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ABSTRACT An accurate prediction of water quality (WQ) related parameters is considered as pivotal
decisive tool in sustainable water resources management. In this study, five different ensemble machine
learning (ML) models including Quantile regression forest (QRF), Random Forest (RF), radial support vector
machine (SVM), Stochastic Gradient Boosting (GBM) and Gradient Boosting Machines (GBM_H20) were
developed to predict the monthly biochemical oxygen demand (BOD) values of the Euphrates River, Iraq.
For this aim, monthly average data of water temperature (T), Turbidity, pH, Electrical Conductivity (EC),
Alkalinity (Alk), Calcium (Ca), chemical oxygen demand (COD), Sulfate (SO4), total dissolved solids
(TDS), total suspended solids (TSS), and BOD measured for ten years period were used in this study. The
performances of these standalone models were compared with integrative models developed by coupling
the applied ML models with two different feature extraction algorithms i.e., Genetic Algorithm (GA)
and Principal Components Analysis (PCA). The reliability of the applied models was evaluated based
on the statistical performance criteria of determination coefficient (R?), root mean square error (RMSE),
mean absolute error (MAE), Nash-Sutcliffe model efficiency coefficient (NSE), Willmott index (d), and
percent bias (PBIAS). Results showed that among the developed models, QRF model attained the superior
performance. The performance of the evaluated models presented in this study proved that the developed
integrative PCA-QRF model presented much better performance compared with the standalone ones and
with those integrated with GA. The statistical criteria of R2, RMSE, MAE, NSE, d, and PBIAS of PCA-QRF
were 0.94, 0.12, 0.05, 0.93, 0.98, and 0.3, respectively.

INDEX TERMS Semi-arid region, river water quality, biochemical oxygen demand, principal component
analysis.

I. INTRODUCTION

A. THE IMPORTANCE OF SURFACE WATER QUALITY
MONITORING AND DETECTION

Human life is significantly reliant on the availability of water
because humans depend on water for many activities such as
for drinking, cooking, farming, personal hygiene, industrial
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and manufacturing purposes [1], [2]. Water is also impor-
tant in other activities like biotransformation, electric power
generation, etc. [3]. Owing to the reliance of human life on
water availability, both surface and groundwater bodies are
exposed to various levels of contamination from different
contaminants [4], [5]. This has made the prediction of WQ
a difficult task in recent times and many scholars have dedi-
cated much effort to WQ assessment due to its importance to
human life [6], [7].
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A high level of stress has been experienced over the last
two decades in the area of water resources in the Iraqi
region due to several reasons, such as the damming of
Tigris and Euphrates Rivers, variations in global climate,
and the decrease in the local annual rainfall precipitation
rates [8]-[10]. Water salinity is a critical issue in Iraq that
affects WQ for domestic, agricultural, and industrial pur-
poses [11], [12]. Poor drainage and irrigation practices have
brought about low water table and soil salinization in the
region; agricultural developments and other human activities
have affected the quality of water in the Euphrates Basin.
However, these impacts are not obvious at the point of
water source for irrigation. Therefore, WQ management is
necessary for the effective management of all water-related
resources [13].

B. MACHINE LEARNING MODELS LITERATURE REVIEW
The need for effective, dependable, accurate, and flexible
prediction models has increased recently due to the acknowl-
edgment of the issue of surface water pollution, coupled with
the increasing interest in WQ assessment [14]. It is expected
that these models can precisely describe the mechanisms
of WQ deterioration [15]. Researchers have developed the
idea of surface and underground WQ modeling using soft
computing tools, such as ML models owing to their reli-
ability and accuracy [16], [17]. However, the ML models
demonstrated an inability of the generalization to handle the
complicated and highly nonlinear relationship among the
modeling parameters [18]. Based on the reported literature
(2014-2021), Scopus database indicated that there is a sub-
stantial attention on the BOD simulation using the feasibility
of ML models. Figure 1 reported the major keywords occur-
rence clusters and the time span, used over the literature.
Over 144 keywords were presented indicating the significant
of this topic on modeling river water quality. The idea of
the exploration of new ML models that are capable to solve
environmental engineering problems is always going on and
the research domain of modeling WQ using new sophisticated
models are of interest of researchers and scientists [19]—[21].
Although the literature revealed different version of ML
models applied for surface WQ modeling such as artificial
neural network, kernel models, fuzzy logic, genetic program-
ming, adaptive neuro-inference system models and several
others [7]; however, there are several new versions of ML
models are yet to be explored for modeling surface WQ
phenomena. The efficiency of integrative intelligence models
in WQ modeling has also been noted [9], [36]-[39]. Fur-
ther, although ML models are the commonly used predictive
models in surface WQ prediction, they are still facing several
limitations, such as the need to tune their internal parameters,
the need for time-consuming algorithms, poor generalization
capability, and the need for human intervention during the
modeling process. Hence, there is a need for models that are
flexible enough to address the complicated nature of most
environmental engineering problems [22].
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C. THE SIGNIFICANT OF THE SELECTED CASE STUDY

