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ABSTRACT Increasing demand for human-computer interaction applications has escalated the need for
automatic emotion recognition as emotions are essential for natural communication. There are various
information sources that can be used for recognizing emotions, such as speech, facial expressions, body
movements, and physiological signals. Among those physiological signals are more reliable for better
affective communication with machines since they are almost impossible to control. Therefore, automatic
emotion recognition from EEG signals has been a topic intensely investigated. Emotions are experiences that
arise various cognitive functions observed in different frequency bands involving multiple brain areas and
recognition fromEEGwith high accuracies is only possible with a large number of features extracted from the
whole brain in various bands. Emotion regulation also requires integration of cognitive functions and thus
functional connectivity between regions should also be considered. In this paper, we extract 736 features
based on spectral power and phase-locking values. We particularly focus on finding salient features
for emotion recognition using swarm-intelligence (SI) algorithms. We applied well-known classification
algorithms for recognizing positive and negative emotions using the feature sets that are selected by these
algorithms. Besides, features that are selected by all of them commonly are used as a new feature set.
We report accuracies between 56.27% and 60.29% on the average; noting that by decreasing the feature size
by 87.17% (from 736 to 94.40) an average accuracy of 60.01±8.93 was obtained with the random forest
classifier. We also highlight the efficient electrode locations for emotion recognition. As a result, we define
11 channels as dominant and promising classification results are obtained.

INDEX TERMS EEG, emotion classification, channel selection, feature selection, swarm-Intelligence
algorithms.

I. INTRODUCTION
The increasing role of technology and machines in human
life makes it necessary to strengthen the interaction between
humans and machines. Since emotions are extremely impor-
tant in social interactions in daily life, emotion recognition
systems are essential for affective human-machine interac-
tion. Therefore, emotion recognition has become immensely
popular for various fields such as virtual reality, augmented
reality, advanced driver assistant systems, neuromarketing,
and specifically for human-computer interaction (HCI).

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Olague .

Emotion is mostly defined as an experience that is
associated with psychological phenomena. It can be very
general such as joy, fear or disgust, or a very specific
experience such as love or hate to a specific person or
object, or embarrassment in a specific situation. Emotions
might last for a long time or might emerge for a very short
time period. They are mostly accompanied by physiolog-
ical reactions and physical responses. There exists several
studies focusing on emotion recognition systems based on
speech [1]–[4], facial expressions [5]–[7] and physiological
signals [8]–[15]. Developing a successful emotion recog-
nition system requires a multi-layered architecture. Feature
extraction, feature selection, and classification are the main
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stages, and the success of each step affects the perfor-
mance of the entire system. The main issue is to find emo-
tional salient features from several sources, analyzing feature
sets [16], [17] to eliminate the irrelevant/unnecessary features
and developing new classification frameworks to improve
accuracies of existing classifiers [3], [18]. This study focuses
on emotion recognition from EEG using band powers and
phase-locking values as features and sophisticated feature
selection method based on swarm-intelligence (SI) algo-
rithms and well-known classification algorithms such as
k-nearest neighbour (k-NN), random forest, and support vec-
tor machines (SVM).

In recent studies, swarm-intelligence algorithms have been
widely used for engineering optimization problems [4], [19],
global radiation forecasting [20], multiple unmanned aerial
vehicles (UAV) control [21], and health monitoring of civil
engineering structures [22]. Particle Swarm Optimization
(PSO) [23], [24], Cuckoo Search (CS) [25], Grey Wolf Opti-
mizer (GWO) [26], and Dragonfly Algorithm (DA) [27],
[28] are the most widely used SI algorithms. PSO has been
attracted researchers’ attention because of its easy implemen-
tation and the small number of parameters to be adjusted. CS,
one of the relatively recent SI algorithms, has local and global
search mechanisms to converge the global best. It uses Lévy
flight to search different solution spaces. In addition to these
algorithms, GWO and DA are other recent SI algorithms to
solve engineering optimization problems. GWO is inspired
by the hunting habits of wolves and DA is inspired dynamic
and static swarming behaviours of dragonflies. These algo-
rithms are introduced to solve continuous problems. How-
ever, the representation of some problems must be designed
to search in the binary solution space because of its nature.
Thus, most SI methods have binary versions to solve binary
optimization problems such as feature selection. For classifi-
cation problems in machine learning, some features increase
the performance of the learning algorithm, while the oth-
ers are ineffective or negatively affect the performance of
these systems. Feature selection aims to select or score more
relevant ones among these features. This process requires
extremely high computational time especially when the num-
ber of features is high. This problem is considered an NP-hard
problem [29]. SI algorithms such as cuckoo search [30],
GWO [31], DA [27], genetic programming [32], artificial
bee colony [33], ant colony optimization [34] are preferred
to overcome this problem.

