∣∣m2 = ←→M−1 ∣∣∣∣m
[1,m2]
;
←→
M±2

∣∣∣∣m2 = ←→M±1 ∣∣∣∣m
[1,m2]

. (165)

6 Define ←→σ0
∣∣m2 as

←→σ0
∣∣m2 = ←→M1

∣∣∣m
[m2 +1,m]

(166)

7 Calculate
←→
C ′
∣∣∣m, ←→C+1 ∣∣∣∣m, ←→C−1 ∣∣∣∣m and

←→
C±1

∣∣∣∣m as

←→
C ′
∣∣∣m = (

←→
K publicB

∣∣∣m ~ ←→HM1

∣∣∣m + ←→M1

∣∣∣m)(mod q2),

←→
C+1

∣∣∣∣m = (
←→
K publicB

∣∣∣m ~ ←−→HM+1 ∣∣∣m + ←→M+1
∣∣∣∣m)(mod q2),

←→
C−1

∣∣∣∣m = (
←→
K publicB

∣∣∣m ~ ←−→HM−1 ∣∣∣m + ←→M−1
∣∣∣∣m)(mod q2),

←→
C±1

∣∣∣∣m = (
←→
K publicB

∣∣∣m ~ ←−→HM±1 ∣∣∣m + ←→M±1
∣∣∣∣m)(mod q2).

(167)

8 if
←→
C ′
∣∣∣m 6= ←→C0

∣∣∣m Or ←→C+1 ∣∣∣∣m 6= ←→C+0 ∣∣∣∣m Or ←→C−1 ∣∣∣∣m 6= ←→C−0 ∣∣∣∣m
Or
←→
C±1

∣∣∣∣m 6= ←→C±0 ∣∣∣∣m Or ←→M1

∣∣∣m (i) ≥ r Or
←→
M+1

∣∣∣∣m (i) ≥ r Or

←→
M−1

∣∣∣∣m (i) ≥ r Or
←→
M±1

∣∣∣∣m (i) ≥ r, for some

i = 1, . . . ,m then
9 Return Invalid ciphertext received.
10 end

11 Calculate
←→
σ ′
∣∣∣m2 as

←→
σ ′
∣∣∣m2 = ←→Kσ+A ∣∣∣m2 ~ ←→M+2

∣∣∣∣m2 + ←→Kσ−A ∣∣∣m2 ~ ←→M−2
∣∣∣∣m2

+
←→
M±2

∣∣∣∣m2 − ←→KσA ∣∣∣m2 ~ H̃ (
←→
M1

∣∣∣m) (168)

12 if
←→
σ ′
∣∣∣m2 == ←→σ0 ∣∣m2 then

13 Return
←→
M ′
∣∣∣m2 .

14 else
15 ReturnMessage Authenticity failed.
16 end

VOLUME 9, 2021 109285

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

D. DECRYPTION
For the ciphertext in (132), we have that

(
←−−→
Cipher

∣∣∣5 ~ ←→f ∣∣∣5)(mod 18072001)

= [4741098, 5305912, 5220083, 4408431, 6184511],

(138)

then
←→
M0

∣∣∣5 = [4741098, 5305912, 5220083, 4408431,

6184511](mod 251)

= [210, 23, 36, 118, 122] . (139)

For the other ciphertexts
←−−−→
Cipher1

∣∣∣5, ←−−−→Cipher∗
∣∣∣5, and

←−−−→
Cipher∗1

∣∣∣5 in (135) and (137), we have

(
←−−−→
Cipher1

∣∣∣5 ~ ←→f 3

∣∣∣5)(mod 18072001)

= [3041577, 2642300, 3569758, 1907467, 3871797],

(140)

(
←−−−→
Cipher∗

∣∣∣5 ~ ←→f 3

∣∣∣5)(mod 18072001)

= [4450691, 4541115, 4066487, 3590422, 3912710],

(141)