The accurate determination of BOD is necessary for water
pollution control because it is an important index of good
quality water [23]. This parameter is delicate and tedious to
analyze, especially BOD analysis. BOD presents the approx-
imation of the bio-degradable organic matter in the water and
defines an essential indicator for water pollution. In addition,
BOD is presented as the foremost parameter for the aquatic
system health presentation and its proper quantification can
contribute to development of strategic water resources protec-
tion and safety. Furthermore, for instance, the DO parameter,
the analysis can be adopted in-situ instruments; however,
BOD is recorded for at least five days. Accurate prediction
of WQ parameters in a study area can save cost, energy,
and time; this is why much effort is given to the modeling
approaches when predicting these valuable parameters [24].
The modeling approaches are more important in develop-
ing countries where the budget for environmental quality
assessment and monitoring is low compared to the devel-
oped countries. The research is conducted on the base to
predict monthly scale BOD for Euphrates River located in
Iraq region. Five different ensemble ML models were devel-
oped for this purpose. The selection of those models was
owing to their massive implementation received and con-
firming their potential in hydrological, climatological and
environmental researches [25]-[28]. The obtained modeling
results were compared with several well-established literature
on river WQ prediction of diverse region all around the
world.

D. RESEARCH MOTIVATION AND OBJECTIVES

Several review research articles presented lately on the
progress of ML development for river WQ [7], [29], [30].
The literature review emphasis on the exploration of new
versions of ML models for modeling river WQ due the
drawbacks of the associated limitations with the existed
ML models. For instance, classical models such as artifi-
cial neural network (ANN), fuzzy logic (FL) and support
vector machine (SVM) are associated with the drawbacks
on tuning their internal parameters [31]-[34]. Another issue
reported in the previous studies on the importance select-
ing the significant and related predictors for the targeted
predicted parameters [16], [35]. As the prediction matrix is
highly influenced by the input feature selection, integrating
a prior approach for the better understanding the predictors
effects is an essential step in ML models development. The
previous studies have shown an admirable trend for this
point of view. For instance, the integration of improved Grey
relational analysis (IGRA) algorithm with Long-Short term
Memory (LSTM) predictive model, to simulate the DO con-
centration at the Tai Lake and Victoria Bay [36]. In another
study, water quality index (WQI) was predicted using the cou-
pled Gaussian Naive Bayes and several ML model at Rawal
Lake [37]. Recently, some authors tested the capacity of the
quantum teaching and learning based optimization as feature
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FIGURE 1. The VOSviewer algorithm results for the scopus database research for the surveyed keywords “river
biochemical oxygen demand modeling using artificial intelligence”. 35 research articles were appeared over the time

period 2014-2021.

selection for WQI determination using weighted extreme scholars adopted similar methodologies for surface WQ sim-
learning machine model for groundwater samples collected ulation [39]-[41]. All those studies confirmed the significant
at the Dharmapuri district in Tamil Nadu [38]. Several other of coupled ML models for modeling surface water quality for
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TABLE 1. The descriptive statistics of the water quality data at ramadi city located on the euphrates river.

Statistics Temperature | Turbidity PH EC Alk Ca COD SO, TDS TSS BOD
Mean 21.84 18.99 7.77 1484.43 | 12546 | 86.37 | 11.48 | 383.52 | 1102.73 | 56.79 3.82
Standard Error 0.75 1.38 0.02 11.43 1.13 0.58 0.18 3.00 8.56 4.52 0.05
Median 22 12.45 7.8 1449.5 124 85 11.1 385 1113.5 35 3.7
Mode 21 13.2 7.8 1412 124 85 10.2 381 1095 14 33

Standard 8.26 15.10 0.17 125.23 12.41 6.32 1.93 32.90 93.81 49.51 0.58
Deviation

Kurtosis -0.98 271 0.20 1.33 0.15 0.68 -0.47 5.71 -0.37 0.98 -0.94
Skewness 0.10 1.87 -0.45 1.28 0.76 1.01 0.58 -1.45 -0.40 1.46 0.46
Range 29 66.1 0.8 572 58 28 8.3 237 426 184 2.1

Minimum 9 7.3 7.3 1324 104 77 8.3 212 863 12 29

Maximum 38 73.4 8.1 1896 162 105 16.6 449 1289 196 5

better understanding to the substantial correlation between
the simulated WA parameters.

