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ABSTRACT Biological pairwise sequence alignment can be used as a method for arranging two biological
sequence characters to identify regions of similarity. This operation has elicited considerable interest due
to its significant influence on various critical aspects of life (e.g., identifying mutations in coronaviruses).
Sequence alignment over large databases cannot yield results within a reasonable time, power, and cost.
heuristic methods, such as FASTA, the BLAST family have been demonstrated to perform 40 times
faster than DP-based (e.g., Needleman–Wunsch) techniques they cannot guarantee an optimum alignment
result An optimized software platform of a widely used DNA sequence alignment algorithm called the
Needleman–Wunsch (NW) algorithm based on a lookup table, is described in this study. This global
alignment algorithm is the best approach for identifying similar regions between sequences. This study
presents a new application of classical machine learning (ML) to global sequence alignment. Customized
ML models are used to implement NW global alignment. An accuracy of 99.7% is achieved when using a
multilayer perceptron with the ADAM optimizer, and up to 2912 Giga cell updates per second are realized
on two real DNA sequences with a length of 4.1 M nucleotides. Our implementation is valid for RNA/DNA
sequences. This study aims to parallelize the computation steps involved in the algorithm to accelerate
its performance by using ML algorithms. All datasets used in this study are available from https://ieee-
dataport.org/documents/dna-sequence-alignment-datasets-based-nw-algorithm.

INDEX TERMS Bioinformatics, DNA, RNA, pairwise sequence alignment (PWSA), Needlema–Wunsch
(NW) algorithm, machine learning (ML) algorithms, multilayer perceptron (MLP), XGBoost algorithm.

CONTRIBUTION: This study presented six DNA/RNA sequence alignment datasets for one of the most common alignment
algorithms, namely, the Needlema–Wunsch (NW) algorithm. It proposed a fast and parallel implementation of the NWalgorithm
by using machine learning techniques. This research is an extension and improved version of our previous work [1]. The current
implementation achieved 99.7% accuracy by using a multilayer perceptron with the ADAM optimizer and up to 2912 Giga cell
updates per second on two real DNA sequences with an of length 4.1 M nucleotides. Our implementation is valid for extremely
long sequences by using the divide-and-conquer strategy.

I. INTRODUCTION
Bioinformatics has developed due to the need for under-
standing the code of life, i.e., deoxyribonucleic acid (DNA).
It is an interdisciplinary research area that uses the principles
of engineering, mathematics, and computer science to solve
issues related to biology. Bioinformatics is an integration of
biology and informatics because it includes the innovation of
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using computers in the measurement, recovery, control,
and appropriation of information related to natural macro-
molecules, such as DNA, RNA, and proteins. Research
endeavors in this field include genome assembly, sequence
alignment, drug design, gene finding, drug discovery, protein
structure alignment, and protein structure prediction [2].

Inside each cell in the human body is a complex
molecule known as the ‘‘hereditary material’’ or DNA, which
encodes the genetic instructions required for human develop-
ment, functioning, and reproduction. DNA consists of two
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complementary strands built from four simple units called
chemical nucleotides (NTs): adenine (A), cytosine (C), gua-
nine (G), and thymine (T). The four NTs comprise a four-
letter set {A, C, G,}. Nearly all the cells in the human body
contain similar DNA, and the majority of DNA is found
in the cell nucleus. The human DNA has approximately
3 billion NTs. DNA is one of the most important examples
of a biological sequence, and it can be represented using a
long string of the letters ACGT [3].

Ribonucleic acid (RNA) is ‘‘a complex compound of high
molecular weight that functions in cellular protein synthesis
and replaces DNA as a carrier of genetic codes in certain
viruses. It consists of four ribose NTs or nitrogenous bases:
A, G, C, and uracil (U).’’ [4] U replaces T, which is present
in DNA. Thus, the alphabet for an RNA sequence is also a
four-letter set {A, C, G,}.