(
←−−−→
Cipher∗1

∣∣∣5 ~ ←→f 3

∣∣∣5)(mod 18072001)

= [3217277, 3669141, 3982904, 4102462, 3585155],

(142)

getting

←→
M01

∣∣∣5 = [3041577, 2642300, 3569758, 1907467,

3871797](mod 251)

= [210, 23, 36, 118, 122], (143)
←→
M∗0

∣∣∣5 = [4450691, 4541115, 4066487, 3590422,

3912710](mod 251)

= [210, 23, 36, 118, 122], (144)
←→
M∗01

∣∣∣5 = [3217277, 3669141, 3982904, 4102462,

3585155](mod 251)

= [210, 23, 36, 118, 122], (145)

so we have
←→
M0

∣∣∣5 = ←→M01

∣∣∣5 = ←→M∗0 ∣∣∣5 = ←→M∗01 ∣∣∣5
= [210, 23, 36, 118, 122] , (146)

hence the decryption’s final step is

←→
M1

∣∣∣5 = ←→M0

∣∣∣5 ~ ←→F 251

∣∣∣5 (mod 251)

≡ [210, 23, 36, 118, 122]

~ [92, 223, 74, 164, 128] (mod 251)

≡ [72, 101, 108, 108, 111]

= Hello. (147)

ACKNOWLEDGMENT
Shih-Lien Lu was with Taiwan Semiconductor Manufactur-
ing Company (TSMC), Hsinchu 30075, Taiwan.

REFERENCES
[1] P. W. Shor, ‘‘Algorithms for quantum computation: Discrete logarithms

and factoring,’’ in Proc. 35th Annu. Symp. Found. Comput. Sci., 1994,
pp. 124–134.

[2] S. Beauregard, ‘‘Circuit for Shor’s algorithm using 2n+3 qubits,’’ 2002,
arXiv:quant-ph/0205095. [Online]. Available: https://arxiv.org/abs/quant-
ph/0205095

[3] L. K. Grover, ‘‘A fast quantum mechanical algorithm for database
search,’’ in Proc. 28th Annu. ACM Symp. Theory Comput. (STOC), 1996,
pp. 212–219.

[4] M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt, ‘‘Applying
Grover’s algorithm to AES: Quantum resource estimates,’’ in Proc. Int.
Workshop Post-Quantum Cryptogr. Cham, Switzerland: Springer, 2016,
pp. 29–43.

[5] M. Ajtai, ‘‘Generating hard instances of lattice problems,’’ in Proc. 28th
Annu. ACM Symp. Theory Comput., 1996, pp. 99–108.

[6] M. Ajtai and C. Dwork, ‘‘A public-key cryptosystem with worst-
case/average-case equivalence,’’ in Proc. 29th Annu. ACM Symp. Theory
Comput. (STOC), 1997, pp. 284–293.

[7] J. Buchmann and J. Ding, ‘‘Post-quantum cryptography,’’ in Proc. 2nd Int.
Workshop PQCrypto, 2008, pp. 17–19.

[8] O. Regev, ‘‘On lattices, learning with errors, random linear codes, and
cryptography,’’ J. ACM, vol. 56, no. 6, pp. 1–40, 2009.

[9] D. J. Bernstein, ‘‘Comparing proofs of security for lattice-based encryp-
tion,’’ Target, vol. 1, p. 2, Oct. 2019.

[10] J. Hoffstein, D. Lieman, J. Pipher, and J. H. Silverman, NTRU: A Public
Key Cryptosystem. Burlington, MA, USA: NTRU Cryptosystems, 1999.

[11] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal,
‘‘NTRU Prime: Reducing attack surface at low cost,’’ in Proc. Int. Conf.
Sel. Areas Cryptogr. Cham, Switzerland: Springer, 2017, pp. 235–260.

[12] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko,
A. Raghunathan, and D. Stebila, ‘‘Frodo: Take off the ring! Practical,
quantum-secure key exchange from LWE,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2016, pp. 1006–1018.