Hence, the current research was prompted on the base to
explore more reliable and robust soft computing predictive
models. In addition, the investigation of the highly influential
parameters on the prediction of BOD in river located with
semi-arid region. The objectives of the current research are
(i) to explore the capacity of five ML models including
Quantile regression forest (QRF), Random Forest (RF), radial
support vector machine (SVM), Stochastic Gradient Boosting
(GBM) and Gradient Boosting Machines (GBM_H?20) for
river BOD prediction, (ii) to identify the prediction matrix
using the feasibility of the statistical correlation. The pro-
posed ML models were further enhanced on their prediction
capability by integrating two approaches of feature selections
(GA and PCA). The ultimate goal of the current research was
to develop a reliable and robust intelligence model for river
water quality prediction.

Il. CASE STUDY AND DATA DESCRIPTION

This study focused on the prediction of WQ parameters in
the Euphrates River, Ramadi City, Anbar state, Iraq. The
coordinates of the measured point are as follows: 33°26’15”N
latitude and 43°16’52”E longitude (Figure 2). The labo-
ratory measurement was conducted from a large drinking
water plant treatment intake at Ramadi City. The climate
of the region is semi-arid with extreme summer tempera-
ture “‘exceed 45 °C” and cold weather during winter [42].
Sampling was done monthly for 10 years (2004-2013). The
quality of water in the Euphrates River basin is mainly
affected by human activities, especially human domestic and
agricultural activities. The salt level of the river has increased
tremendously along the stream course. Furthermore, indus-
trial discharge of untreated sewage water into the river also
contributed to the sources of contaminants. Therefore, this
study is relevant as it provides an intelligent system for WQ
monitoring of the studied river. Until now, studies are yet to be
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FIGURE 2. Ramadi water quality station location within iraq region.

reported in this perspective, hence, this is a novel contribution
in consideration of the proposed methodology. The statisti-
cal properties of the WQ parameters presented in Table 1.
WQ prediction models can aid in determining the trend of
decline in WQ at any point. BOD and DO have been the
commonly used parameters of WQ for decades, hence, this
study focused on the prediction of both parameters as their
accurate prediction is essential towards easing the protective
initiatives.

IIl. APPLIED ENSEMBLE MACHINE LEARNING MODELS
A. QUANTILE REGRESSION FOREST (QRF) MODEL

QRF model is one of the popular ML models in which
was firstly developed in this study before applying quantile
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regressions at the last model prediction stage to achieve the
quantile RF model. The regression algorithm was applied in
this model since the model output (i. e., BOD) is a contin-
uous parameter. The concept of a RF model is based on the
aggregation of several decision trees to establish the model
output [43] as shown in Figure 3a. A decision tree (DT) refers
to a decision support tool that relies on tree-like structures that
consist of links and nodes to achieve potential model outputs.
The starting point of each DT is a parent node that serves as a
decision point; the parent node keeps creating branches until
a decision is reached.

During the modeling process, the training dataset is first
randomly bootstrapped into sub-training sets (1,...,n) as
in Figure 3a; each of the resulting bootstrapped sub-training
sets are used to establish the DTs for different predictor
parameters combinations starting with the topmost predictor.
The response of each DT is an estimate of the response
parameter; the response for 0.01 & 0.99 quintiles can be
estimated from the number of DTs used to constructs an RF,
while the mean response (i.e., a quantile of 0.50) can be
calculated as the final output of the model. The data within
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the range of 0.01 and 0.99 quintiles represents the prediction
interval percentile. RF analysis demands a critical selection of
the number of DTs, this ranges from some hundreds to thou-
sands of trees. The optimum number of DTs in this study was
determined using the out-of-bag (OOB) error technique [44].
A trained model is achieved when the prediction errors have
been minimized and once this is achieved, the model is said to
be the optimized/best-trained model. In this study, MSE was
used to minimize the total error for each node of each DT.
The error was estimated at each data splitting point — with
the minimum MSE representing the best estimate. The study
by [45] has earlier provided a detailed description of the
formation of a DT and how RF works.