In this paper, we present emotion recognition (positive
vs. negative) from EEG signals. We, particularly focus
on finding salient features for emotion recognition using
swarm-intelligence algorithms, namely GWO, PSO, CS,
andDA. Feature selection is applied on a large set constructed
by combining features calculated based on spectral power
and phase-locking values, extracted from 1 second-long EEG
segments without overlapping using sliding windows. As a
contribution of the study, we also evaluate the effectiveness of
a new feature set containing only the features that are selected
by all SI algorithms we used. Performances of the feature

selection algorithms are evaluated by 10 fold cross-validation
designed in a similar way to one video out scheme; in par-
ticular, 4 out of 40 videos are randomly selected for testing
while 36 videos are used for training. Another contribution of
the study is investigating the dominant channels for emotion
regulation. Dominant channels are marked by analyzing the
features selected commonly by all selection methods inde-
pendent from the subjects.

The organization of this paper as the following: Section II
describes materials and methods. Experimental results and
discussion is provided in Section III to confirm and verify the
performances of GWO, PSO, CS, andDA algorithms. Finally,
conclusions are stated in Section IV.

II. METHODS
The main focus of the study is to apply sophisticated fea-
ture selection algorithms to determine the best features for
a successful emotion recognition system. For this purpose,
we used a well-known EEG emotional database, Database for
Emotion Analysis using Physiological Signals (DEAP) [35].
After extracting the features using Hilbert-Huang Transform
(HHT), we applied various feature selection algorithms and
completed the system by applying k-NN, random forest, and
SVM for classification. We present our results using 10 fold
cross-validation assuring that EEG segments in train and test
sets are extracted from separate videos providing a more
realistic scenario.

The overview of the proposed emotion recognition model
is shown in figure 1. The details are given in the following
subsections.

A. EMOTIONAL EEG DATABASES
In this paper, we conducted our classification experiments
on a very popular emotional EEG database Database for
Emotion Analysis using Physiological Signals (DEAP) [35].

DEAP dataset includes EEG and physiological signals
collected from 32 subjects, 15 females and 17 males. Sub-
jects aged between 19 and 37 (27.29∓4.48) and all are
right-handed except one female subject. Emotions were
elicited through one–minute long music clips. 40 video clips
were used for the study. These clips were selected out
of 120 video clips, which were initially chosen among tagged
songs in a music enthusiast website, by using the subjective
ratings from volunteers through a web-based interface. Dur-
ing the experiments physiological signals were recorded for
67 seconds; a 2-second progress report (a screen to inform the
subject about the current video number), a 5-second baseline
recording (display of a fixation cross for the subject to relax),
and a one-minute long video playing, for each video clip.
After each video clip, the subject was asked to fill out a
self-assessment form for arousal, valence, liking, and dom-
inance through Self-Assessment Manikins (SAM) [36].

In this study, we classify positive and negative emotions.
A valence value that is less than or equal to 5 is evaluated as
negative.
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FIGURE 1. Overview of the proposed emotion recognition model.

B. FEATURE EXTRACTION FOR EEG SIGNAL
REPRESENTATION
Weextract features based onHilbert Huang Transform (HHT)
and Phase Locking Value (PLV) from all EEG channels.
HHT is a transform method representing the time-frequency
spectrum of EEG and PLV shows the phase synchronization
between two narrow-band signals.

1) SPECTRAL FEATURES
HHT is an empirical method to obtain the time-frequency
spectrum of the signal using data-driven basis functions.
It has two stages; Mode Decomposition and Hilbert spectral
analysis (HSA). Empirical Mode Decomposition (EMD) is
the first introduced process for mode decomposition.

EMD process is used to extract a complete and nearly
orthogonal basis from the data [37]. The basis for the
decomposition process is the idea that every signal is com-
posed of different internal oscillation modes. These inter-
nal modes, namely Intrinsic Mode Functions (IMFs), are
extracted by a recursive process called sifting. IMFs, each of
which is a monocomponent signal, i.e. having only one or
a very narrow range of frequency components, are extracted
through a recursive process called sifting [38]. Each IMF has
zero-crossing and extrema numbers that are equal to each
other or the difference is at most one. Besides upper and lower
envelopes, defined by local maxima and minima respec-
tively, have zero mean values. Decomposing a real-valued
signal x(t) into K IMFs and a residue, the signal through the
EMD process can be written as:

x(t) =
K∑
k=1

IMFk (t)+ rN (1)

where IMFk represents k th IMF and rN represents the residue.
IMFs have narrow-band frequency contents and the first
IMF has the largest frequency content, whereas the last one

has the minimum frequency content. Details of IMF decom-
position process can be found in [38].