[13] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehle, ‘‘CRYSTALS-Kyber: A CCA-secure
module-lattice-based KEM,’’ in Proc. IEEE Eur. Symp. Secur. Privacy
(EuroS&P), Apr. 2018, pp. 353–367.

[14] M. Hamburg, ‘‘Post-quantum cryptography proposal: Threebears,’’ NIST,
Gaithersburg, MD, USA, Tech. Rep. 2019/0625, 2019.

[15] C. Paar and J. Pelzl,Understanding Cryptography: A Textbook for Students
and Practitioners. New York, NY, USA: Springer, 2009.

[16] S. Chatterjee and P. Sarkar, Identity-Based Encryption. New York, NY,
USA: Springer, 2011.

[17] R. N. Pontaza Rodas and Y.-D. Lin, ‘‘Post-quantum asymmetric key cryp-
tosystem with one-to-many distributed key management based on prime
modulo double encapsulation,’’ U.S. Patent 16 448 445, Apr. 2, 2020.

[18] NIST. (2021). Post-Quantum Cryptography Standardization. [Online].
Available: https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-
Quantum-Cryptography-Standardization

[19] NIST. (2021). Round 2 Submissions. [Online]. Available: https://csrc.nist.
gov/Projects/post-quantum-cryptography/round-2-submissions

[20] Virtual Applications. (2021). eBACS: ECRYPT Benchmarking of Crypto-
graphic Systems. [Online]. Available: https://bench.cr.yp.to/supercop.html

[21] Virtual Applications. (2021). VAMPIRE—Virtual Applications and
Implementations Research Lab. [Online]. Available: http://hyperelliptic.
org/ECRYPTII/vampire/

[22] Liboqs. Accessed: May 2020. [Online]. Available: https://github.com/
open-quantum-safe/liboqs

[23] X. Lu, Y. Liu, D. Jia, H. Xue, J. He, Z. Zhang, Z. Liu, H. Yang, B. Li, and
K. Wang, ‘‘LAC: Lattice-based Cryptosystems,’’ NIST PQC Round, vol. 2,
p. 4, Oct. 2019.

[24] E. Alkim, R. Avanzi, J. Bos, L. Ducas, A. de la Piedra, T. Pöppelmann,
P. Schwabe, and D. Stebila, ‘‘NewHope: Algorithm specifications and
supporting documentation,’’ NIST, Gaithersburg, MD, USA, Tech. Rep.
1.02, Mar. 2019.

109286 VOLUME 9, 2021

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

[25] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, ‘‘CRYSTALS-
Kyber algorithm specifications and supporting documentation,’’ NIST
Post-Quantum Project, vol. 9, p. 11, Apr. 2017.

[26] E. Alkim, ‘‘FrodoKEM learning with errors key encapsulation,’’ NIST,
Gaithersburg, MD, USA, Tech. Rep. 2017/1130, Nov. 2017.

[27] J. Howe, T. Oder, M. Krausz, and T. Güneysu. (Oct. 25, 2018).
Standard Lattice Based Key Encapsulation on Embedded Devices.
Accessed: May 2020. [Online]. Available: https://www.youtube.com/
watch?v=zAfPwuBKixk

[28] (2019). Round 2 Official Comment: Frodo. [Online]. Available:
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/round-2/official-comments/FrodoKEM-round2-official-
comment.pdf

[29] J. Howe, T. Oder, M. Krausz, and T. Güneysu, ‘‘Standard lattice-based key
encapsulation on embedded devices,’’ in Proc. IACR Trans. Cryptograph.
Hardw. Embedded Syst., Aug. 2018, pp. 372–393.