B. RANDOM FOREST (RF) MODEL

RF is a supervised learning approach that combined the bag-
ging ensemble ML algorithm achieved from the classification
and regression tree and the random subspace technique, intro-
duced by Breiman [43]. Despite its simplicity, it is an effective
tool that relies on the “divide and conquer” principle to solve
multi-regression & prediction problems [46]—[48]. It has low
sensitivity to multi-collinearity and achieves stable perfor-
mances on unbalanced datasets. RF adopts the bootstrapping
method in resampling the original dataset to generate subsets
of similar sizes to the original set. Then, the tree construction
is achieved by using the generated subsets, followed by the
pooling of the results (prediction or regression) of the individ-
ual trees to arrive at the final outcome [48], [49]. RF has found
successful application in environmental engineering [9] and
other fields of study [50]. Detailed information on the mathe-
matical formulation of RF models can be found in the studies
presented by [43], [S1], [52]. The randomforest and caret
packages were used to train the predictive model. The RF
model was initiated based on root mean square error-folds
to control the model parameter. Grid search algorithm with
randomly selected parameter.

C. SUPPORT VECTOR MACHINE (SVM) MODEL

This is an ML subcategory that was first proposed and devel-
oped by [53] for addressing both classification & regression
problems. It is a robust approach that is based on the statis-
tical learning theory [54]. The principle of the SVM model
is hinged on first assessing the level of dependence of the
target parameters () on the predictive parameters (x) before
obtaining a regression function using the relation [55]:

f@=y=w-ox)+b ey

where ¢ represents the functions for the replacement of com-
plex nonlinear expressions with linear simpler ones. w is the
regression function weight while b is the regression function
bias; both functions are generated via minimization of the
deviation of f(x) from the observed value (3). SVM adopts
the ¢ -insensitive loss function for the evaluation of this
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deviation (9) [56], [57]:

0, |0 < &
x) — =L@ = 2
Fo sl =L@ =10
The following risk-structure function is also minimized to
obtain the corresponding weight and bias:

1 n
S = sz—i-CZ If x) — yily 3
i=1

The hyperparameters are represented as C and e. The
Lagrange multiplier technique is used to minimize S to
achieve the regression equation in Eq. 4, where the kernel
function is represented as K [53]:

fOO) =" K(x,x)+b )

Numerous kernel functions were tested in this study, and
based on certain performance metrics and time efficiency,
the linear function was selected for this study followed the
reported literature [58], [59]. The regression function of the
support vector machine model presented in Figure 3b.

D. STOCHASTIC GRADIENT BOOSTING (GBM) MODEL
Friedman [60] first developed the GBM algorithm as a com-
bination of the gradient descent with the boosting algorithm.
Hence, GBM was developed as an ensemble learning algo-
rithm that merged boosting and DTs; the new model was built
following the gradient descent path of the loss function of the
earlier model. GBM algorithm was developed for the training
of the classification function F * (X) which will minimize the
loss function between the real function and the classification
function. The loss function distribution is important in the
implementation of the GBM model [60] even though the
model can be applied to all loss functions. Friedman [61]
suggested the surrogate loss function (multi-class log-loss)
for the K-class problem. The mathematical expression of the
loss function is as follows:

K
4 ()’k»Fk(X){() == wlog p(X)
k=1
K
— > wilog [exp (Fi(X))

k=1

K
x /Y exp (FI(X»} )

=1

where X = {x1,x2, ..., x, } represent the input parameter, y is
the output parameter, k represents the number of classes, and
the probability is represented as py(X). This gives rise to the
following equation:

oy (vi, Fj (),
OF (x)

S)im = -
(FiO=Fju-1))¥
=¥ — pr (%) ©)
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where yé‘ — pk (xj) = the existing residuals; hence, K -trees
are induced, leading to the production of K trees each with
L-terminal nodes at iteration m, Ry;,. For each tree, a separate
line search can be used to resolve the terminal node as shown.

Vi = argmin 4 (i, Fet () + ) (7

Xi€Rim

The updating of each of the functions leads to the formation
of the GBM. The GBM algorithm has earlier been detailed
in the study by [62]. The GBM algorithm depends on three
key parameters which are (i) the number of trees (boosting
interactions, M), (ii) the depth of the interaction (the max tree
depth, J), and (iii) the shrinkage (the learning rate, v). Better
performance and generalization of the GBM model depends
on a proper tunning of these hyper-parameters.

E. GRADIENT BOOSTING MACHINE (GBM_H20)

Another popular supervised ML model is the GBM_H20
model which was developed by [60], [61]; it is an effi-
cient tool in solving both classification and regression prob-
lems [63], [64]. Boosting learns multiple classifiers via
manipulation of the sample weights during the training phase
and later linearly merges these classifiers to improve the
classification performance. Friedman presented an extension
of Boosting to regression tasks in 2011 via the introduction
of the GBM to come up with an additive model that can
ensure minimization of the loss function. The GBM model
is first initialized to a constant value that minimizes the loss
function, followed by the estimation of the negative gradient
of the loss function in each iterative training process as the
current models’ residual value. Then, a new RT is trained to
fit the current residual, followed by the addition of the current
RT to the previous model and the updating of the residual. The
algorithmic process is continued until the maximum iteration
number set by the user is attained. The GBM model has been
improved on the aspect of its poor performance (when using
data) by ensuring that the RT is continuously used to fit the
residuals.