Improvements on EMD process have been intro-
duced [39]–[43]. Variational Mode Decomposition is
introduced in [39] and it is a non-recursive model, in contrast
to EMD. VMD uses a concurrent approach to extract IMFs in
contrast to recursive EMD. VMD searches for IMFs consid-
ering the decomposition process as an optimization problem.
Assuming the signal x(t) has K modes, it can be written as:

x(t) =
K∑
k=1

uk (2)

Note that, each mode, uk , is a narrow-band signal around
the center frequency, wk which is determined as the decom-
position process progresses. The optimization problem to be
solved is [39]:

min
uk ,wk

{ K∑
k=1

∥∥∥∥∂t [(δ(t)+ j
π t

)
∗ uk (t)

]
e−jwk t

∥∥∥∥2
2

}
(3)

The solution to this optimization problem is given in [39]
thoroughly.

In order to represent the signal in terms of time and fre-
quency, instantaneous frequencies (IFs) are computed for
each time point by differentiating the phase. Having a nar-
row frequency range, IMFs are convenient for this process.
Time-frequency map is constructed by recording the ampli-
tudes of the signal for respective frequency values along the
time. Amplitudes and phases, or IFs in this context, are easy
to extract for complex signals. Ambiguity for real signals
is eliminated by defining an analytical signal by means of
Hilbert Transform.

c(t) = x(t)+ jx̃(t) = A(t)ejθ(t)

f (t) =
1
2π

dθ (t)
dt

(4)
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where x̃(t) is Hilbert transform of the original signal x(t)
and c(t) is the analytic function to extract the instantaneous
frequency values. A(t) is the amplitude value and f (t) is the
frequency content at time t respectively. Finally, the signal is
expressed as follows:

x(t) = Re

(
K∑
k=1

Ak (t)ej
∫
fk (t)dt

)
(5)

for K IMFs, where Ak (t) and fk (t) are amplitude and fre-
quency of k th IMF, respectively.
In this work, we have used vmd and hht functions in

MATLABR2020a to obtain IMFs and related time-frequency
maps. This map is, then used for feature extraction. Log band
power values, namely differential entropy [44], for various
bands, namely θ, α, β, γ and total are used as spectral fea-
tures. HHT based spectral features are extracted as:

Fchb = log
{∫

fb

∫
t
H (ν, τ )dτdν

}
(6)

Fchstd,b = log
{
std

{∫
fb
H (ν, τ )dν

}}
(7)

Fchmax,b = log
{
max

{∫
fb
H (ν, τ )dν

}}
(8)

H (f , t) is the Hilbert-Huang spectrum and Fchb , Fchstd,b
and Fchmax,b are the log band power in band b and the
logarithms of standard deviation and the maximum value
of the spectrum integrated over the band b for chan-
nel ch respectively. fb represents the frequency values in
[4, 8), [8, 13), [13, 30), [30, 64) and [4, 64) Hz for θ, α, β, γ ,
and total, respectively. 480 (32 channels x 5 bands x 3) spec-
tral features are calculated in total.

2) PHASE LOCKING VALUES
Phase synchronization is a method for understanding the
underlying neuronal coordination between brain regions.
Phase synchronization focuses on phase locking between the
time series or activation maps and does not take the relation
between amplitude values into account.

Phase locking value (PLV) was introduced by
Lachaux et al. [45] and there are many studies that present
the effectiveness of PLV in EEG signal analysis, both for
normal [10], [46]–[48] and pathological [49]–[51] cases.
Computing PLV between two signals, sx(t) and sy(t), requires
instantaneous phase values of both signals. Assuming that
signals are narrow band, and complex-valued, PLV is com-
puted by averaging the phase difference over trials.

PLVt =
1
N

∣∣∣∣∣
N∑
n=1

exp(jθ (t, n))

∣∣∣∣∣ (9)

where N is the number of trials, and θ (t, n) = θx(t, n) −
θy(t, n) is the phase difference at time t for trial n. In case of
a single trial, PLV can be estimated by measuring the phase

difference across time steps with a predefined latency [52]:

sPLVt =
1
δ

∫ t+δ/2

t−δ/2
exp(jθ(τ ))dτ (10)

In the context of this work, we have calculated PLV
values in θ, α, β, and γ bands for each channel-pair (a total
of 496 values for each band). In equation 10, θ (t) = θi(t) −
θj(t) is the phase difference between channels i and j, and δ
is chosen as 1 second, i.e. one second long part of the 10 sec-
onds segment. Two approaches are followed to decrease the
number of possible features (496 values*4 bands); average
PLV values for each channel and PLV coefficients.
PLV values for each channel pair, i, j where i 6= j, is cal-
culated as:

sPLV (i, j) =
1
T

∣∣∣∣∫
t
sPLVt (i, j)dt

∣∣∣∣ (11)

where sPLV (i, j) is the average single trial PLV values,
sPLVt (i, j), along the 10 second segment.

Average PLV value for channel ch is computed as the
average of sPLV (ch, j) values for all channels, j 6= ch:

aPLV ch
b =

1
N

∣∣∣∣∣∣
∑
j,j6=ch

sPLV (ch, j)

∣∣∣∣∣∣ (12)

Calculating aPLV ch
b for ch = 1, 2, .., 32 in 4 bands, b ∈

[4, 8), [8, 13), [13, 30), and [30, 64), we acquire 4∗32 = 128
average PLVs for each segment.