[30] (Jul. 2019). OFFICIAL COMMENT: Three Bears. Accessed: May 2020.
[Online]. Available: https://csrc.nist.gov/CSRC/media/Projects/Post-
Quantum-Cryptography/documents/round-2/official-comments/Three-
Bears-round2-official-comment.pdf

[31] C. Chen, O. Danba, J. Hoffstein, A. Hülsing, J. Rijneveld, J. M. Schanck,
P. Schwabe, W. Whyte, and Z. Zhang, ‘‘NTRU algorithm specifications
and supporting documentation,’’ in Proc. 2nd PQC Standardization Conf.,
2019, pp. 1–5.

[32] D. J. Bernstein, T. Lange, and C. van Vredendaal. (2019). NTRU
Prime: Round 2 20190330. [Online]. Available: http://ntruprime.cr.yp.
to/nist/ntruprime-20190330.pdf

[33] (2019). Round 2 Official Comment: Ntruencrypt & NTRU. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/post-quantum-
cryptography/documents/round-2/official-comments/NTRU-round2-
official-comment.pdf

[34] North Cryptosystem. (2019). NIST NewHope Round 2 Official Comments.
[Online]. Available: https://csrc.nist.gov/CSRC/media/Projects/post-
quantum-cryptography/documents/round-2/official-comments/NewHope-
round2-official-comment.pdf

[35] Lattice-Based Cryptosystems. (2019). NIST LAC Round 2 Official Com-
ments. [Online]. Available: https://csrc.nist.gov/CSRC/media/Projects/
post-quantum-cryptography/documents/round-2/official-comments/LAC-
round2-official-comment.pdf

[36] H. Nejatollahi, N. Dutt, S. Ray, F. Regazzoni, I. Banerjee, and
R. Cammarota, ‘‘Post-quantum lattice-based cryptography implementa-
tions: A survey,’’ ACM Comput. Surv., vol. 51, no. 6, pp. 1–41, Feb. 2019.

[37] V. Lyubashevsky, C. Peikert, and O. Regev, ‘‘On ideal lattices and learning
with errors over rings,’’ in Proc. Annu. Int. Conf. Theory Appl. Crypto-
graph. Techn. Berlin, Germany: Springer, 2010, pp. 1–23.

[38] D. J. Bernstein, S. Jeffery, T. Lange, and A. Meurer, ‘‘Quantum algorithms
for the subset-sum problem,’’ in Proc. Int. Workshop Post-Quantum Cryp-
togr. Berlin, Germany: Springer, 2013, pp. 16–33.

[39] L. E. Bassham, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid,
S. D. Leigh, M. Levenson, M. Vangel, N. A. Heckert, and D. L. Banks,
‘‘A statistical test suite for random and pseudorandom number generators
for cryptographic applications,’’ NIST, Gaithersburg, MD, USA,
Tech. Rep. NIST Special Publication 800-22, 2010. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
22r1a.pdf

[40] NIST. (2020). Guide to the Statistical Tests. [Online]. Available:
https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-
and-Software/Guide-to-the-Statistical-Tests.

[41] NIST. (2020). NIST SP 800-22: Download Documentation and
Software. [Online]. Available: https://csrc.nist.gov/Projects/Random-
Bit-Generation/Documentation-and-Software.

[42] NIST. (2021). Security (Evaluation Criteria). [Online]. Available:
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization/evaluation-criteria/security-(evaluation-
criteria).

[43] Arduino. (2021). Data Type: Unsigned Long. [Online]. Available:
https://www.arduino.cc/reference/en/language/variables/data-types/
unsignedlong/

[44] R. Pontaza, Y.-D. Lin, S.-L. Lu, and K.-J. Chang. (Jul. 2020). O2MD2—
Official Software Repository. Accessed: Jul. 2020. [Online]. Available:
https://github.com/pontazaricardonctu/o2md2

[45] A. Langlois and D. Stehlé, ‘‘Worst-case to average-case reductions for
module lattices,’’ Des., Codes Cryptogr., vol. 75, no. 3, pp. 565–599,
Jun. 2015.

[46] J. Hoffstein, J. Pipher, J. H. Silverman, and J. H. Silverman, An Introduc-
tion to Mathematical Cryptography, vol. 1. NewYork, NY, USA: Springer,
2008.