F. PRICIPAL COMPONENT ANALYSIS

The principal component analysis (PCA) is a well-recognized
feature selection approach that works based on un-supervised
pattern recognition. It abstracts the frequent pattern that
scores the highest in the simulated matrix [65]. The math-
ematical procedure of the PCA approach is working on the
base to allocate the minimum error between the observed
and predicted values due to the variance of the principal
component [66]. The variance component (ax ;) is calculated
using:

o® (ex) = E [a} ;| = e] e ®)

where ex = [e1,k k.. .eq, k]T, e is the d-by-1 vector,
S is the matrix scatter eigen values. the magnitude of the e
vectors are eigen vector (k value is ranged from 1 to d’). For
the case where d’ < d, where a reduction in the dimension is
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attained, the d’ is calculated through:

d
1
Eo=5 D M ©)

i=d'+1

where Ay presents the scatter matrix of eigen values against
the e;. The variance direction is followed the direction of the
eigen values [67].

G. GENETIC ALGORITHM

GA is arealistic method that is based Darwin’s principle [68].
In the current study, GA was adopted to sort the best fit
predictors using its potential on the base of evolutionary pro-
cess [69]. The successive iterations were calculated then after
the filtered values and the optimal solution configured. The
mathematic aspect of the best value for the optimal feature is
computed as follows [70]:

£ (x™) =kR(x™) (10)

x™ presents the individual feature “predictors water quality
parameters”’, k indicates the constant variable for the selec-
tive pressure between 1 and 2. The last term R (x™) defines
the ranking of the individual features.

VOLUME 9, 2021

IV. MODELING RESULTS AND ANALYSIS
The modeling procedure adopted in this research was exhib-
ited in a form of flowchart presented in Figure 4.

A. PREDICTORS SELECTION
In this study, the development of five different ensemble
data-intelligence models (i.e., QRF, RF, SVM, GBM and
GBM_H20) were established for surface water BOD pre-
diction. In addition, the integration of the PCA and GA
feature selection approaches was investigated as the second
modeling scenario. The models’ performances were com-
pared based on multiple statistical criteria including deter-
mination coefficient (R?), root mean square error (RMSE),
mean absolute error (MAE), Nash-Sutcliffe model efficiency
coefficient (NSE), Willmott index (d), and percent bias
(PBIAS) [71], [72], and graphical presentation. Owing to the
fact that the wise selection of which predictor “water quality
parameters” to be included in the prediction formula, it has
more advantageous effects on overall performance than the
choice of the modeling algorithm itself and thus the feature
selection approaches were employed to identify the minimal
subset of features for optimal learning.

The performance of the feature selection techniques was
compared to the benchmark models comprising a full set of
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data covering potential casual parameters including tempera-
ture (T), Turbidity, pH, EC, Alkalinity )Alk(, Ca, COD, SO4,
TDS, and TSS data. Initially, the collected data was analyzed
in terms of their correlations as shown in Figures 5 and 6.
Figure 5 shows the Pearson correlation coefficient at sig-
nificant level 0.05 between the BOD (predictand) and the
predictors. It is noticeable from Figure 5 that all these param-
eters are more or less correlated with each other and hence
introduce a lot of multi-collinearity when all predictors are
used in a model to predict BOD. The correlation coeffi-
cient values of T-BOD, Turbidity-BOD, pH-BOD, EC-BOD,
Alk-BOD, Ca-BOD, COD-BOD, SO4-BOD, TDS-BOD, and
TSS-BOD were 0.67, —0.25, —0.36, —0.33, —0.28, —0.12,
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0.44, —0.04, —0.20, and —0.27, respectively. According to
the above Pearson correlation coefficients, all the parameters
were significantly correlated at 0.05 level with BOD except
the SO4 and Ca parameters. The T parameter exhibits the
strong positive correlation with the BOD values while the
remaining parameter show inverse significant relationships.
It seems that the biological reactor of this particular case
study is mainly influencing due to the water temperature as
is could be due to the climate characteristics of this region.
Thus, it can be concluded that T, Turbidity, pH, EC, Alk,
COD, TDS, and TSS are significantly associated at 0.05 level
with the BOD.