PLV calculation gives us the opportunity to observe the
brain network created between every possible channel pair.
Recently, graph theory has been used to examine the brain
networks and we use graph theory utilized clustering coeffi-
cients for each channel as features along with average PLVs.
The clustering coefficient, namely c-coefficient [53], can be
calculated as follows [54]:

cCoef ib =

∑
k 6=i

∑
l 6=i
l 6=k

cikcilckl∑
k 6=i

∑
l 6=i
l 6=k

cikcil
(13)

where ci,j is sPLV (i, j) and cCoef ib is the c-coefficient for
channel i in band b. 128 more features are obtained by cal-
culating c-coefficients for 32 channels in 4 bands.

C. SWARM-INTELLIGENCE BASED FEATURE SELECTION
Feature selection is an optimization problem considering
two major issues. One of them is to get higher classifi-
cation accuracy and the other is to decrease the number
of the selected features. Wrapper feature selection methods
require an evaluation function to compare created solutions.
In the literature, researchers generally preferred the classifi-
cation error of a classifier as an evaluation function (fitness
function) [30], [55]. Moreover, the number of the selected
features was included in the evaluation function to get sim-
ilar accuracy using a lower number of features. In this
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study, the fitness function as shown in equation 14 is
performed [23], [56]–[58].

Fitness = α ∗ γR(D)+ β ∗
|s|
|d |

(14)

where α ∈ [0, 1], β = 1 − α, and γR(D) represents
the classification error of selected features R relative to
decisionD. |d | shows the total number of features and |s| indi-
cates the number of selected features. In this study, the error
rate of k-NN classifier was employed to compute the fitness
function. The K parameter of k-NN was used as K = 5 and
5-fold cross-validation was employed to deal with overfitting
problems [58].

1) PARTICLE SWARM OPTIMIZATION
The particle swarm optimization (PSO) is a well-known
nature-inspired algorithm, which inspired by bird flock-
ing, fish schooling, and bee swarming and established by
Kennedy and Eberhart [59]. PSO is the population-based
algorithm, and each individual in a population is called a
particle that represents a possible solution in the search space.
The population is called a swarm which consists of particles.
Each particle uses the velocity function to moves from its
current position to a new position. The velocity function
is constantly updated, taking account of its past experience
pBest and the swarm’s experience gBest . The first version of
PSO is designed to optimize real-valued problems. A binary
version of the PSO proposed by Kennedy and Eberhart [24].
It uses the concept of velocity function using a probability
concept. A position in the solution takes either 1 or 0. In other
words, each particle has a position which is a form of a
binary vector Xi. The positions and velocities formulated as
equation (15,16);

Xi = x1i , x
2
i , ., x

j
i , ., x

d
i (15)

Vi = v1i , v
2
i , ., v

j
i, ., v

d
i (16)

where d is the number of features, i is the particle’s index
in a swarm, and j represents the index of the feature. Value
of x ji is either 0 or 1 that shows whether the feature is unse-
lected or selected.

In BPSO, particles are initialized randomly. In this study,
equation 17 is performed to generate the binary position of
the particles.

x ji =

{
1 rand ≥ 0.5
0 rand < 0.5

(17)

The fitness function is used to calculate the fitness value
of each particle. The position having the best fitness value
in particle’s past experience is pBest . The position having
the best fitness value in swarm’s past experience is gBest .
After particles start from a random position, the velocities and
positions of particles are updated according to the particle’s
best pBest and gBest at each iteration until the number of
maximum iteration. The velocity of each particle is updated

using equation (18).

vj,t+1i = w · vj,ti + c1 · rand · (pBest
j,t
i − x

j,t
i )

+ c2 · rand · (gBest j,t − x
j,t
i ) (18)

The particles update their binary position using velocity
vector and transfer function for feature selection. V-shaped
and S-shaped are well-known transfer function [60], [61].
These names are given in accordance with their shapes.
In this study, S-shaped transfer function is used for binary
conversion since S-shaped function gives better results than
V-shaped function in [61]. Equation 20 defines the sigmoid
transfer function.

Sigmoidt (v
j,t+1
i ) =

1

1+ exp−v
j,t+1
i

(19)

The particle changes its position using equation 20

x j,t+1i =

{
1 rand < Sigmoidt (v

j,t+1
i )

0 rand ≥ Sigmoidt (v
j,t+1
i )

(20)

2) CUCKOO SEARCH
Cuckoo search (CS) is a nature-inspired meta-heuristic algo-
rithm proposed by Yang and Deb [25]. The breeding para-
sitism behavior of the cuckoo birds inspires the algorithm.
With this behavior, the female cuckoos lay their eggs in the
nests of other host birds. The host birds unconsciously grow
their offspring. If the host birds discover in the nest an alien
egg, they will throw it out or desert the nest and build another
nest elsewhere.