[47] C. Peikert, ‘‘A decade of lattice cryptography,’’ Found. Trends Theor.
Comput. Sci., vol. 10, no. 4, pp. 283–424, 2016.

[48] GCC. Double-Word Integers. Accessed: May 2020. [Online]. Available:
https://gcc.gnu.org/onlinedocs/gcc/Long-Long.html

[49] (2019). ROUND 2 OFFICIAL COMMENT: NTRU Prime. [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/post-quantum-
cryptography/documents/round-2/official-comments/NTRU-Prime-
round2-official-comment.pdf.

[50] A. Nitaj, TheMathematics of the NTRUPublic Key Cryptosystem. Hershey,
PA, USA: IGI Global, 2015.

[51] T. Kleinjung, ‘‘Factorization of a 768-bit RSA modulus (version 1.4),’’
Lect. Notes Comput. Sci., vol. 6223, p. 20, Oct. 2010.

[52] D. J. Bernstein, ‘‘Introduction to post-quantum cryptography,’’ in Post-
Quantum Cryptography. Berlin, Germany: Springer, 2009, pp. 1–14.

[53] D. A. Patterson and J. L. Hennessy, Computer Organization and Design
MIPS Edition: The Hardware/Software Interface. San Francisco, CA,
USA: Morgan Kaufmann, 2013.

[54] D. V. Bailey, D. Coffin, A. Elbirt, J. H. Silverman, and A. D. Woodbury,
‘‘NTRU in constrained devices,’’ in Proc. Int. Workshop Cryptograph.
Hardw. Embedded Syst. Berlin, Germany: Springer, 2001, pp. 262–272.

[55] J. H. Silverman, The Arithmetic of Elliptic Curves, vol. 106. New York,
NY, USA: Springer, 2009.

[56] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves,
vol. 151. New York, NY, USA: Springer, 2013.

[57] J. Buchmann, Introduction to Cryptography. New York, NY, USA:
Springer, 2013.

[58] A. Engel, Problem-Solving Strategies. New York, NY, USA:
Springer-Verlag, 1976.

[59] R. De Prisco and M. Yung, Security and Cryptography for Networks. New
York, NY, USA: Springer, 2006.

[60] E. Hlawka, J. Schoissengeier, and R. Taschner, Geometric and Analytic
Number Theory. New York, NY, USA: Springer, 2012.

[61] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the
Theory of Numbers. Hoboken, NJ, USA: Wiley, 2013.

[62] M. Sipser, Introduction to the Theory of Computation, vol. 2. Boston, MA,
USA: Thomson Course Technology, 2006.

[63] C. H. Papadimitriou, Computational Complexity. Hoboken, NJ, USA:
Wiley, 2003.

[64] H. Cohen, ACourse in Computational Algebraic Number Theory, vol. 138.
Berlin, Germany: Springer, 2013.

[65] T. M. Apostol, ‘‘Some properties of completely multiplicative arithmetical
functions,’’ Amer. Math. Monthly, vol. 78, no. 3, pp. 266–271, Mar. 1971.

[66] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. Boca Raton, FL, USA: CRC Press, 1996.

[67] J. G. Merchan, ‘‘Arithmetic architectures for finite fields GF
(pm) with cryptographic applications,’’ Ph.D. dissertation, Dept.
Elect. Eng. Inf. Technol., Ruhr-Univ. Bochum, Berlin, Germany,
2004. [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.129.7051&rep=rep1&type=pdf

[68] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, ‘‘Comparing
elliptic curve cryptography and RSA on 8-bit CPUs,’’ in Proc. Int. Work-
shop Cryptograph. Hardw. Embedded Syst. Berlin, Germany: Springer,
2004, pp. 119–132.

