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ABSTRACT The increasing demand for higher data rates motivates the exploration of advanced techniques
for future wireless networks. To this end, massive multiple-input multiple-output (mMIMO) is envisioned
as the most essential technique to meet this demand. However, the expansion of the number of antennas
in mMIMO systems with short coherence time makes the downlink channel estimation (DCE) overhead
potentially overwhelming. As such, the number of training sequence (TS) needs to be significantly reduced.
However, reducing the number of TS reduces the mean-squared error (MSE) accuracy significantly and
to date it is not clear to what extend can this TS reduction affects the achievable sum rate performance.
Therefore, this paper develops a low complexity and tractable TS solution for DCE and establishes an
analytical framework for the optimum TS. Furthermore, the tradeoff between the achievable sum rate
maximization criteria and the MSE minimization criteria is investigated. This investigation is essential to
characterize the optimum TS length and the actual performance of mMIMO systems when the channel
exhibits a limited coherence time. To this end, the statistical structure of mMIMO channels is exploited.
In addition, this paper utilizes a randommatrix theory (RMT)method to characterize the downlink achievable
sum rate and MSE in a closed-form. This paper shows that maximizing the downlink sum rate criterion is
more important thanminimizing theMSE of the SINR only, which is typically considered in the conventional
MIMO systems and/or in the time division duplex (TDD) mMIMO systems. The results demonstrate that
a feasible downlink achievable sum rate can be achieved in an frequency division duplex (FDD) mMIMO
system. This finding is necessary to extend the benefit of mMIMO systems to high frequency bands such as
millimeter-wave (mmWave) and Terahertz (THZ) communications.

INDEX TERMS Massive MIMO transmission, downlink channel estimation, achievable sum rate maxi-
mization, frequency division duplex operation mode, second order channel statistics, random matrix theory,
mean square error minimization.

I. INTRODUCTION
Future wireless networks aim to maximize the data-rate to
support the rapidly increasing demands for data traffic and
meet the envision needs of the Internet of Things (IoT)
and artificial intelligence (AI) applications [1], [2]. Massive
multiple-input-multiple-output (mMIMO) communication
system is introduced as a key fundamental technology to
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approving it for publication was Parul Garg.

address the challenge of data traffic explosion [3], [4].
In mMIMO systems, hundreds of antennas that are grouped
together at the base station (BS) are used to serve several users
simultaneously over the same-time-and-frequency [5]–[8].
In particular, mMIMO systems have the ability to increase
the degrees of freedom in the propagation channel, focus
the energy into spatial directions and improve both data rate
and communication reliability [3], [9], [10]. Furthermore,
mMIMO systems can also allow the use of low complexity
combining and precoding techniques [11]–[13].
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However, unlike the conventional MIMO systems, which
use a small number of BS antennas N , in mMIMO systems,
the training sequence (TS) that required for downlink channel
estimation (DCE) is potentially overwhelming [14]. In par-
ticular, the limited coherence time is to date considered as
one of the major technical challenges in mMIMO systems,
affecting the length of TS needed for accurate DCE [9], [14].
Therefore, obtaining a feasible solution for DCE based on
downlink (DL) TS design with limited TS length is essential
with limited coherence time. To this end, the vast majority
of research studies on mMIMO systems have focused on
the time division duplex (TDD) operation mode. In TDD
based systems, the uplink (UL) andDL baseband channels are
assumed to be reciprocal. This reciprocity assumption allows
the UL channel estimation to be used at the BS in the DL
precoder design. However, regardless of the optimistic results
of channel estimation in TDD transmission mode, most of the
currently deployed cellular systems use frequency division
duplex (FDD) operation. In addition, an idealistic assumption
of UL and DL channels reciprocity is considered in TDD sys-
tems. In practice, however, the transceiver hardware impair-
ments and calibration error can be considered as a major
restrictionwith TDDmode of operation [15]–[18]. Therefore,
there is an essential commercial interest in enabling FDD
operation mode, thus making mMIMO systems compatible
with the currently deployed cellular networks [19], [20].

As such, this paper focuses on FDD operation mode where
the DL channel is estimated using a dedicated DL TS. In FDD
based systems, estimation of the DL channels using a UL
TS, as considered in TDD systems, is not possible. Instead,
to complete the precoder design, the DL channels of each of
the N BS antennas would need to be estimated by the users
using DL TS. This is considered unfeasible for large N since
the available coherence time would be used or DCE only,
leaving no time for sending useful information to the users.
Previous research has demonstrated that DL TS length needs
to be scaled linearly withN [9], [14], [21]. This finding arises
mainly from the earlier point-to-point MIMO studies [22],
where the channel is assumed to be uncorrelated and the DL
TS is designed by considering the criteria of mean-squared-
error (MSE) minimization of the DCE. Application of this
design principle to FDD based mMIMO, indeed leads to DL
TS lengths of N , or close to N . This supports the above
conclusion that DL TS is unfeasible in mMIMO systems with
large N , thereby rendering it unsuitable for FDD operation.
To this end, several different studies have investigated the
DCE performances using DL TS designs, see e.g., [23]–[30].
The aforementioned research works have found that a consid-
erable enhancement in the DCE can be obtained by exploiting
the Bayesian filter [31], i.e., making use of the minimum-
mean-square-error (MMSE) estimator. The authors in [32],
[33] have investigated the FDD operation in mMIMO sys-
tems using a two-stages precoding approach. In these works,
the channel dimensions are reduced using the two-stages
approach, which separates the users into groups based on their
correlation similarities. The DCE in FDD mMIMO system

has also been investigated in [34]–[36]. In these works, spa-
tial and temporal correlations along with Kalman-filter (KF)
have been investigated to minimize the MSE of the DCE.
Another line of research works have investigated the mini-
mization of the DCE by using compressed sensing (CS) based
approaches [19], [37]–[39]. Other research directions have
investigated the DL TS design for DCE in FDDmMIMO sys-
tems by utilizing the low-rank nature of the channel covari-
ance matrix [40]–[45]. The aforementioned research studies
tries to overcome the aforementioned pessimistic view of the
infeasibility of DCE by reducing the TS length. However, it is
to date not clear to what extent such TS reduction can affect
the DL sum rate of the FDD operation in mMIMO systems
with single-stage precoding and when the coherence time is
short. Specifically, following theMSEminimization criterion
leads to unnecessarily pessimistic predictions on the FDD
performance in mMIMO systems. For example, using fewer
TS length reduces the accuracy of DCE significantly, and
thus, this could lead to reducing the DL achievable sum rate.
Also, increasing the TS length improves the DCE accuracy
but it comes at the expense of reducing the DL achievable
sum rate significantly. Therefore, characterizing the tradeoff
between achievable sum rate maximization and the MSE
minimization in the FDD mMIMO systems with limited
coherence time is crucial. To the best of our knowledge,
this tradeoff, though crucial, has not been investigated in the
literature. As such, this motivates us to investigate the tradeoff
between the achievable sum rate maximization and the MSE
minimization in an FDD mMIMO system using a feasible
TS design.