In the CS algorithm, each egg in the nest indicates a solu-
tion and each cuckoo egg indicates a new candidate solution.
In [62], the authors describe the following three rules of CS:

1) Each cuckoo chooses a random nest and lays one egg
(a candidate solution).

2) The next generation contains only high-quality (better
solutions) of eggs transferred from the previous gener-
ation.

3) The host bird can discover the alien egg using a pre-
defined probability rate and the number of usable host
nests is a constant number.

In the CS, Levy flight is used to create new solution xnewi
as in equation (21-23) assuming xi = (xi1, xi2, · · · , xiD) is the
position value of ith egg. The calculation of random numbers
from a Levy distribution employs Mantegna’s method in
terms of two normally distributed random numbers (u and v)
as in equation(22) [63].

xnewi = xoldi + α(xi − xg)⊕ Levy(β)

= xoldi + α
u

|v|1/β
(xi − xg) (21)

u ∼ N (0, σ 2
u ), v ∼ N (0, σ 2

v ) (22)

σu =

[
sin(πβ/2) · 0(1+ β)

2(β−1)/2β · 0( 1+β2 )

]1/β
, σv = 1 (23)

where ⊕ represents entry-wise multiplications, α > 0 means
cuckoo’s step size scaling parameter relating to the scales
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of the problem domain, β is Levy flight exponent. u and v
are random numbers and calculated using equation (22-23).
xi represents position of ith egg (solution) and xg represents
the best position in the current population. 0(·) indicates
Gamma function.

In the CS, a discovery operator, that changes the discovered
nests with new nests using pre-defined pa probability, is also
employed.

xnewij =

{
xoldij + rand1(xr1,j(k)− xr2,j(k)) if rand2 > pa

xoldij (k) else
(24)

where xnewij represents the jth element of the ith solution,
rand1 and rand2 are real random numbers in [1, 0], pa rep-
resents discovery probability of CS, xr1,j and xr2,j represent
jth element of solutions xr1 and xr2, where r1 and r2 are
two different numbers between 0 and N , N is the size of the
population.

The CS is used for continuous and binary problems.
To solve binary problems, a binary version of the CS can be
used. A Binary Cuckoo Search Algorithm (BCSA) for feature
selection was introduced in [64]. In this algorithm, continu-
ous values transferred to binary values using a binarisation
operator. Various binarisation operators have been used in the
literature. But, the most popular one is the sigmoid function
formulated in equation (26).

xij(t + 1) =
{
1 if Sigmoid(xij(t)) > rand3
0 otherwise (25)

Sigmoid(a) =
1

1+ e−a
(26)

in which rand3 ∼ U (0, 1) is a uniform distributed random
number, xij(t) indicates the new egg’s value at time step t .

3) GREY WOLF OPTIMIZER
The grey wolf optimizer, is another young bio-inspired
heuristic search algorithm, employed to solve non-linear,
computationally difficult, constrained optimization prob-
lems. The hierarchical and hunting behavior of grey wolves
that perform their activities in a flock inspired the GWO algo-
rithm [26]. The first version of GWO, just as PSO, is designed
to optimize continuous valued problems. A binary version
of the GWO was proposed by Emary et al. [57] for feature
selection.

−→
X (t + 1) =

−→
X p (t)+

−→
A ·
−→
D (27)

where
−→
D is given in equation (28), t represents the iteration

number,
−→
X p is the prey position,

−→
A and

−→
C are defined as

coefficient vectors, and
−→
X indicates the position of the grey

wolf.
−→
D = |

−→
C ·
−→
X p(t)−

−→
X (t)| (28)

Eqs. (29), (30) calculate
−→
A and

−→
C vectors, respectively.

−→
A = 2a · −→r1 − a (29)
−→
C = 2−→r2 (30)

where a decreases linearly from 2 to 0 for each iteration, −→r1
and −→r2 are uniformly distributed random vectors in [0, 1].
The hunting habit is generally led by the alpha wolf. The beta
and delta wolves might attend hunting activities occasionally.
It is assumed that grey wolves, the alpha (best candidate solu-
tion), beta (the second-best candidate solution), and delta (the
third-best candidate solution) have better knowledge about
the potential location of prey tomimic the hunting behavior of
wolves. All wolves, containing the first three best candidate
solutions achieved so far and other search individuals, must
adjust their positions according to the position of the best
search agents using equation (31).

−→
X (t + 1) =

−→
X1 +

−→
X2 +

−→
X3

3
(31)

where
−→
X1 ,
−→
X2 ,
−→
X2 are calculated using Eqs. (32), (33),

and (34), respectively.
−→
X1 = |

−→
Xα −

−→
A1 ·
−→
Dα| (32)

−→
X2 = |

−→
Xβ −

−→
A2 ·
−→
Dβ | (33)

−→
X3 = |

−→
Xδ −

−→
A3 ·
−→
Dδ| (34)

The best three solutions are defined according to their
fitness values.