The statistical results of Goodman and Kruskal tau mea-
surement were presented in Figure 6 in which presenting
the correlation between the input parameters and the target
parameter. The distinguished values of each input parameters
were presented in diagonal elements. The forward and back-
ward tau measures were reported in the form of off-diagonal
elements. The associations from T, Turbidity, pH, EC, Alk,
Ca, COD, SOq4, TDS, and TSS to BOD were 0.24, 0.75,
0.08,0.79, 0.39, 0.20, 0.49, 0.57, 0.79, and 0.52, respectively.
Apparently, all predictors were associated with the predictand
values and thence suggesting of potential predictability from
the selected parameters to BOD. From the above analysis, it is
judgeable that each test presented different concept on the
association between the water quality parameters. Therefore,
the entire data set was used to build the benchmark models.

Using the GA approach, the search of the feature space
was conducted repeatedly within resampling iteration. Hence,
the training data were split according to the 5 fold- cross val-
idation resampling method specified in the control function.
Hence, the entire GA approach was performed in 5 separate
times. For the first fold, one fifth of the data were employed in
the search while the remaining fifth was employed to estimate
the external performance since the data points were not used
in the search. The internal and external average accuracy
estimates computed from the 5-out samples prediction were
exhibited in Figure 7. Using the R software package ““gafs()
function using 100 generation and 50 individuals™, was
implemented to perform the assessment for the chromosomes
of each generation. This was conducted by random forest
model and 5-fold cross validation. Therefore, in the final
search using the entire training set; only 4 features (among
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the ten) were selected at iteration 49 which included T, pH,
COD and TSS with RMSE, R2, and MAE values of 0.3463,
0.7138, 0.2742, respectively based on the external perfor-
mance. Accordingly, the optimal four predictors were used
to build the integrative GA-ML models.

In the same manner, the collected data was analyzed in
terms of their associations using the PCA approach. Figure 8
depicts biplot for the first two most variance components.
As it can noticed that the first component is the most dom-
inant by the T parameter. While the second component was
dominated by pH and Ca. Moreover, the scree plot that
explains the most of variability in the data was plotted as
shown in Figure 9. Where the x-axis and the y-axis represents
the component and the importance of that component, respec-
tively. As it can be seen from the figure that after the second
component there is a significant drop-off to the incremental
impact of each additional component. The eigen value per
component was calculated as given in Table 2. The only
parameter which has an eigen value close to 1 were included.
The idea behind this is that if the eigen value is much less
than 1, then the component accounts for less variance than
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a single parameter contributed. Upon that, the only first four
components were used to build the models.

B. MODELS PERFORMANCES

The performances of the five-ensemble ML models devel-
oped in the study were evaluated based on learning accuracy
using WQ data collected form the Euphrates River. Before
applying the data into the models, it was randomly partitioned
into 75% for training the models and the remaining 25% for
validation [14], [16], [73]. The statistical performance of the
developed five ML models was reported in Table 3. In gen-
eral, the results indicated a highly competitive among the five
models; however, an acceptable level of predictability perfor-
mance was observed. The prediction power of the adopted
models was ranked based on their average performance
across the six statistical measures. The graphical presentation
for the attained results were selected using Taylor diagram
and boxplots over the validation phase. The statistical met-
rics records of R2, RMSE, MAE, NSE, d, and PBIAS form
QRF- GBM_H20 were 0.9, 0.16, 0.07, 0.87, 0.97, and
0- 0.84, 0.19, 0.1, 0.81, 0.96, and 0, respectively (Table 3).
In other words, the lowest RMSE, MAE, PBIAS and the high-
est R2, NSE, and d were from these two models. However,
the remaining models had performances less accurate than
the QRF and GBM_H2O. Figure 10a presented the boxplot
results of the established five ML models in comparison with
the benchmark observed dataset over the validation modeling
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TABLE 2. Eigen values of the principal components of water quality parameters.

PCI PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PCI10 | PCl11
428 197 | 131 | 099 0.63 0.47 0.43 036 | 025 | 015 | 0.09
TABLE 3. The statistical performance criteria of the developed ML models over the calibration and validation phases.
calibration validation
R? RMSE | MAE NSE d PBIAS R? RMSE | MAE | NSE d PBIAS

GBM 0.78 0.26 0.21 0.69 0.93 -0.2 0.73 0.26 0.2 0.61 | 091 1
GBM_H20 0.97 0.1 0.07 0.96 0.99 0 0.84 0.19 0.1 0.81 | 0.96 0
SVM 0.81 0.24 0.16 0.75 0.94 -0.3 0.83 0.21 0.15 0.71 | 0.94 0.3