A. PAPER CONTRIBUTIONS AND FINDINGS
This paper proposes a low complexity and tractable TS solu-
tion for DCE and establishes an analytical framework for
the optimum TS length. Furthermore, the tradeoff between
the achievable sum rate maximization criteria and the MSE
minimization criteria is particularly investigated. This trade-
off is examined under a large number of antenna elements
and a short finite coherence time. In order to design a
feasible TS for DL FDD mMIMO system, the second-
order channel statistic is exploited and an objective func-
tion based on maximizing the achievable sum rate is used
instead of minimizing the MSE of DCE. The proposed TS
design can be considered as a special case of beam-domain
or angular-domain channel estimation [46]–[49]. This is
because the second order channel statistic denoted by the
channel covariance matrix is used in this paper in the design
of DL training sequence. Our proposed design paradigm
leads to feasible DL FDD mMIMO performance where
the TS length can be made much shorter than N , thus
supporting a feasible rate as N increases even though the
coherence time remains limited. In this paper, we explicitly
characterize the optimal TS length required for DL sum
rate maximization with limited coherence time. Since eval-
uating of the system performance and optimizing the rate
using extensive Monte-Carlo simulation are computationally
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demanding, a random matrix theory (RMT) method [12],
[50] is used. This allows the signal-to-interference-plus-noise
ratio (SINR) and the DL achievable sum rate for eigen-
beamforming (BF) and regularized-zero-forcing (RZF) pre-
coding of FDD systems to be expressed in analytical forms.
Thus, a straightforward design methodology can be obtained
without resorting to computationally demanding exhaustive
search. Comparisons between the DL sum rates using BF and
RZF precoding are conducted under different spatial correla-
tion models. In addition, we examine the effect of increasing
the BS antennas N more than the available coherence time.
Comparisons between the achievable sum rate maximization
criteria and the MSE minimization criteria are provided. This
paper shows that improving the MSE of the DCE increases
the DL achievable rate logarithmically, whereas reducing the
time required for channel training as a proportion of DL
transmission time increases the achievable sum rate linearly.
This implies that the loss in the DCE performance by using
shorter TS is minor in comparison to the improvement of
having more data symbols, which maximizes the DL achiev-
able sum rate. The numerical results indicate that by using
the proposed DL achievable sum rate maximization criteria,
a feasible performance of DL sum rate in FDD operation
of mMIMO systems can be obtained. The results also show
that the RZF precoder under correlated channels achieves
a significant gain in the DL sum rate in comparison to the
BF precoder. In addition, the results demonstrate that the
optimum TS length that maximizes the achievable sum rate
can be less than half of the coherence time. This observation
holds even when the channels are relatively uncorrelated.
These findings create a pathway for realizing FDD mMIMO
systems in high frequency bands such as millimeter-wave
(mmWave) and Terahertz (THZ) communications with fully
digital precoding. Finally, the results show that the analytical
solution using RMT method is tightly agreed with the simu-
lation, which underpins the contributions of this paper.

1) PAPER ORGANIZATION
The organization of this paper is presented as follows.
In Section II, we present the system model and characterize
the SINR and the achievable sum rate for the BF and RZF
precoders. In Section III, we introduce theDCE process based
on the DL TS design together with the problem formulations
of MSE minimization and sum rate maximization criterion.
In Section IV, an asymptotic RMT method is exploited to
develop an asymptotic analysis for the DL sum rate of the BF
and RZF precoders. In Section V, analytical and simulation
results for the sum rate and MSE of BF and RZF precoding
are provided in order to characterize the FDD operation in
mMIMO system under different channel correlation models.
Finally, Section VI concludes the paper.

2) NOTATION
This paper uses the boldface symbol to denote a matrix and
a lower boldface symbol to express a vector. The circularly
symmetric complex Gaussian (CSCG) distribution is denoted

by CN (0,G), which implies a zero mean and a covariance
matrix ofG. This paper uses the term E[·] for the expectation
operator. Other mathematical operators such as trace, trans-
pose, Hermitian transpose and inverse are denoted by tr(·),
(·)T, (·)H, and (·)−1, respectively.

II. SYSTEM MODEL
This paper considers a wireless communication system of a
single-cell scenario where the BS is equipped with an array
of N antennas, which communicates in the DL withK single-
antenna uncorrelated users. The single-antenna assumption
of the users allows inexpensive and simple hardware equip-
ment with efficient power usages [51]. The DL transmis-
sion to all users is carried out over the same time-frequency
resources simultaneously. In mMIMO systems, a large N
can be used where the number of users K remains limited,
i.e., N � K , [5]. We consider an FDD transmission mode
in the DL with Rayleigh flat-fading channels and single-
frequency band. In this paper, a block fading structure is con-
sidered where each channel is static over a block of coherence
time of τc ∈ Z+ counted in symbols. We generate random
channel realizations, which are independent of coherence
blocks.

The available energy in each coherence block can be freely
distributed between the training transmission and the data
transmission as typically considered in the currently deployed
mobile networks, i.e., the advanced-long-term-evolution
(A-LTE) [52], [53]. To estimate the DL channel in training-
phase, the BS sends TS of length τp enumerated in symbols
per coherence block. As such, the remaining time duration is
allocated to data so that remaining time for the useful data in
symbols is given as τd = τc− τp. Fig. 1 presents a schematic
diagram of the mMIMO systems with single-stage digital
precoding at BS. This paper concentrates entirely on the
problem of DCE using a feasible TS design. This paper also
focuses on investigating the effect of reducing the TS length
on MSE and DL achievable sum rate. However, investigating
the effect of channel feedback in the UL and reducing its
overhead [54]–[57] or using signal compression schemes as
in [58]–[60] can be addressed in the future. To this end,
the received DL data transmission signal rk at the k-th user is
given as

rk =
√
Pd gHk v+ zk , (1)

where Pd denotes the per-user transmit signal power of use-
ful data at base station during the data-phase. Parameter v
represents the DL transmit vector that contains the precoding
matrix and the transmitting data symbols at the BS, which is
given in (4). Parameter zk denotes the additive noise, which
is modeled as a zero mean unit variance circularly symmetric
complex Gaussian (CSCG) random variable. The term gk ∈
CN denotes theDL channel vector, which is intended between
the transmit BS and the k-th user and can be modeled as

gk = G1/2g̃k , (2)
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FIGURE 1. Schematic of mMIMO architecture with fully digital single stage precoding at BS.