−→
Xα ,
−→
Xβ , and

−→
Xδ are the three best solutions at

t th iteration in Eqs. (32), (33), and (34).
−→
A1 ,
−→
A2 , and

−→
A3 , are

given as in equation (29), and are calculated using Eqs. (35),
(36), and (37), respectively.

−→
Dα = |

−→
C1 ·
−→
Xα −

−→
X | (35)

−→
Dβ = |

−→
C2 ·
−→
Xβ −

−→
X | (36)

−→
Dδ = |

−→
C3 ·
−→
Xδ −

−→
X | (37)

where
−→
C1,
−→
C2, and

−→
C2 are given as in equation (30)

In this paper, we implemented binarization mechanism
of [57].

X t+1i = Crossover(x1, x2, x3) (38)

where Crossover(x1, x2, x3) is a simple stochastic crossover
process to crossover a, b, and c solutions given in equa-
tion (39). x1, x2, x3 represent binary vectors which are updated
considering the movement of wolves toward the α, β, δ
grey wolves, respectively. x1, x2, and x3 are calculated using
equation (40).

xd =


ad if rand <

1
3

bd
1
3
≤ rand <

2
3

cd otherwise

(39)

Equation (40) is performed to calculate the position of The
leading grey wolves. In equation (40), wolfIndex is 1, 2 and
3 representing α, β, δ grey wolves, respectively.

xdwolfIndex =

{
1 if (xdwolf + bstep

d
wolf ) ≥ 1

0 otherwise
(40)
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where wolf indicates one of α, β, δ, d is dimension in
wolf , and bstepdwolf indicates binary step at dimension d and
calculated using equation (41).

bstepdwolf =

{
1 if cstepdwolf ≥ rnd1

0 otherwise
(41)

where rnd1 is a uniform distributed random number in [0, 1],
cstepdwolf is a sigmoid function.

cstepdwolf =
1

1+ e−10(A
d
1D

d
wolf−0.5)

(42)

where Ad1 and Ddwolf are calculated Eqs. (29) and (35) in the
dimension d .

4) DRAGONFLY ALGORITHM
Another SI method, inspired by behaviors of dragonflies in
nature and introduced by Mirjalili [27], is the dragonfly algo-
rithm (DA). In the algorithm, there are two main processes
namely exploration and exploitation that modeled statically
or dynamically food searching or avoiding the enemy of
dragonflies.

Dragonflies’ swarming behavior and its mathematical
expression of the algorithm implementation are given in the
following steps;

(1) In order to avoid collision with other neighbor individ-
uals, the algorithm uses a separation mechanism mathemati-
cally modeled as in equation (43).

Si = −
N∑
j=1

X − Xj (43)

where X is the position of the current individual, N repre-
sents the size of the neighborhood, and Xj is the jth position
of X .

(2) The second operator, named Alignment, represents
the individuals’ velocity matching taking into account other
neighborhood individuals. This operator is given as in equa-
tion (44)

Ai =

∑N
j=1 Vj
N

(44)

where Vj is the velocity of jth neighborhood individual.
(3)Another operator is Cohesion, which indicates the indi-

viduals’ tendency toward the neighborhood’s center of mass.
This operator is given as in equation (45) mathematically.

Ci =

∑N
j=1 xj
N

− X (45)

(4) In order to survive, each individual has two key behav-
iors, which are moving towards a food source and avoiding
the enemy. Eqs. (46) and (47) represent the mathematical
model of the attraction towards food.

Fi = X+ − X (46)

where X+ is the position of the food source.

Ei = X− + X (47)

where X− is the position of the enemy.
DA employs two vectors named step (1X ) and position (X )

vectors to adjust the position of dragonflies and mimic their
movements. The step vector is calculated as in equation (48):

1Xt+1 = (sSi + aAi + cCi + fFi + eEi)+ w1Xt (48)

where t is the iteration number, w represents the inertia
weight, s demonstrates the separation weight, Si represents
the separation of the ith individual. a, c, f , and e are the
alignment weight, the cohesion weight, the food factor, and
the enemy factor, respectively. Ai represents the alignment
of ith individual, Ci shows the cohesion of the ith individual,
Fi represents the food source of the ith individual, Ei indicates
the position of enemy of the ith individual.
Equation (49) calculates the position vector:

xt+1 =

{
¬Xt , x < T (1xt+1)
Xt , x ≥ T (1xt+1)

(49)

where T (1xt+1) is given as in equation (50).

T (1x) =

∣∣∣∣ 1x
√
1x2 + 1

∣∣∣∣ (50)

D. CLASSIFICATION
To evaluate the effectiveness of the proposed features in terms
of emotion classification, we performed several classifica-
tion experiments using k nearest neighbours (k-NN) [65],
random forest [66] classifiers and support vector machines
(SVM) [67]. For k-NN classifier, k is selected as 1, and
Euclidean distance is selected as the distance metric. All clas-
sification experiments were carried out in Matlab software
with version R2020a.