RF 0.96 0.13 0.1 0.94 0.99 0.1 0.79 0.23 0.17 | 0.67 | 0.93 1.1

QRF 0.99 0.07 0.02 0.98 0.99 0 0.9 0.16 0.07 | 0.87 | 0.97 0

GA-GBM_GA 0.75 0.28 0.22 0.61 0.92 0.2 0.73 0.27 0.21 0.6 | 091 2
GA-GBM_H20 | 0.85 0.22 0.17 0.8 0.96 0 0.72 0.26 0.21 0.63 | 091 0.7
GA-SVM 0.79 0.26 0.19 0.69 0.93 0.1 0.7 0.27 0.21 053 | 09 1.7
GA-RF 0.93 0.17 0.13 0.87 0.97 0.2 0.79 0.24 0.18 0.59 | 0.92 0.9
GA-QRF 0.97 0.11 0.05 0.96 0.99 -0.2 0.85 0.19 0.09 | 0.82 | 0.96 0
PCA-GBM 0.96 0.11 0.09 0.95 0.99 -0.2 0.88 0.17 0.13 0.84 | 0.96 0.3
PCA-GBM_H20 | 0.99 0.06 0.05 0.99 0.99 0 0.89 0.16 0.09 | 0.87 | 0.97 0.3
PCA-SVM 0.94 0.14 0.1 0.93 0.98 -0.3 0.89 0.17 0.11 0.84 | 0.97 0.2
PCA-RF 0.97 0.11 0.09 0.95 0.99 0.1 0.92 0.17 0.13 0.79 | 0.96 0.8
PCA-QRF 0.99 0.04 0.01 0.99 0.99 0 0.94 0.12 0.05 093 | 0.98 0.3

phase. The middle line indicates the magnitude of the BOD
and the whiskers are presented by the minimum and max-
imum magnitudes of the samples. The 25" and 75" per-
centiles are the referred to the lower and the upper edges. It is
clearly can be observed that the QRF model could achieve
the identical prediction accuracy as it is the nearest shape
to the observed dataset. Whereas, the GBM model reported
the worst prediction accuracy in comparison with the other
models. Taylor diagram presented the results in the form of
2-dimensions graph where the observed dataset was indicated
as a circle along the abscissa and other models were exhibited
their performance based on the distance from the observed
data based on the RMSE, standard deviation and the corre-
lation statistic (Figure 10b). In harmony with the boxplot,
the QRF model was presented the nearest coordination to the
observed dataset and the GBM model was the furthest. The
correlation coefficient of the QRF model was within the range
of 0.95 and the centered pattern RMS difference between the
two pattern was 0.16.

The closest distribution around the line 1:1 was observed
from the QRF model with values of Rz, RMSE, MAE, NSE,
d, and PBIAS equal to 0.85, 0.19, 0.09, 0.82, 0.96, and 0,
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respectively. While the remaining models performed with less
accuracy than QRF. The boxplot of the results obtained from
the evaluated the integrative GA-ML modelling methods dur-
ing the validation stage were given as shown in Figure 11a.
With the same manner of the benchmark models, the distribu-
tion of the QRF model was the most similar to the observed
followed by GBM_H20>GBM> SVM>REF. Taylor diagram
(Figure 11b) confirmed that the optimal performance was
from the QRF model while the RF and SVM are the furthest,
and the other evaluated methods in between. The correlation
coefficient between the QRF and the observed data is less
than 0.95, and the centered pattern RMS difference between
the two patterns is ~0.19. The performances of the integrative
GA-ML models were not as good as to those from the bench-
mark models. Indicating that the selected features by the GA
was not representative to the entire data of BOD.

Overall, the applied ML models using the PCA approach
performed better than GA approach by producing the
lowest prediction error. However, QRF outperformed the
GBM_H2O0 in terms of the statistical performance metrics.
R?, RMSE, MAE, NSE, d, and PBIAS of QRF were 0.94,
0.12, 0.05, 0.93, 0.98, and 0.3, respectively. While those of
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FIGURE 11. a) Boxplot and b) Taylor diagram for each of the integrative
GA-ML models.

GBM_H20 were 0.89, 0.16,0.09, 0.87,0.97, and 0.3, respec-
tively. The performance from QRF and GBM_H20 was fol-
lowed by SVM> GBM> RF. The boxplot of the results
obtained from the evaluated the integrative PCA-ML mod-
elling methods during the validation stage were analyzed as
shown in Figure 12a. It can be confirmed that the distribution
from QRF was the most similar to that from the observed. The
interquartile of the QRF model was almost the closest one to
the observed values. Then followed by GBM_H20>GBM>
SVM>REF. This fact was further confirmed by Taylor diagram
(Figure 12b) which prove that the optimal performance was
from the QRF model while the RF and SVM were the worst,
and the other evaluated methods in between. The correlation
coefficient between the QRF and the observed data is greater
than 0.95, and the centered pattern RMS difference between
the two patterns is ~0.12. The subset selection using the PCA
approach outperformed that of the benchmark and GA-ML
models.