Pairwise sequence alignment (PWSA) is one of the most
essential tasks in bioinformatics. It involves arranging a pair
of genetic sequences (e.g., DNA and RNA) of characters
to determine regions of similarity. It intends to identify the
most optimal alignment with the highest total score, i.e., the
maximum number of base-to-base matches, without altering
the order of bases in either sequence. In addition, gap-to-gap
matches are prohibited. Mismatches and gaps can be con-
sidered mutations and indels, respectively [5]. The computa-
tion time of an optimal PWSA increases proportionally with
respect to the length of sequences. Consequently, producing
timely results for large-scale problems requires more efficient
algorithms and the use of parallel computing algorithms.
PWSA can be used to identify the location of mutations
between two viruses (e.g., coronaviruses), and this location
can be used as a reference for the manufacture of coronavirus
vaccines [6].

Various approaches for sequence alignment have been
introduced. They include the dot-matrix technique; dynamic
programming (DP) based algorithms, such as the Needleman
–Wunsch (NW) algorithm, the Hirschberg algorithm for
global alignment, the Smit–Waterman (SW) algorithm,
the Gotoh algorithm, and the Miller–Myers algorithm for
local alignment; and word techniques (i.e., heuristic meth-
ods). Although heuristic methods, such as FASTA, the
BLAST family, and SIM2, have been demonstrated to per-
form 40 times faster than DP-based techniques, e.g., central
processing unit (CPU)-based serial implementation of the
SW algorithm, they cannot guarantee an optimum alignment
result. That is, the output of these heuristic methods is only
an approximation of the optimal solution. The NW and SW
algorithms are widely known DP-based PSWA algorithms.
They ensure that the most optimal alignment is found for
a specified set of scoring functions from a mathematical
perspective, and they require O(MN) calculations steps and
runtime. Here, M denotes the length of the first sequence,
and N indicates the length of the other sequence. That is,
the runtime is proportional to the length of the sequences.
These algorithms become time-consuming and require a huge
number of calculations when aligning extremely long or

TABLE 1. Alignment result examples of the SW and NW algorithms.

multiple sequences (i.e., more than two sequences). Hence,
optimization methods, such as Mille–Myers, and Hirschberg,
can optimize space complexity into O(M+N), but are oth-
erwise similar to NW and also require O(MN) runtime [7].
In general, the output of DP-based sequence alignment algo-
rithms is classified into either global or local alignments.
Table (1) provides examples of the alignment results of the
SW and NW algorithms. Another important aspect is related
to the alignment array of both algorithms. The text high-
lighted in green is the real alignment results when the SW
algorithm is used. In contrast with the SW algorithm, the NW
algorithm displays the complete set of input letters in the
alignment result or array. As shown in Table (1), the align-
ment result is reshaped as a 1D array rather than a 2D array
in the current study to aid the design process.

The remainder of this paper is organized as follows. The
background is provided in Section II. Related work is pre-
sented in Section III. The problem is defined in Section IV.
Our proposed algorithm, computational parameters, and class
reduction are described in Section V. The discussion and
evaluation of the results are found in Section VI. Conclusions
are drawn in Section VII, and the future directions of this
research are introduced in Section VIII.

II. BACKGROUND
A. NW ALGORITHM
The NW algorithm is a type of pairwise sequence alignment
algorithm based on D; it is mainly used to obtain the optimal
global alignment between two biological sequences (e.g.,
DNA, RNA, and protein) in O(MN) time and space. The NW
algorithm is divided into four phases: matrix initialization,
similarity score calculation, traceback, and result genera-
tion [8]. Figure 1 shows the pseudocode of the algorithm for
computing the scoring H matrix.

However, this algorithm requires too long running time
(O(MN)) when aligning two, extremely long sequences. Our
work aims to solve this problem (i.e., it accelerates the
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FIGURE 1. Pseudocode of the NW algorithm for computing the scoring H
matrix.

algorithm speed and improve the length of sequences) using
ML algorithms. According to DP and the Divide & Con-
quer strategy, the sequence alignment problem (e.g., two
long sequences) can be divided into smaller sub problems
(two sequences with a length of 4NTs). Then, the smaller
sub problems can be solved optimally, and their results can
be used to construct the optimal result to the main prob-
lem. In addition, it Can be applied to problems that con-
sist of overlapping sub-problems (e.g., two unequal length
sequences).

B. MACHINE LEARNING (ML) TECHNIQUES
In the current study, the performance of 15 state-of-the-
art techniques in predicting optimal sequence alignment
based on the NW algorithm is investigated. These techniques
includemultilayer perceptron (MLP), support vectormachine
(SVM), and the XGBoost classifier. In the two succeeding
subsections, we briefly describe the top two techniques used
in the current study (i.e., MLP and XGBoost). In addition,
to the best of our knowledge, this is the first time in whichML
is used in sequence alignment and the first implementation
of sequence alignment datasets based on global alignment
techniques (NW algorithm).