III. RESULTS AND DISCUSSION
EEG recordings from 32 subjects are split into two categories:
positive and negative emotions. Categories are defined using
the individual ratings of each subject; a valence value less
than or equal to 5 is considered as a negative emotion while
the rest (a value between 5 and 9) is considered as positive.
60-second-long segments with no overlap led to 60 samples
for each video clip resulted in 2400 samples in total for each
subject. We evaluated 3 feature sets; HHT based spectral
features (480 features), PLV based features (256 features),
and a combination of these two sets (736 features).

A. FEATURE SELECTION
Four feature selection algorithms, namely PSO, CS, GWO,
and DA are used for selecting the most salient features. The
intersection of these four selected feature sets is also used.
We employed 5-fold cross-validation to evaluate the perfor-
mance of the proposed EEG feature selection approaches
[56], [58]. α and β parameters are set to 0.99 and 0.01 respec-
tively in equation (14) [57]. Table 1 represents the global
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TABLE 1. Parameter settings for the experiments.

TABLE 2. Average Number of Selected Features for HHT Feature Set.

values and algorithm specific parameter values. Note that
the GWO, and DA have no specific parameters. Figure 2
and figure 3 show the average convergence rates of 10 trials
on HHT and PLV feature sets, respectively. It can be seen
from the figures that the GWO and DA achieve similar global
solutions. However, GWO converges fast in early iterations,
while DA achieves convergence rates similar to GWO in late

TABLE 3. Average Number of Selected Features for PLV Feature Set.

iterations for most of the subjects. These figures show that
newly introduced algorithms, DA and GWO, tend to utilize
global solutions.

The average number of features selected from HHT and
PLV feature sets are shown in tables 2 and 3 respectively.
As can be seen from the tables, although GWO converges
very fast, the average number of features is decreased by only
about 22%. PSO and DA result in similar sizes, decreasing
the numbers by 51.24% and 51.93%, respectively. We also
applied the classification on the feature set which is an inter-
section of the features selected by all methods, named as
Common in the tables. For HHT+PLV feature set, selected
features for HHT and PLV feature sets are combined aris-
ing feature numbers 568.98, 358.85, 465.92, 353.82, and
94.40 for GWO, PSO, CS, DA, and common on the average,
respectively. Note that, the number of features is decreased
from 736 to 94.40, corresponding to an 87.17% decrease,
on average if common features are selected.

B. CLASSIFICATION
k-NN, random forest, and SVM are used for the classification
of the categories. Subject dependent cross-validation, where
each subject is trained and tested independently, is employed
for the evaluation of the performances of feature selection and
classification methods. The use of cross-validation methods
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FIGURE 2. Convergence Curves for HHT feature selection process.

TABLE 4. Classification Results.

on features collected using the standard sliding window tech-
nique is very common in EEG studies. In the cross-validation

scheme, the feature matrix is divided into folds randomly and
then each fold is tested after the system is trained on the rest
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FIGURE 3. Convergence Curves for PLV feature selection process.

of the dataset. However, due to the sliding window analysis,
there will be samples extracted from segments belonging to
EEG signals collected during a particular video stimulus in
both train and test sets with a very high probability. Therefore,
the accuracy obtained might have high values due to the prox-
imity between the segments belonging to the same stimuli.
In a realistic scenario or a real-time experiment; in the training
set, there will be no segments belonging to the stimuli that
will be used for testing. Therefore, the performances reported
using this scheme should be read carefully.

The ultimate goal of the emotion recognition system pre-
sented here is to see how well the system performs for detect-
ing emotions for a subject watching a specific video, while
the system is trained with EEG recordings collected from this

subject as they were watching other videos. For this purpose,
EEG signals recorded during a video that is used for testing
are left completely out of the training dataset. More precisely,
10-fold cross-validation is applied as follows:
• Randomly sort 40 videos, divide them into 10 groups,
• Hold the EEG recordings during videos in ith group,
i = 1, 2, . . . , 10, for test set and train the data by using
the rest of the feature set,

• Repeat the process for all subsets,
• Calculate the average accuracy
A summary of classification results for each feature set and

feature selection method is given in table 4. Average results
for each subject using HHT+PLV feature set and random
forest classifier for all feature selection methods are given
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FIGURE 4. Comparison of accuracies for all and dominant channels.

in table 5 as an example. Experiment results show that the
random forest classifier achieves the best performance for our
problem. Before feature selection, classification accuracies
are 59.53%, 60.02%, and 60.19% for HHT, PLV, and all fea-
ture sets, respectively. Applying selection algorithms, accu-
racies between 59.17% and 60.29% are attained. Features
selected from PLV and HHT+PLV sets by DA algorithm
exceeded the accuracy obtained by the whole feature set after
reducing the number of features by 51.93%. Performance
of commonly selected feature set is also remarkable as the
number of features is deduced by more than 87%. Results
show that the performances of the feature selection methods
are very close to the accuracy rates obtained using the whole
feature set. These results show that swarm-intelligence algo-
rithms achieve comparable accuracy rates after reducing the
feature set by almost 88%. Comparing the type of the feature
sets, we see that better accuracies are attained by combining
the HHT and PLV feature sets for all cases than using them
solely. It is worth to mention that, higher accuracies are
attained using PLV based features than that using spectral
band power-based features. This result shows the existence
of functional brain networks through phase-locking during
emotion regulation.