[69] J. Guajardo, T. Güneysu, S. S. Kumar, C. Paar, and J. Pelzl, ‘‘Efficient hard-
ware implementation of finite fields with applications to cryptography,’’
Acta Appl. Math., vol. 93, nos. 1–3, pp. 75–118, 2006.

[70] R. N. Pontaza Rodas, Y.-D. Lin, S.-L. Lu, and K.-J. Chang. (2021).
O2MD2: A New Post-Quantum Cryptosystem With One-to-Many Dis-
tributed Key Management Based on Prime Modulo Double Encapsula-
tion (Additional examples). [Online]. Available: https://drive.google.com/
drive/folders/1HYXsBSPjREaSXZWUgxedy7iHVUsEHJ96

[71] G. J. Simmons, ‘‘Symmetric and asymmetric encryption,’’ ACM Comput.
Surv., vol. 11, no. 4, pp. 305–330, 1979.

[72] R. M. Gray, ‘‘Toeplitz and circulant matrices: A review,’’ Found. Trends
Commun. Inf. Theory, vol. 2, no. 3, pp. 155–239, 2006.

[73] R. L. Rivest, A. Shamir, and L. Adleman, ‘‘A method for obtaining digital
signatures and public-key cryptosystems,’’ Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

VOLUME 9, 2021 109287

R. N. Pontaza Rodas et al.: O2MD2: New Post-Quantum Cryptosystem With One-to-Many Distributed Key Management

[74] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, ‘‘Physical one-way
functions,’’ Science, vol. 297, no. 5589, pp. 2026–2030, Sep. 2002.

[75] R. Maes and I. Verbauwhede, ‘‘Physically unclonable functions: A study
on the state of the art and future research directions,’’ in Towards
Hardware-Intrinsic Security. Berlin, Germany: Springer, 2010, pp. 3–37.

[76] M. Potkonjak and V. Goudar, ‘‘Public physical unclonable functions,’’
Proc. IEEE, vol. 102, no. 8, pp. 1142–1156, Aug. 2014. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/6856138

[77] J. Hoffstein, J. Pipher, and J. H. Silverman, ‘‘NTRU: A ring-based public
key cryptosystem,’’ in Proc. Int. Algorithmic Number Theory Symp.Berlin,
Germany: Springer, 1998, pp. 267–288.

[78] A. Chopra, ‘‘GLYPH: A new insantiation of the GLP digital signature
scheme,’’ IACR Cryptol. ePrint Arch., vol. 2017, p. 766, 2017. [Online].
Available: https://eprint.iacr.org/2017/766.pdf

[79] J. A. Buchmann, D. Butin, F. Göpfert, and A. Petzoldt, ‘‘Post-quantum
cryptography: State of the art,’’ in The New Codebreakers. Berlin, Ger-
many: Springer, 2016, pp. 88–108.

[80] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, ‘‘Post-quantum
key exchange—A new hope,’’ in Proc. USENIX Secur. Symp., 2016,
pp. 327–343.

[81] D. Coppersmith and A. Shamir, ‘‘Lattice attacks on NTRU,’’ in Proc. Int.
Conf. Theory Appl. Cryptograph. Techn. Berlin, Germany: Springer, 1997
pp. 52–61.

[82] N. Howgrave-Graham, ‘‘A hybrid lattice-reduction andmeet-in-the-middle
attack against NTRU,’’ in Proc. Annu. Int. Cryptol. Conf.Berlin, Germany:
Springer, 2007, pp. 150–169.

[83] N. Howgrave-Graham, P. Q. Nguyen, D. Pointcheval, J. Proos,
J. H. Silverman, A. Singer, and W. Whyte, ‘‘The impact of decryption
failures on the security of NTRU encryption,’’ in Proc. Annu. Int. Cryptol.
Conf. Berlin, Germany: Springer, 2003, pp. 226–246.

RICARDO NEFTALI PONTAZA RODAS received
the master’s degree in applied mathematics from
National Taiwan University, where he is currently
pursuing the Ph.D. degree in computer science.
He is also pursuing the Ph.D. degree in electrical
engineering with National Chiao Tung University.
He is also a former international mathematical
competitor and a former stock exchange broker,
have experience with algebra, number theory, and
cryptography.