C. MLP
Artificial neural networks (ANNs) comprise a group of effi-
cient and flexible methods that are used for classification and
regression tasks in various real-world problems because of
their inherent learning capability.

MLP is a type of ANN that contains three primary layers:
the input, hidden or intermediate, and output layers. Each
layer contains a large number of processing elements, called
artificial neurons. The input layer contains the input infor-
mation for a task, and the output layer contains the target
solution for a task.Moreover, the hidden or intermediate layer
is responsible for data processing and transmission between
the input and output layers. It also deals with the nonlinearity
and complexity of a problem. In addition, MLP requires a
small training set and can be easily implemented [9], [10].

In MLP, each neuron j in the hidden or intermediate layer
obtains the sum of its input variables xi after multiplying them
by the related connection weights wij and then computes its
output y as a sum of products [11]. Mathematically,

yi = f
(∑

wij × Oi
)

.

Scikit-learn uses three solvers or weight optimization
algorithms [12]: stochastic gradient descent (SGD; limited-
memory Broyde–Fletcher–Goldfarb–Shanno (L-BFGS),
which is an optimizer in the family of quasi-Newton method;
and ADAM, which is an effective and popular SGD-based
optimizer introduced by Kingma et al. [13].

D. XGBoost
XGBoost stands for extreme gradient boosting. This algo-
rithm is a type of ensemble technique that includes stacking,
bagging, and boosting methods. Boosting methods comprise
a group of low-accuracy classifiers used to develop a highly
accurate classifier (i.e., a strong classifier provides a low
error rate) through optimization steps for every new tree that
attaches. These algorithms are less affected by the overfitting
problem. XGBoost has been proven to push the limits of
computing power for boosted tree algorithms. It is approx-
imately 10 times faster than traditional ML methods, and it
exhibits the advantage of parallel processing (i.e., it uses all
the cores of the machine). In addition, XGBoost allows the
use of a wide variety of computing environments, and it can
be handled by a variety of programming languages (e.g., Java,
Pytho, R, and C++) [14], [15].

III. RELATED WORK
Khaled et al. [16] demonstrated a novel implementation that
accelerated the PWSA algorithm for DNA sequencing by
using the general-purpose graphics processing unit (GPU)
architecture apart from theDP techniques provided by the SW
algorithm. Their proposed parallel computing platform and
model uses CUDA R©, which was created by Nvidia R©. This
implementation can achieve 7.064 ms for a pair of sequences
with a length of 1024 NTs (at threshold k = 1).

A parameterizable implementation on CUDA-compatible
GPUs [17] used the divide-and-conquer (D&C) strategy to
calculate the alignment matrix by dividing the entire matrix
computation into small submatrices and allocating the avail-
able number of threads and memories to each submatrix. This
technique achieved up to 4.2 Giga cell updates per second
(GCUPS) on the Swiss-Prot database on GeForce 8800 GTX,
and it was 15 times faster than the CPU implementation.
However, the performance of this implementation deterio-
rates as query sequence length increases.

Chaudhary [18] demonstrated a new parallel approach
of the NW algorithm. This approach uses skewing trans-
formation for the traversal and calculation of the DP
matrix. The execution times of the sequential CPU-based
and parallel GPU-based implementations were compared.
The GPU-based implementation achieves up to six times
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performance improvement compared with the sequential
CPU-based implementation. This technique takes approx-
imately 12 s to align two sequences with a length of
14336 NTs.

In [19], a novel framework for accelerating pairwise SW
sequence alignment using the CUDA parallel paradigm was
presented on Nvidia R© GPU. The key idea is to implement a
new algorithm that assigns different NT weights by using a
GPU architecture and then merging the subsequences of the
match by using a CPU to achieve optimum local alignment.
However, this framework was tested on extremely small
sequence sizes ranging from 16 base pairs (bps) to 1024 bps.