where G = E
[
gkg

H
k

]
∈ CN×N is the channel covariance

matrix, which reflects the spatial correlation and g̃k , k =
1, . . . ,K depict the instantaneous DL channel realizations,
which are modeled as CSCG randomly distributed vectors.
The spatial channel covariance matrix has the eigenvalue
decomposition (EVD) of

G = U3UH, (3)

where matrix U = [u1, . . . ,uN ] ∈ CN×N the eigenvectors
of G and 3 is the eigenvalues of G, which are arranged as
λ1 ≥ λ2 ≥ · · · ≥ λN . The spatial covariance matrix depends
on large-scale statistics, i.e., angles of arrival and departure
or spatial/temporal correlation, which are considered to be
frequency-invariant, and thus, can be efficiently known at
both the user side and the BS side for both FDD or TDD
operation systems [61]. The term v ∈ CN in (1) represents
the DL transmit vector at the BS, which is given as

v =
√
%Fd, (4)

where F = [F1, . . . ,FK ] ∈ CN×K is the precoding matrix
employed by the BS, which depends on the accuracy of the
DCE. The transmitting data symbols are defined as d =
[d1, . . . , dK ]T ∈ CK , which is modeled as a zero mean CSCG
vector and satisfies E

[
ddH

]
= IK . Term % in (4) is the

normalization constant, which is defined as [12]

% =
K

E
[
tr
(
FFH)] , (5)

to ensure that E
[
‖v‖2

]
= K and the power transmitted by the

BS during the DL data transmission as Pd. Following [11],
we assume that the user does not know the exact channel
vector and precoding matrix, but instead estimates their aver-
age effect through

√
%E
[
gHk fk

]
. To this end, the DL received

signal model (1) is decomposed as

rk =
√
Pd%E[gHk fk ]dk +

√
Pd%

(
gHk fk − E[gHk fk ]

)
dk

+
√
Pd%gHk

K∑
i6=k

fidi + zk , (6)

where the first term in (6) refers to the desired information
signal that intended to the k-th user. However, the second term
in (6) denotes the DCE error, which caused by the imperfect
channel knowledge at the k-th user. Finally, the last term in (6)
represents the error caused by the multiuser interference after
precoding. Although the interference and the estimation error
caused by the imperfect DL channel knowledge terms are
neither Gaussian nor independent of the signal of interest,
an ergodic sum rate lower bound is enumerated by consider-
ing that both terms are CSCG and independent of the signal
of interest [11], [22]. Accordingly, a DL achievable sum rate,
denoted as C , for the mMIMO systems is written as

C =
(
τc − τp

τc

) K∑
k=1

log2
(
1+ γk

)
, (7)

where the term γk is the SINR at the k-th user, which can
be written as

γk=
% | E[gHk fk ] |

2

1
Pd
+ %E

[
| gHk fk − E[gHk fk ] |2

]
+ %

∑K
i6=k E

[
| gHk fi |

2
] .
(8)

It should be pointed out that the SINR given in (8) is a
deterministic approximation of the true SINR that gives a
lower bound in (7) but does not directly correspond to a
measurable physical quantity. In particular, the SINR is used
as an auxiliary variable to calculate the ergodic DL sum rate
lower bound defined in (7). In addition, the expectations in (8)
are determined based on different channel realizations, which
are carried out separately by using extensive Monte-Carlo
simulations. This is deemed, in general, as a computationally
demanding process since the SINR and the sum rate require
to be evaluated for different values of N where N � 1.
However, computationally feasible solutions for the SINR
and the sum rate are obtained by using the method of RMT.

The achievable sum rate in (7) relies on the statistics
of channel, which is denoted by the covariance matrix,
the knowledge of the DCE at the BS, and the precoding
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technique. In this paper, two different types of precoding
are considered, BF precoding and RZF precoding, which are
given in (9) [12].

F =

{
F̂H for BF

F̂H
(
F̂F̂H
+ NςIK

)−1 for RZF
(9)

The term F̂ ∈ CK×N is the estimate of the DL channel
matrix. i.e., F̂ = [ĝ1, ĝ2, . . . , ĝK ]H ∈ CK×N , and ς denotes
the regularization coefficient, which is assumed to be 1/Pd,
based on the discussions in [12], but optimizationwith respect
to ς could also be considered in future work. The following
section explains the DCE process based on TS in the FDD
mMIMO systems.

III. DOWNLINK CHANNEL ESTIMATION AND PROBLEMS
FORMULATIONS
As depicted in equations (8) and (9), the achievable sum rate
performance relies on the channel statistics and the acknowl-
edgment of DCE at the BS. Therefore, the following sub-
sections address the DCE using DL TS in an FDD mMIMO
system. It worth pointing out that the DCE is different from
the UL channel estimation, which is considered for idealistic
reciprocal channels, such as TDD systems.

A. DOWNLINK CHANNEL ESTIMATION PROCESS
As explained earlier, in theDL, the BS needs to serve different
users simultaneously. The BS would also need to precode the
data in the DL to a specific user direction. The BS makes
use of the estimated channel to precode the data in the DL.
To this end, to estimate the DL channel in FDD systems,
the BS would need to send predefined TS of length τp in
symbols to multiple users during the training-transmission
phase. The TS length τp is defined as the number of training
slots in the time and frequency resources grid over which
the coherence block remains constant. An orthogonal TS
with uniform power allocation is considered in this paper.
Accordingly, the received training-signal, rk ∈ Cτp , at the
k-th user is given by

rk =
√
PpXH

p gk + zk , (10)

which contains the inner products of the k-th user DL chan-
nel vector and TS plus the receiver noise zk . The receiver
noise is assumed to be randomly distributed CSCG with
CN (0, Iτp ). The TS matrix should satisfy the energy con-
straint i.e., tr

(
XH
p Xp

)
= Ppτp, where Pp is the average

transmitted power during the training transmission phase
and τp is the pilot sequence length or duration. Since the
channel vector gk exhibits a CSCG distribution with known
statistics, the MMSE estimate can be used by exploiting
the conventional linear processing [31]. In particular, user k
exploits the standard MMSE linear filter to carry out channel
estimate g̃k from the observation/received pilot-signal rk , and
the resulting DCE by applying the standard MMSE linear
filter is obtained as

ĝk =
√
PpGXp

(
PpX

H
pGXp + Iτp

)−1rk , (11)

where rk ∈ Cτp is the received training signal as given
in (10). To this end, the channel estimation error vector can
be expressed as

g̃k = gk − ĝk . (12)

By the orthogonality principle, the vectors ĝk and g̃k are
uncorrelated. The MMSE estimator makes use of second
order channel statistic. Let 2 be defined as the covariance
matrix of the MMSE channel estimation and is expressed as
2 = E