YING-DAR LIN (Fellow, IEEE) received the
Ph.D. degree in computer science from the Univer-
sity of California at Los Angeles (UCLA), in 1993.
He was a Visiting Scholar at Cisco Systems, San
Jose, from 2007 to 2008, the CEO at Telecom
Technology Center, Taiwan, from 2010 to 2011,
and the Vice President of the National Applied
Research Labs (NARLabs), Taiwan, from 2017 to
2018. He co-founded L7 Networks Inc., in 2002,
later acquired by D-Link Corporation. He also

founded and directed Network Benchmarking Lab (NBL), in 2002, which
reviewed network products with real traffic and automated tools, also an
approved test lab of the Open Networking Foundation (ONF), and spun off
O’Prueba Technology Inc., in 2018. He is currently a Chair Professor of

computer science with National Chiao Tung University (NCTU), Taiwan.
His research interests include machine learning for cybersecurity, wireless
communications, network softwarization, and mobile edge computing. His
work on multi-hop cellular was the first along this line, and has been
cited over 1000 times and standardized into IEEE 802.11s, IEEE 802.15.5,
IEEE 802.16j, and 3GPP LTE-Advanced. He published a textbook Com-
puter Networks: An Open Source Approach (McGraw-Hill, 2011), with
Ren-Hung Hwang and Fred Baker. He is a Distinguished Lecturer of IEEE
(2014–2017), an ONF Research Associate (2014–2018), and received the
K. T. Li Breakthrough Award, in 2017, and the Research Excellence Award,
in 2017 and 2020. He has served or is serving on the editorial boards
for several IEEE journals and magazines, including the Editor-in-Chief of
IEEE COMMUNICATIONS SURVEYS & TUTORIALS (COMST) with impact factor
increased from 9.22 to 23.7 during his term in 2017–2020.

SHIH-LIEN (LINUS) LU received the B.S. degree
in electrical engineering and computer science
from UC Berkeley and the M.S. and Ph.D. degrees
in computer science and engineering fromUCLA.

He is currently the Chief Solutions Officer at
PieceMakers Technology. He was the Director of
TSMC Research and Development, from 2016 to
2021. From 1999 to 2016, he was with Intel Cor-
poration, Hillsboro, OR, USA, where he was a
Research Scientist and the Research Group Man-

ager. And later, he was also the Director of the Memory Architecture Lab,
Intel Labs. He served on the faculty for the ECE Department, Oregon
State University, as an Assistant Professor, from 1991 to 1995, and as
a tenured Associate Professor, until 2001 (on leave the last two years).
From 1984 to 1991, he worked on the MOSIS project at USC/ISI, which
provides U.S. research and education community VLSI fabrication services.
He has published more than 100 articles and authored or coauthored more
than 150 U.S. patents. His research interests include computer architecture,
memory system and circuits, low power VLSI design, and hardware security.

KEH-JENG CHANG received the B.S. and M.S.
degrees in electrical engineering from National
Taiwan University, Taipei, Taiwan, and the Ph.D.
degree in computer science from the Univer-
sity of California at Los Angeles, USA. After
receiving his degree from UCLA, he spent more
than 14 years conducting VLSI electronic design
automation (EDA) researches in the Silicon Val-
ley in Northern California for two companies
consecutively, i.e., Hewlett-Packard Company and

Sequence Design Inc. Then, he returned to his home country and continued
his VLSI EDA researches at National Tsing Hua University and Taiwan
Semiconductor Manufacturing Company (TSMC), Hsinchu, Taiwan. He has
published scores of journal articles and conference papers and has been
awarded more than 15 patents, in USA and Asia, on methods and systems
targeting yield improvement for 3-D nanometer devices and 3-D electronic
packaging.

109288 VOLUME 9, 2021