In [20], the researchers aimed to parallelize the computa-
tion involved in the SW algorithm to accelerate performance
by using CUDA. They introduced a heterogeneous anti-
diagonal approach that benefits from the interaction between
the CPU-based serial design and the GPU-based parallel
design. This technique is valid for extremely long sequences
and can align two sequences with a length of 3 M NTs
in 29499 s (computational time). In addition, the computa-
tional time of their proposed technique increases gradually as
sequence length increases, whereas that of the serial approach
increases rapidly.

A new parallel method for the SW algorithm was intro-
duced in [21]. This method utilizes the parallelism of the
columns of the similarity matrix to parallelize the SW
algorithm on a heterogeneous system based on CPU and
GPU. This approach achieves 37 times higher speed than
OSEARCH (a sequential algorithm), and it exhibits the
advantages of CPU and GPU. However, it fixes the target
sequence length to 361 bps.

In [22], the authors intended to improve the performance
of the NW algorithm through three implementations that are
a mixture of specialized software and hardware solutions on
large-scale input without affecting accuracy. Their experi-
ments showed that the GPU-based implementation is better,
achieving performance that is 72.5 times faster than that of
the sequential implementation. Aligning two sequences with
a length of 20 k NTs took only 0.599 s (running time).

The efficiency of sequence alignment based on a paral-
lel multithreaded model design of the NW algorithm was
investigated in [23]. This model was then verified via a
multithreaded parallel program implementation that utilized
OpenMP. This model took 1157.830 s (i.e., 19 min) to align
two sequences with a length of 50 k NTs.

The 1D pairwise convolutional neural network (CNN)
algorithm described in [24] failed to align two long sequences
with lengths of 24343 NTs and 42028 NTs. This finding
implied that considerable memory is required to use this
method in aligning a pair of extremely long DNA sequences.

By contrast, our ML model can align two long DNA or
RNA sequences without requiring much memory.

Our technique is based on the D&C strategy. It places
certain constraints on the length and type of a sequence, i.e.,
an equal-length DNA or RNA sequence used with a fixed
length of four, which, in turn, can reduce the steps required to

TABLE 2. Binary and decimal representations of DNA NTs.

FIGURE 2. (a) Proposed parallel workflow and (b) traditional NW
algorithm sequential workflow.

implement the NW algorithm. In accordance with the D&C
strategy, the alignment process (i.e., the primary problem)
can be divided into smaller subproblems. Then, the smaller
subproblems can be solved optimally, and their results can
be used to construct the optimum solution for the primary
problem.

As shown in Figure 2, the general workflow of the NW
algorithm has four major steps: initializing, calculating the
scoring matrix, performing traceback, and generating results.
These steps are unnecessary in our proposed algorithm. Thus,
our technique can decrease the runtime and the required
number of calculations of the alignment algorithm. Our pro-
posed algorithm regards DNA sequence alignment as a text
classification problem. This study uses classical ML algo-
rithms to implement the NW algorithm based on a limited
number of output classes or alignment patterns. Table (2)
provides the binary and decimal representations of DNANTs.
Table (3) presents an example of two DNA sequences and
their corresponding binary and decimal representations. Each
letter is converted into 2 bits in accordance with the binary
representation and 1 digit in accordance with the decimal
representation.

IV. PROBLEM DEFINITION
Biological sequence alignment algorithms are time-
consuming even when their implementation uses accelerating
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TABLE 3. Examples of two DNA sequences and their corresponding
binary and decimal representations.

hardware platforms because of the following reasons. (1) The
number of biological sequences (i.e., DNA sequences) and
the sequence length are increasing with time (i.e., the big
data problem). (2) Common algorithms (i.e., NW and SW
algorithms) that are used to align the sequences require
O(MN) calculation steps (i.e., initialization, matrix filling,
traceback, and result generation) and consume O(MN) time
(M and N are the lengths of the two input sequences).
(3) Basic sequence alignment algorithms are internally
dependent on the sequential process that consists of four
steps, and each step is dependent on previous steps. (4) The
hardware implementation of sequence alignment algorithms
that uses multi-core processors, GPU, or field-programmable
gate array (FPGA) does not provide an effective solution to
sequential process problems, which affect system speed and
memory requirements. (5) DP algorithms guarantee optimal
alignment results, although they are slower than FASTA and
BLAST. Moreover, they require extensive computation time
and memory due to the sequential processes, and such time
and memory are proportional to the length of the sequences.
Although FASTA and BLAST are fast, they do not guarantee
optimum alignment. (6) Most of the studies discussed in
the previous section (RELATED WORK) cannot deal with
extremely long sequences by using parallel or sequential
implementations.