{
ĝk ĝ

H
k

}
. To this end, the covariance matrix of the

MMSE channel estimation can be written as

2 =
√
PpGXp

(
PpX

H
pGXp + Iτp

)−1√PpXH
pG. (13)

Given the channel estimation error vector in (12), the error
covariance matrix E ∈ CN×N can be expressed as

E = E
{
g̃k g̃

H
k
}
, (14)

= E
{(
gk − ĝk

)(
gk − ĝk

)H}
. (15)

SubstitutingG = E
{
gkg

H
k

}
and2 = E

{
ĝk ĝ

H
k

}
yields the

error covariance matrix as

E =
(
G−

√
PpGXp

(
PpX

H
pGXp + Iτp

)−1√PpXH
pG
)
, (16)

where the expression in (16) is minimized by maximizing the
right hand side of (16).
Lemma 1: For any positive matrices A, U, C,V, based on

the Woodbury matrix identity property, the following holds:

(A+ UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1.

(17)

Using Lemma 1, the expression of error covariance matrix
in (16) can be reformulated as

E =
(
G−1 + XpX

H
p

)
, (18)

where the training sequence matrix should satisfy the energy
constraint tr

(
XH
p Xp

)
= Ppτp. Accordingly, theMSE ∈ R cost

function with MMSE channel estimate can be expressed as

MSE = tr(E). (19)

The expression in (19) depends on the eigenvalues distri-
bution of

(
G−1 + XpX

H
p

)
. Specifically, the MSE depends

on the energy that corresponds to the diagonal of the error
covariance matrix.

B. FORMULATION OF THE MSE MINIMIZATION PROBLEM
Minimizing theMSE over theDLTSmatrixXp for a given TS
duration τp and training power Pp in the DL FDD mMIMO
systems equates to the optimization problem defined in (20)
under the transmit energy constraint.

minimize
Xp

tr
(
G−1 + XpX

H
p

)
subject to tr

(
XH
p Xp

)
≤ Ppτp (20)
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The MSE function corresponds to a function of the sub-
space that relies on the structure of the channel covariance
matrix G and the TS matrix Xp, which in turn depends on
pilot energy allocated during the training transmission phase,
i.e., the training time and training power. The next subsection
discusses in derails the optimum TS structure for an FDD
mMIMO scenario under consideration.

C. DOWNLINK TRAINING SEQUENCE DESIGN
The expression in (13) characterizes the output of a channel
estimator that minimizes the MSE, which depends on struc-
ture of the channel covariance matrix. This has motivated the
use of statistical structure of the channel covariance matrixG
to optimize the TS design of an FDDmMIMO system. To this
end, the TS matrix Xp ∈ CN×τp is designed by constructing
the first τp eigenvectors ofG, which correspond to the largest
eigenvalues as given in (21) for τp ∈ {1, 2, . . . ,min(N , τc)},
which implies that the TS length based on our approach
should not exceed the coherence time even when the channels
are uncorrelated.

Xp =
[
u1, . . . ,uτp

]
(21)

While the TS design given in (21) implies a uni-
form power allocation across the TS, non-uniform power
allocations across the TS and optimization with respect
to Pp and Pd could be investigated in future. Substitut-
ing (21) into (13) with some straightforward algebra yields
a simplified closed-form for the MMSE channel estimate
as

2 = PpUτp3
2
τp

(
Pp3τp + Iτp

)−1UH
τp
, (22)

where 3τp ∈ Rτp×τp is a diagonal matrix that represents
the eigenvalues of G with λ1 ≥ λ2 ≥ · · · ≥ λτp . To keep
the TS overhead limited, the energy in the channel, which is
related to the eigenvectors uτp+1, . . . ,uN ofG, is not used in
the TS construction, and hence, not used in precoding. The
trace is a linear mathematical operation, which is considered
to be invariant to the unitary rotation, and thus, it allows
tr(ABC) = tr(CAB). Therefore, using the TS design in (22)
and the trace property, a simplified expression for tr(2) can
be straightforwardly obtained as

tr(2) =

τp∑
n=1

λ2n

λn + 1/Pp
, (23)

where the eigenvalues are arranged as λ1 ≥ λ2 ≥ · · · ≥

λτp with τp ≤ N , which represents the largest eigenvalues
of G. Using the EVD of G in (3) and the simplified form
of the tr(2) in (23), with the trace operation property and
straightforward algebra, provides the simplified analytical
solution for the MSE using the MMSE estimation as given in

MSE =

τp∑
t=1

λn

Ppλn + 1
. (24)

The expression in (24) for the MSE is valid for any
channel correlation matrix. The expression in (24) depicts
explicitly the dependence of the MSE performance on the
eigenstructure of the channel correlation matrix, which takes
the advantage of the strong eigendirections to improve the
DCE. Overall, the MSE closed-form solution in (24) is ana-
lytically tractable and, more importantly, is straightforward to
be evaluated. TheMSE expression relies on the TS length and
training power. In particular, theMSE expression in (24) indi-
cates that increasing τp would allow for more training-signal
energy to be received and thus minimizes the MSE of the
DCE. However, in the limited coherence time, increasing
τp would reduce the DL sum rate, which implies a shorter
remaining time for transmitting data symbols, as will be
explained later in Subsection III-D. Furthermore, unless the
energy allocated to the training transmission is increased
accordingly, the DCE suffers from a more severe noise con-
tribution, reducing the SINR at the receiver.
Remark 1: As discussed earlier in Section II, the vast

majority of the previous studies onMIMODCE have focused
on finding Xp and τp that minimize the MSE for a given
training power Pp. This is conventionally deemed feasible
since N is always � τc, thus choosing TS length as τp ∈
{1, 2, . . . ,min(N , τc)} is not potentially overwhelming. How-
ever, in mMIMO systems where a large number of antennas
is used at BS, i.e., N could be � from τc, which makes
DCE problematic with FDD systems. Specifically, due to (7),
minimising MSE approach using τp closed to N maximizes
the term log2(1+SINRk ). However, this minimization comes
at the expenses of the pre-log