V. DISCUSSION

The redundant and irrelevant predictors significantly dete-
riorate the performances of regression models and causes
overfitting problem in the prediction models. Therefore,
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extracting a smaller subset of predictors with most relevant
predictors might be useful since it saves time in data collec-
tion and computation [74], [75].

In this study, two-feature selection were integrative with
five different ensemble learning artificial intelligence mod-
els (i.e., QRF, RF, GBM_H20, GBM, SVM) in order to
improve the surface BOD water quality prediction accuracy
at the Euphrates River. These two-feature selections can be
broadly categorized into filter methods (PCA) and wrap-
per methods (genetic algorithm) [76]. It was concluded that
the performance from PCA outperforms the predictability
performances of GA approach and the benchmark models.
The GA works by searching the space of possible feature
subsets and then evaluating a subset of features using a ML
algorithm. This method is known as greedy algorithms owing
to the fact that they aim to find the best possible combination
of features, which result in the best performant algorithm
model [77]. This in turn would be computationally expensive,
and impractical in the case of exhaustive search. While in
PCA, each predictor is evaluated with a statistical perfor-
mance metric and then ranked according to its performance
indicator. Then after, the top-performing features is selected
through the truncation selection before applying a ML mod-
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els. Hence, the method is considered as a pre-processing
step as it doesn’t consider the complex interactions between
predictors and are independent of learning algorithms [78].
As mentioned earlier, it is well identified that the PCA method
is computationally efficient [79]. However, one shortcoming
was pointed when applying this method is being stuck in local
optimum when the complex interactions among predictors
are ignored [79], [80]. Many researchers argued that wrapper
methods (the GA) take into consideration the interaction
among predictors but they are not as computationally efficient
as filter methods (the PCA) because of the larger space to
search [81]-[83]. Itis well pointed out that the main drawback
of applying GA is the necessity to be applied with a higher
population size and larger number of generation, which are
mostly time consuming [76]. It is prevailed that the optimal
features selection returns by GA and the better the network
perform in prediction can be attained when there are a large
population size and number of generations. Small data set for
feature selection may cause the problem of overfitting which
is why the performance of GA in this study was not superior
in comparison to the baseline models.

The combination of PCA with quantile regression forest
model outperforms all the applies models in terms of the
statistical performances criteria. In QRF model, the con-
ditional quantiles can be inferred which was introduced
by Meinshausen [84] as a generalization form of random
forests [43]. The robustness of QRF method attributed to its
non-parametric accurate way of estimating conditional quan-
tiles for high-dimensional predictor parameters. The method
is proved to be consistent when applied with multiple differ-
ent scenarios, suggesting that the algorithm is competitive in
terms of predictive power.

It is worth to mention that span of the dataset used for the
current study provided a satisfactory information for the ML
models development and the learning process. It is true that
several data span were adopted over the literature; however,
in this study, the monthly scale of ten years observations were
adequately construct the ML models.

The current research modeling is associated with some
limitations such as tuning the internal parameters of the
SVM model with other advanced non-linear function [85].
In addition, using metaheuristic optimization algorithms can
be another option to enhance the performance of the ML
models learning process [86].

VI. CONCLUSION

This study was proposed five relatively new explored ML
models for BOD of surface WQ prediction. These models
were considered in this work as a robust approach towards
the prediction of WQ parameters rather than relying on lab-
oratory analysis. Further enhancement, two feature selection
approaches (GA and PCA) were integrated with the devel-
oped ML models to enhance their predictability performance.
Various categories of water parameters, including physical,
chemical, and biological parameters were used for the devel-
opment of the proposed models as the input attributes. The
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data for the model construction was 10 years period lab-
oratory information covering 2004-2013. The outcome of
the research showed that PCA-QRF model provided a reli-
able performance of the BOD prediction compared to the
other established models. Furthermore, the proposed model
exhibited less approximation of the input parameters that
are extremely for the catchments with less environmental or
ecological information. Generally, the proposed ML models
performed an accurate prediction of the WQ parameters of the
Euphrates River. Future studies are aimed at the prediction of
other WQ parameters, as well as the inclusion of more input
attributes, such as climatological or hydrological factors.
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