Our proposed algorithms depend on the parallelization of
NW for DNA/RNA sequences by using fast and efficient
ML algorithms under certain constraints to overcome most
of the issues that arise because of the sequential process
problem. This technique is also valid for extremely long
sequences.

V. PROPOSED ALGORITHM
In the current study, we propose the use of equal-length
sequences (i.e., multiples of four N = 4, 8, 12, . . .) that can
be applied to DNA or RNA sequences because DNA and
RNA sequences consist of four letters of the alphabet that
represent the four NTs.Meanwhile, protein sequences consist
of 20 letters. The alignment type used in the present study is
a pairwise sequence, and our proposed technique is applied
to one of the commonly used global alignment algorithms
(i.e., the NW algorithm). In addition, our implementation is
based on a lookup table or dataset construction. The input
of the dataset (features or attributes) is two DNA sequences
in binary or decimal representation, and the target is the

TABLE 4. Dataset of computational parameters.

alignment array category. The NW algorithm presents the
complete set of input letters in the alignment array.

Our implementation constructs a dataset of all feasible
combinations of the two DNA input sequences after convert-
ing the DNA sequence from alphabets into binary or decimal
representations. The dataset presents each feasibleDNA input
sequence combination with the alignment result or alignment
array (target) depending on the combination of DNA input
sequences and computational parameters.

Two input DNA sequences exist, and each sequence con-
sists of four letters, implying that each sequence will require
8 bits for binary representation or four digits for decimal
representation. The total number of bits required for binary
representation is 16 bits or eight digits for decimal represen-
tation. The total number of rows (possibilities) in the dataset
or truth table is 216, which is equal to 65536 rows. A classical
MATLAB built-in function is used to obtain the alignment
for each sequence pair for the NW algorithm. The alignment
array produced from the MATLAB function in the character
array consists of three rows. The two sequences appear in the
first and third rows, and the symbols representing the optimal
global alignment for these sequences appear in the second
row. For the proposed algorithm, the alignment arrays are
reshaped into one row. Therefore, we have a dataset that
consists of two DNA sequences (16 bits) as the input features
and global alignment arrays as the output target, instead of
applying all the sequential steps and equations to the global
alignment algorithms to obtain the scoring matrix and align-
ment array. Table (4) lists the computational parameters used
in the current study.

Table (5) presents a portion of the truth table for the
NW algorithm. The information in this table is arranged
as follows. The first to fifth columns list the row num-
ber, binary representations, decimal representations, DNA
sequences related to the binary data, and global alignment
arrays, respectively, after they are reshaped into a single
row. Notably, all the sequence letters appear in the global
alignment array, but only the matched letters appear in the
local alignment array.

The alignment arrays for global alignment are analyzed.
Table (6) lists the numbers of unique and repeated alignment
arrays. Evidently, no repeated alignment arrays are found for
global alignment because all the input DNA letters are fully
represented in the alignment array. These alignment arrays
are then reduced into a specific number of classes. Table (7)
provides the symbols used in the alignment array and their
corresponding description and function.
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TABLE 5. Portion of the NW algorithm.

TABLE 6. Number of unique and repeated alignment arrays for the NW
algorithm.

TABLE 7. Symbols, description, and function.

A. DETERMINING THE SUBSTITUTION MATRIX AND GAP
PENALTY SCHEME
A substitution matrix assigns a score for match or mismatch
to each pair of bases or amino acids. Many substitution
matrices, such as the BLOSUM series (50, 62) or the PAM
series (80, 250), are available for sequence alignment. In this
study, BLOSUM 50 is configured as the scoring matrix, i.e.,
s(a_i, b_j), to calculate the alignment matrix score H(i, j) [25].

A gap penalty function determines the score cost for open-
ing or extending gaps. Gap penalties have two types: linear
and affine.

A linear gap penalty scores all opening and extending gaps
(i.e., indels) equally. This study adopts a linear gap penalty
cost of five Wk = kW1 where W1 is the cost of a single gap,
and k indicates gap length.