(
(τc−τp)/τc

)
. As demonstrated

by the numerical results in Section V, this minimum MSE
criterion based optimization could lead in general to the
choice τp = N and a vanishing achievable sum rate when τc
is smaller than N . To maximize the DL achievable sum rate
for different N values and τc, both terms must be considered
in the evaluation. To the best of our knowledge, the tradeoff
between the MSE of the DCE and the achievable sum rate
in the FDD mMIMO systems with limited coherence time
has not been considered in the literature. One of the essential
contributions of the this present paper is in investigating
the tradeoff between the MSE and the achievable sum rate
with short coherence time and the observation that for given
training power Pp and the structure of Xp, maximization
of the sum rate over training length τp while accounting
for both terms, results in a feasible solution for DCE based
mMIMO and provides the actual performance of this sys-
tem. In particular, the achievable sum rate does not vanish
when N > τc, but instead can benefit from large antenna
numbers. In summary, unlike state-of-the-art research where
the performance is optimized by minimizing the MSE of the
channel estimate, we focus on maximizing the achievable DL
sum rate directly. Our approach relaxes theMSE requirement,
resulting in a feasible FDD mMIMO performance during
DCE even when the coherence time is short. The following
subsection discusses the maximization problem of the DL
sum rate.
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D. FORMULATION OF THE ACHIEVABLE SUM RATE
MAXIMIZATION PROBLEM
Maximizing the DL achievable sum rate over imperfect DCE
using a DL TS in an FDD mMIMO system equates to the
optimization problem given in (25).

maximize
τp

(
τc − τp

τc

) K∑
k=1

log2
(
1+ γk

)
subject to 1 ≤ τp ≤ min

(
N , τc

)
(25)

As mentioned previously, future wireless networks, e.g.
the sixth generation (6G) [4], [62] aims to maximize the
achievable data rate in order to meet the demands for high
data traffic. As such, maximizing the achievable data rate is
considered as one of the most essential performance indica-
tors for 6G network [4], [62]. Therefore, this paper focuses
on optimizing the downlink achievable data rate to fulfill the
increasing demands for data traffic. The expression in (25)
shows that maximizing the achievable sum rate depends
essentially on the training sequence length and the channel
coherence time. The SINR affects the achievable rate loga-
rithmically, whereas the training sequence length and channel
coherence time affect the achievable sum rate linearly. The
problem formulation in (25) is computationally demanding.
This is because the expectations in (8) need to be evaluated
using extensive Monte-Carlo simulations for different cor-
relation modes, different values of N , different precoders,
and different TS lengths. To overcome this issue, a computa-
tionally suitable solution is obtained by using an asymptotic
the RMT method. In particular, the RMT method is used
in this paper to obtain an asymptotic approximation to (8),
and the achievable sum rate, of an FDD mMIMO system as
N →∞. As such, a simplified numerical evaluation of (25)
with low-complexity is achieved. In the following section,
we provide the analyses of SINR using the RMT method.

IV. SINR AND SUM RATE ANALYSIS USING RMT
METHOD
This section presents analytical expressions of the SINR and
DL sum rate of an FDD mMIMO system based on the RMT
method in [12], [50], [63]. In particular, a deterministic ana-
lytical approximation of the average SINR, expressed as γ is
determined as

γk − γ k −−−−→N→∞
0. (26)

Although the asymptotic expressions of SINR for BF
and RZF precoding are obtained under an assumption that
N → ∞, consistent with previous research on large system
limit [12], [63]–[66], our numerical results demonstrate that
these analyses are accurately approximate the SINR and the
sum rate for finite values of N . The RMT method allows
the SINR γk term in (8) to be replaced with the asymptotic
approximation given in this section, and thus, a straightfor-
ward system evaluation is achieved. Accordingly, this anal-
ysis allows the results to be straightforwardly reproducible.

The following asymptotic analysis using the RMT method
corresponds to an average of aK user mMIMO system where
the users have similar statistics at the BS and, as a result,
average ergodic achievable rates.
myprob 1: Let γBF denote the SINR for BF precod-

ing. An asymptotically approximation of SINR with BF
precoding of an FDD mMIMO system with imperfect
DCE is given as

γ BF =

(
tr(2)

)2
1
Pd
tr(2)+ K tr(G2)

, (27)

where 2 is the estimation covariance matrix of the MMSE,
which is given in (22).
Unlike the SINR formation of BF precoding, the determin-
istic equivalent of the SINR of RZF precoding is provided
based on several auxiliary parameters. These parameters
come from the use of the RMT method. These auxiliary
parameters are required to be solved before the SINR expres-
sion is determined. The following Proposition demonstrates
the analytical result of RZF precoding.
myprob 2: Let γ RZF denote the SINR of RZF precoding.

A deterministic approximation for the SINR with the RZF
precoder of an FDD mMIMO system with imperfect DCE is
given as

γ RZF =
KN %̄ δ2

(1+δ)2
Pd
+ K 2%̄µ̄

, (28)

where the variable %̄ ∈ R denotes the analytical equivalent
of RZF precoding and parameter δ ∈ R is determined using
a fixed-point-algorithm. To this end, let define an integer t ,
with t = 1, 2, . . . ,

δ(t) =
1
N
tr
(
2

(
K 2

N
(
1+ δ(t−1)

) + ςIN)−1), (29)

where the starting value of the parameter δ is given as
δ(0) = 1/ς , and the variable δ ∈ R is obtained after the
convergence of the fixed point in (30) is achieved.

δ = lim
t→∞

δ(t) (30)

After we obtain the solution of δ in (29) and (30), we sub-
stitute the solution into

T =
(
ςIN +

K2
N (1+ δ)

)−1
, (31)

to determine T ∈ CN×N . To this end, matrix T̄ ∈ CN×N is
determined as

T̄ = T
(
IN +

K δ̄2
N (1+ δ)2

)
T, (32)

with variable δ̄ ∈ R, which is determined as

δ̄ =
1
N

(
1−

tr
(
2T2T

)
N 2
(
(1+ δ)

)2)−1tr(T2T
)
. (33)
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The parameter %̄ ∈ R denotes the precoding normalization
of RZF precoding, which is determined by substituting the
auxiliary matrices T and T̄ into

%̄ =
(
tr(T)− ς tr(T̄)

)−1
. (34)

Finally, the parameter µ̄ ∈ R is determined by utilizing
the dominated-convergence theorem and the continuous-
mapping theorem, and hence, it is obtained in (35), (36)
and (37).

µ̄ =
1
N
tr
(
GT′

)
−
2Re

(
tr
(
2T

)
tr
(
2T′

))(
1+ δ

)
− tr

(
2T

)2
δ′(

N (1+ δ)
)2 (35)

T′ = T
(
2 +

K2δ′

N (1+ δ)2

)
T (36)

δ′ =
1
N

(
1−

tr
(
2T2T

)
N 2
(
(1+ δ)

)2)−1tr(T2T2
)

(37)

The SINR expressions provided in (28) is the asymptotic
approximation of the SINR, which tightly approximates the
true SINR with RZF precoding. The analysis of RZF pre-
coding is valid for any channel correlation model. It worth
pointing out that Proposition 1 and Proposition 2 aremodified
versions of precoding Theorems provided in [12]. In partic-
ulate, Proposition 1 and Proposition 2 are obtained for the
DCE based on the FDD operation mode in mMIMO systems
and not for the TDD systems. Besides, these Propositions are
obtained with single-cell scenario. The SINR approximations
allow the numerical results to be directly reproducible and
easy to be validated. In the following section, we present the
analytical and simulated results of BF and RZF precoding
techniques based on different physical channel correlation
models.