C. ANALYSIS FOR DOMINANT CHANNELS
Analyzing the selected features from all feature selection
methods we used, we also extracted the most dominant chan-
nels for emotion recognition. For that purpose, we selected
the channels for which at least one spectral or PLV based

TABLE 5. Classification Results For HHT+PLV Feature Set and
Classifier RF.
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TABLE 6. Classification Results for Dominant Channels.

feature is selected in the common feature set for at least 90%
of the training experiments (9 out of 10) for at least 31 sub-
jects. The analysis resulted in 11 dominant channels; F3, F4,
FC5, AF4 in the frontal, T7 in the temporal, C3 and CP2 in
the central, PO3 in the parietal, and O1 and O2 in occipital
regions. This result is expected as emotion recognition is
known to involve multiple brain areas [68]. Previous studies
have shown the association of emotion with the regions our
results reveal. The frontal lobe is reported as the main cortex
area that is related to emotion in the brain [69]–[72]. The
presence of pre-frontal, parietal, and temporal asymmetries
in different bands for valence recognition is shown in [73].
Interestingly, the somatosensory cortex, which is included in
the post-central gyrus, is also shown to have a significant
impact on emotional processing [74]–[77]. An fMRI study
involving images and videos for emotion elicitation shows the
visual cortex activation for emotion encoding [78]–[80].

We repeated the classification experiments involving
only dominant channels for validation. In these runs,
we only used the selected features extracted from dom-
inant channels, for each feature selection method. The
average number of selected features (HHT+PLV) are
128.91+67.05, 81.29+42.39, 105.64+55.32, 80.41+42.25,
and 21.93+11.32 for GWO, PSO, CS, DA, and common
respectively. Note that, this corresponds to about a 65%
decrease in the number of features used for classification with
respect to the numbers selected for all channels. In summary,
feature numbers are reduced by 73.38%, 83.20%, 78.13%,
83.33%, and 95.48% on average for GWO, PSO, CS, DA, and
common respectively when the feature set before selection is
considered.

Average classification results for dominant channels are
shown in table 6. Figure 4 shows the location of the dom-
inant channels and the comparison of classification results
for dominant and all channels using the common feature set
for all subjects. Table and figure show the accuracies for
features selected fromHHT+PLV sets for 11 channels. These
results validate the effectiveness of the dominant channels,
determined by the swarm intelligence based feature selection
algorithms, as the classification results are comparable to the
ones that were obtained by using all channels.

IV. CONCLUSION
Emotions are experiences that involve many functions such
as cognition, memory, and motor functions and possibly
integration of them. Considering the brain being a control
mechanism for all actions we take, the use of electrophys-
iological signals for emotion recognition has become an

emerging research area. This paper has focused on finding
the salient features using swarm-intelligence algorithms for
emotion recognition from EEG signals. We applied 4 algo-
rithms, namely PSO, CS, GWO, and DA, and decreased
the number of features by 22.69%, 51.24%, 36.70%, and
51.93%, respectively. Using the features that are commonly
selected by all methods feature size is decreased by 87.17%.
Classification results show that all of the selected feature sets,
including the common set, achieve comparable accuracies
with the whole set which contains 736 features, approving
the eligibility of the SI algorithms for feature selection.

One of the biggest challenges in EEG signal process-
ing studies is the inter- and intra-subject variabilities [81].
Intra-subject variability corresponds to the differences in the
extracted features from the same subject in separate sessions,
whereas the inter-subject variability points to the differences
between subjects. Therefore, it is arduous to find EEG predic-
tors, even for a specific task. In this study, we also undertook
channel analysis for specifying the electrode locations that
are commonly selected by all subjects for all sessions. Our
analysis resulted in 11 channels distributed over all brain
regions. As emotion is known to be a very complex process
for our brain, that was an expected result supported by a
number of previous studies. We obtained promising results
as the classification accuracies for feature sets selected by
SI algorithms, sets that are obtained by the intersection of
them and also the sets obtained only considering the domi-
nant channels, decreasing the number of features drastically,
are comparable to the other experiments with all features.
In future work, the proposed methods will be tested with
different EEG feature sets and classifiers to achieve higher
accuracies.
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