V. NUMERICAL RESULTS WITH DIFFERENT PHYSICAL
CHANNEL CORRELATION MODELS
The Rayleigh fading model is considered as a typical
approach for modelling the covariance matrix [10], [67].
In this fading model, the channel coefficients are considered
to be uniformly distributed. However, the condition for the
channel coefficients to be uncorrelated, which exists only in
a rich scattered environment, is very strict. Furthermore, due
to the insufficient spacing of the antenna elements and their
spatially dependent radiation patterns, MIMO channel coeffi-
cients become subject to a strong spatial correlation. Further-
more, field measurements of the propagation environments
have revealed that the MIMO channel coefficients are corre-
lated [68]–[70]. Therefore, to capture a realistic performance
assessment of an FDD mMIMO system and to characterize
the impact of spatial correlation on the DL achievable sum
rate and MSE, three different correlation models are consid-
ered in this paper. These models are known as P-degrees of
freedom (P-DoF) model, exponential correlation model, and
the one ring (OR) channel model. Specifically, the channel

covariance matrix G is considered to be not a scaled identity
matrix. However, covariance matrix G describes more real-
istically the spatial propagation environment of the MIMO
channels. It is worth noting that P-DoF and OR models
are incorporated stochastic rank deficiency [71] while the
exponential correlation model has a full rank matrix. In the
following subsections, we present analytical and simulation
results, which characterize the FDD operation in the mMIMO
systems in terms of the MSE and the achievable sum rate for
both BF and RZF precoding. A summary of the simulation
parameters is provided in Table 1.

TABLE 1. Simulation parameters.

A. SUM RATE MAXIMIZATION AND MSE MINIMIZATION
EVALUATION FOR THE P-DoF MODEL
Typically, any channel correlations depend on the number of
the degrees of freedom in the channel. However, the degrees
of freedom in the channel can be much smaller than N .
Hence, the channel can be decomposed into a small number of
dimensions (P-dimensional), whereP is the number of spatial
directions which can be relatively small compared to N . This
subsection presents the P-DoF physical model as defined
in [12], [72]–[74]. To this end, the covariance matrixG using
the P-DoF model can be expressed as

G =

√
1
c
VAH, (38)

where P/N = c ∈ (0, 1]. The elements of matrix V ∈ CK×P

are considered to be independent and identically distributed
with CN

(
0, 1). Finally, matrix A ∈ CN×P in (38) cab

be constructed from P ≤ N of an N × N unitary matrix,
which should satisfy AHA = IP. Clearly, G has rank P.
If P < N , then the channel is stochastically rank deficient.
Thus, the correlation parameter c controls the DoF in the
channel. Specifically, c denotes the extent of correlation in
the channel [12], [72]–[74]. The covariance matrix for the
channel defined in (38) is of the form G = E[gkg

H
k ] =

1
cAA

H.
Using the EVD of G, which is defined in (3), where 3 is

the eigenvalues matrix of G, which are arranged as λ1 =
λ2 = · · · = λP = 1/c and λP+1 = · · · = λN = 0. Thus,
the smaller the normalized degrees of freedom c is, the more
energy concentrated in the channel is. Let substitute the EVD
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FIGURE 2. Sum rate versus N using the P-DoF model with c = 0.2,
τc = 200 symbols, SNR = 10 dB and K = 10 users.

given in (3) in the P-DoF model into (22) allows the MMSE
to be expressed as

2 =
Pp

(Pp + c)c
UmU

H
m, m =

{
τp if τp ≤ P;
P otherwise,

(39)

where matrix Um ∈ CN×m is formed from m unitary matrix
eigenvectors of G. using the P-DoF, the channel would have
P ≤ N DoF and the training energy is Ppτp, choosing τp > P
while making the power Pp constant would lead to the same
DCE as τp = P but unnecessarily uses more energy in the
TS transmission. This is a special case in the P-DoF model.
Substituting the DCE of the MMSE in (39) with the P-DoF
model into (24) yields after some straightforward algebraic
manipulations to a novel analytical solution for the MSE in
the FDD massive MIMO systems, which can be expressed as

MSE =
τp

Pp + P
N

, τp ≤ P. (40)

The expression in (40) implies that the MSE in the P-DoF
model depends on P while the constraint in the achievable
sum rate optimization problem depends on τp ≤ min(P, τc),
which limits the TS length to the DoF in the channel instead
of N . Clearly, the choice τp = P minimizes the MSE in
(40) and yields exactly the same MSE channel estimates
as with UL channel estimation in TDD systems. With this
choice, the loss in achievable rate due to channel training,(
(τc − τp)/τc

)
, overcomes the MSE minimization, which

increases the SINRwhenP become sufficiently large. In what
follows, the results are presented based on P-DoF model,
which is used to evaluate the achievable sum rate and theMSE
of the DCE in BF and RZF precoding.

Fig. 2 demonstrates plots of the DL achievable sum rate
versus the N , comparing both BF and RZF precoding perfor-
mances in the spatially correlated channels when the P-DoF
model is utilized with c = 0.2, τc = 200 symbols,

K = 10 users, and Pp = Pd = 10 dB. The analytical
plots for both the BF and RZF precoders are obtained based
on (27), (28), respectively. The simulated plots for both the
BF and RZF precoders are obtained using equations (8)
and (9), respectively. In Fig. 2, the DL sum rate of the BF
precoder increases gradually and saturates at ∼20 bit/s/Hz
with values of N > 250. However, the sum rate for the RZF
precoder increases more gradually before reaching a peak of
∼60 bit/s/Hz at N = 200. For values of N > 200, the DL
sum rate decreases until is reaches ∼52 bit/s/Hz at value of
N = 500. The results show that the RZF precoder provides a
considerable enhancement in the DL sum rate when the DL
channels are spatially correlated. In addition, the results show
an accurate agreement is obtained between the analytical and
simulated results.

To further investigate the agreement between the analytical
and simulated results, Fig. 3 and Fig. 4 are provided. In par-
ticular, Fig. 3 and Fig. 4 show plots of the DL achievable sum
rate versus the N , comparing both BF and RZF precoding
performances in the spatially correlated channels when the
P-DoF model is used with c = 0.1, K = 10 users and with
τc = 100 symbols, τc = 150 symbols, and Pp = Pd =
5 dB and Pp = Pd = 15 dB, respectively. The analyti-
cal plots for both the BF and RZF precoders are obtained
based on (27), (28), respectively. The simulated plots for both
the BF and RZF precoders are obtained using equations (8)
and (9), respectively. the results show an accurate agreement
is obtained between the analytical and simulated results. The
results show that increasing the coherence time and the power
results in a significant improvement in the achievable sum
rate, as expected. The following evaluations are carried out
based on the method of RMT.

FIGURE 3. Sum rate versus N using the P-DoF model with c = 0.1,
τc = 50 symbols, SNR = 5 dB and K = 10 users.

In what follows, we compare the downlink achievable sum
rate, optimum TS length, and MSE when the proposed sum
rate maximization and the conventional MSE minimization

VOLUME 9, 2021 108801



M. Alsabah et al.: Sum Rate Maximization Versus MSE Minimization in FDD Massive MIMO Systems

FIGURE 4. Sum rate versus N using the P-DoF model with c = 0.1,
τc = 150 symbols, SNR = 15 dB and K = 10 users.

FIGURE 5. Sum rate versus N for DCE using the P-DoF model with
τc = 100 symbols, c = 0.3, K = 10 users, and Pp = Pd = 10 dB, comparing
optimization criteria.

criteria are applied to an FDD mMIMO system using DCE.
The normalized MSE (NMSE) per-symbol is obtained by
dividing the analytical expression in (24) by the total N .
Fig. 5, and Fig. 6, demonstrate plots of the DL sum rate and
the optimum TS length τ ∗p , respectively, versus N . The plots
are provided for both the BF and RZF precoders using the
P-DoF model with correlation parameter of c = 0.3, which
represents a reduced level of channel correlation compared
with the results in Fig. 2 when c = 0.2 and τc = 100 symbols.
The other parameter values are given as K = 10 users and
Pp = Pd = 10 dB. The solid curves correspond to results
obtained with the sum rate maximization criterion whereas
the dashed curves correspond to results obtained with the
MSE minimization criterion.

In Fig. 5, which depicts achievable sum rate, the dashed
curves for the both types of precoders clearly exhibit the

FIGURE 6. Optimum TS length τ∗p versus N for DCE based on the P-DoF
with τc = 100 symbols, c = 0.3, K = 10 users, and Pp = Pd = 10 dB,
comparing optimization criteria.

limitation of the MMSE criterion, which results in zero
throughput when N ≥ τc = 100 symbols. That is, the whole
coherence time is spent estimating the DL channel, which
leaves no resources to actually transmit the payload data. For
BS values of N < 100, the DL sum rates exhibit a maximum
value and, as expected, RZF precoding achieves greater sum
rates than BF precoding. In stark contrast, the solid curves
for both types of precoders do not exhibit this limitation
when the sum rate maximization criterion is used. Instead,
the DL sum rate of BF precoding saturates at ∼14 bit/s/Hz
for N > 100, as expected, whereas RZF precoding achieves
a peak sum rate of ∼47 bit/s/Hz at N = 98, which slowly
decreases to ∼31 bit/s/Hz at N = 500. The sum rate results
in Fig. 5 are corroborated by the optimum TS length results
in Fig. 6. The dashed lines, which correspond to the MMSE
criterion, clearly show that, for both precoders, τ ∗p increases
linearly up to τ ∗p = N τc = 100 symbols, remaining fixed at
100 thereafter. In contrast, the solid lines, which correspond
to the maximum sum rate criterion, show that τ ∗p increases
linearly up to τ ∗p ∼= 0.3 × N = 34 symbols at N = 112.
For values of N > 112, BF precoding exhibits a constant τ ∗p
value of 34 symbols whereas RZF precoding exhibits a slight
rise in τ ∗p reaching 41 symbols at N = 500. The substantially
lower τ ∗p saturation level obtained with the maximum sum
rate criterion enables the remaining coherence time to be used
for sending payload data.

Fig. 7 plots normalized MSE versus N comparing both BF
and RZF precoding under both optimization criteria for the
same system parameters. Again, the dashed curves represent
the MMSE criterion whereas the solid curves represent the
maximum sum rate criterion. As expected, the normalized
MSE for the MMSE criterion is always less than that for
the maximum sum rate criterion. It is also worth noting
that, for each criterion, the BF and RZF precoders exhibit
essentially the same normalized MSE. This is because the
optimum pilot length for both precoders is closely related.
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FIGURE 7. Normalised MSE versus N for DCE using the P-DoF model with
c = 0.3, τc = 100 symbols, Pp = Pd = 10 dB and K = 10 users, comparing
optimization criteria.

The normalized MSE curves for the MMSE criterion can be
divided into three distinct regions corresponding to N < 100,
100 < N < 335, and N > 335. For N < 100, the training
power increases linearly with N and the powers of the K
pilot sequences are quite unequal and, hence, appropriately
matched to the correlated DL channel resulting in a constant
normalized MSE level. For 100 < N < 335, the normalized
MSE increases slowly, which corresponds to a region where
the training power has saturated and the powers of the K
pilot sequences are becoming more equal. For N > 335,
when the pilot powers are more or less equal, the normalized
MSE grows rapidly, which suggests that the DCE process
has become interference limited. The normalizedMSE curves
for the maximum sum rate criterion exhibit only two distinct
regions corresponding to N < 100, and 100 < N < 500. For
N < 100, when the training power increases linearly with P,
the normalized MSE level is constant albeit markedly higher
than the normalized MSE obtained with the MMSE criterion.
However, for N > 100, when both the pilot length and total
power have saturated, the normalized MSE increases rapidly,
which again suggests that the DCE process has become inter-
ference limited in this region. However, despite the rather
poor MSE performance in this region, the overall sum rate
remains viable, as the optimum pilot sequence length remains
more or less constant at ∼34 symbols. The results in this
subsection show that maximizing the DL sum rate, rather than
minimizing the MSE of the SINR, leads to a feasible FDD
mMIMO system performance when downlink channel state
information with short coherence time is used.

B. SYSTEM PERFORMANCE FOR THE EXPONENTIAL
CORRELATION MODEL
In this subsection, the covariance matrix is modeled based on
the exponential correlation model. The exponential channel
correlation model provides a full-rank covariance matrix.
To this end, the (m, n)th element of G of the channel

covariance matrix with an exponential model is given in a
Hermitian Toeplitz [75], [76] form as

[G]m,n =

{
αn−m, m ≤ n,
(αm−n)∗, m > n,

(41)

where α is correlation coefficient between adjacent antennas
at the BS and is given by α for (0 ≤ |α| ≤ 1). The correla-
tion factor α represents the eigenvalue spread of the channel
covariance matrix. Increasing the factor α in the exponential
correlation model leads to higher spatial correlations. The
correlation coefficient of exponential correlation model is
considered to be α = 0.9, which implies relatively strong
channel correlation.

Fig. 8 and Fig. 9 demonstrate pilots of the DL sum rate
using the MSE minimization criteria and the normalized
MSE versus TS length, respectively, comparing the BF and

FIGURE 8. Sum rate versus number of TS length using the exponential
model with α = 0.9, τc = 100 symbols, Pp = Pd = 10 dB and K = 10 users.

FIGURE 9. Normalised MSE versus number of number of TS length using
the exponential model with α = 0.9, τc = 100 symbols, Pp = Pd = 10 dB
and K = 10 users.
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RZF precoders performances in correlated channels when the
exponential model is used with α = 0.9, K = 10 users, Pp =
Pd = 10 dB, and τc = 100 symbols. The results demonstrate
that the DL achievable sum rate of the BF and RZF precoders
are maximized with pilot lengths of 16 and 24 out of 100 sym-
bols, respectively. The results indicate that increasing the
TS length improves the MSE performance. As such, chosen
τp = 100 leads to a minimum MSE performance as shown
in Fig. 9. This indeed leads to spend the whole coherence time
in the downlink channel state information estimation, which
actually leaves no time to transmit useful information stum-
bles to the users. We aim at maximizing the DL achievable
sum rate by takingN and τc into account. To achieve this aim,
we relax the MSE requirement in the following evaluations.
In particular, Fig. 10, Fig. 11 and Fig. 12 show plots of the
DL sum rate, the optimum TS length that maximizes the sum

FIGURE 10. Sum rate versus N using the exponential model with α = 0.9,
τc = 100 symbols, Pp = Pd = 10 dB and K = 10 users.

FIGURE 11. Optimum TS length τ∗p versus N using the exponential model
with α = 0.9, τc = 100 symbols, Pp = Pd = 10 dB and K = 10 users.

FIGURE 12. Normalised MSE versus N using the exponential model with
α = 0.9, τc = 100 symbols, Pp = Pd = 10 dB and K = 10 users.

rate, and the normalized MSE versus N for both BF and RZF
precoding when achievable sum rate maximization criteria
is used. All the system parameters remain unchanged from
Fig. 8 and Fig. 9. The results in this section demonstrate that
a feasible performance of the DL sum rate can be obtained
in the FDD mMIMO systems with an optimum TS length
of less than τc/2 even when the covariance matrix is not
rank-deficient and when short coherence time is used.

C. FDD OPERATION IN mMIMO SYSTEMS USING THE
ONE RING MODEL
So far, the results carried out using theP-DoF and exponential
models. In this subsection, we consider the application of
a more realistic physical model called one ring model [77],
which is used in the performance evaluation of the FDD
mMIMO systems under consideration. This model is also
used to corroborate the paper’s findings in a more realistic
setting. The scatterers in the one ring model are located on
a ring around the user as shown in Fig. 13. The covariance
matrix G in the one ring model is determined using the
antenna spacing D, angle of arrival θ , and angular spread ω.
To this end, the (m, n)th element of G is expressed as

[G]m,n =
1
2ω

∫ ω+θ

−ω+θ

e−j2πD(m−n)sin(1)d1. (42)

When the BS antenna elements are closely spaced, i.e., half
wavelength and the amount of scattering around the user is
limited, some of the eigenvalues of the channel covariance
matrix become close to zero, which results in makingG to be
rank deficient.

Fig. 14 and Fig. 15 plots achievable sum rate and opti-
mum TS length versus N comparing correlated and rela-
tively uncorrelated mMIMO channels in the one ring model.
The parameter values for the one ring model are chosen as,
θ = π/6◦, ω = 5◦ and D = 1/2, which imply relatively
strong correlation. While parameters ω = 25◦ and D = 1
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FIGURE 13. Illustration of local scattering one ring model.

correspond to relatively weak channel correlation. Results
are provided based on BF and RZF precoding for τc = 100
symbols, K = 10 users, and Pp = Pd = 10 dB. The solid and
dotted lines represent BF and RZF precoding when channels
are uncorrelated while the solid lines denote the performance
in the correlated channels. The results show that both the BF
and RZF precoders provide a marked enhancement in the DL
sum rate of FDD systems when the channel is correlated.
This implies that DCE for an FDD mMIMO system can
be more effectively exploited in correlated channels, which
could allow for compact antenna form factors in an FDD
mMIMO system, especially one operating at millimetre wave
frequencies. Fig. 14 and Fig. 15 demonstrate the efficacy of
using the one ring model, which can be used to predict the
performance of FDD operation in mMIMO in a more real-

FIGURE 14. Sum rate versus N using one ring model with
τc = 100 symbols, Pp = Pd = 10 dB, and K = 10 users.

FIGURE 15. Optimum TS length τ∗p versus N using one ring model with
τc = 100 symbols, Pp = Pd = 10 dB, and K = 10 users.

istic model. It is worth noting that the stepped curves occur
because the optimal pilot sequence length τ ∗p is quantized and
does not increases linearly as a function of N .

VI. CONCLUSION
This paper investigated the tradeoff between the sum rate
maximization and MSE minimization in the downlink FDD
mMIMO systems. A feasible downlink training sequence
design has obtained, which can be used to maximize the
downlink sum rate of FDDmMIMO systems. This paper also
characterized the FDD mMIMO performance with BF and
RZF precoding in different correlation models. The findings
of this paper are supported by precise theoretical analyses,
which accurately agree with the simulated results. These
analyses are used to provide a straightforward system design
methodology and to underpin our contributions. The results
showed a feasible downlink sum rate in the FDD mMIMO
systems can be obtained when finite training sequence length
is used in the downlink channel state information estimation.
In particular, this paper showed explicitly that the loss in
MSE performance by using shorter training sequence length
is negligible in comparison to the gain of having more trans-
mission data symbols. Our discovery is based on maximizing
the total sum rate of the system instead of minimizing the
MSE of the SINR only, which is typically considered in the
conventional MIMO systems or TDD mode of operation.
This paper demonstrated that the downlink sum rate, defined
by (25) relies on the two opposing-quantities, which are
defined as log2(1 + γk ) and

(
(τc − τp)/τc

)
. The actual FDD

mMIMO performance can only be predicated by maximizing
(τc − τp/τc)

∑K
k=1 log2 (1+ γk ). The results showed that the

optimum training sequence length of τ ∗p < τc/2, can be
obtained even when the channels are relatively uncorrelated.
The proposed design paradigm provides a realistic character-
ization of an FDD mMIMO performance with single-stage
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digital precoding. This finding is very useful and enables an
FDD mMIMO system to be implemented in high frequency
bands such as mmWave and THZ communications with short
coherence time.
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