Gap penalty is directly proportional to gap length. When a
linear gap penalty is imposed, the scoring matrix of the SW
algorithm can be presented as follows:

Hij = max


Hi−1,j−1 + s(ai, bj),
Hi− 1, j−W1,

Hi,j−1 −W1,

0,

where Hi−1,j−1+s(ai, bj) is the score of aligning ai and bj, and
0 indicates no similarity up to ai, and bj. The scoring matrix
of the NW algorithm can also be presented as follows:

Hij = max


Hi−1,j−1 + s(ai, bj),
Hi− 1, j−W1,

Hi,j−1 −W1,

where Hi−1,j−1 + s(ai, bj) is the score of aligning ai, and bj.

B. CLASS REDUCTION FOR THE NW ALGORITHM
Three class reduction techniques are used in this study. The
first technique reduces the number of classes from 65536 to
254. The second technique reduces the number of classes
from 254 to 239, and the third technique reduces the number
of classes from 239 to 221. As shown in Table (8), the final
column contains an alignment array after replacing each letter
with an asterisk. This replacement reduces the number of
classes to 254 instead of 65536 as shown in Table (9). The
final column in Table (10) lists the proposed indices for each
pattern. These indices are subsequently used as the target
output for the ML algorithms.

The second reduction technique depends on merging all
the mismatch conditions into one, e.g., (‘∗∗∗∗::::∗∗∗∗’). This
technique reduces the number of classes to 239 instead of 254.
The final reduction technique is based on removing all the
classes represented in less than 10 instances in the dataset.
That is, we have six datasets, and three of them have a binary
input (16 bit) and the other three have a decimal input (eight
digits). In addition, the first two datasets have 254 output
classes, the next two datasets have 239 output classes, and
the last two datasets have 221 output classes.

VI. DISCUSSION AND RESULTS
A Dell G3 laptop with Intel R© Core i7-9750H six-core
2.60 GHz CPU, 16 GB RAM, Nvidia GeForce GTX 1660 Ti
with Max-Q design, and 500 GB SSD with MATLAB 2020a
64 bit, Anaconda with Orange3 (version 3.26), and PyChar
community 2020 running on Windows 10 64-bit operating
system is used in this study. Dataset implementations of the
NW sequence alignment algorithms are written in MATLAB,
and the other ML algorithms are implemented using Python
with Orange library and scikit-learn library.
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TABLE 8. NW alignment array after using an asterisk for alignment array and label encoding.

TABLE 9. NW alignment arrays after replacing each letter with an asterisk.

TABLE 10. Label encoding for 254 alignment patterns.

Fifteen ML classifiers, including MLP, SVM, decision
tree, and SGD, are selected. In addition, several ensemble
methods are used as averaging techniques. (i.e., bagging
method and random forest classifier) and boosting strategies
(i.e., Adaboost and XGBoost classifier). These methods are
trained and evaluated on six datasets, as shown in Table (11).
We adopt 10-fold cross-validation for the training phase. The
datasets are tested with and without shuffling during the
training phase but only with shuffling (class randomization)
during the evaluation phase.

The original dataset is the third dataset. It has a binary
input of 16 bits and 254 classes. The secondary datasets are
generated from the original dataset by first converting the 16-
bit binary input into an input with eight decimal digits and
then merging all the fully mismatched cases into one. This
process reduces the number of classes from 254 to 239. The
first two datasets have a decimal input of eight digits and
different numbers of classes (254 or 239) as the target or
output data. Moreover, the next two datasets have a binary

FIGURE 3. Block diagram of our proposed workflow.

input of 16 bits and different numbers of classes (254 or 239)
as the target or output data. The last two datasets have the
lowest number of instances with 221 classes as the target.
Figure 3 illustrates our proposed workflow in this study.
Notably, some steps are not recommended, as indicated in the
figure.

Five common tasks are typically performed during data
preparation for ML application. These tasks are data cleaning
(i.e., detecting and correcting errors, such as missing val-
ues, in the dataset); data transformation (e.g., discretization,
one-hot encoding, normalization, and standardization; fea-
ture selection; feature engineering (i.e., deriving new input
variables from the available variables in the dataset); and
dimensionality reduction, such as principal component anal-
ysis (PCA) and linear discriminant analysis [26].

A. DATA CLEANING, TRANSFORMATION, AND REDUCTION
In our case, we do not recommend data cleaning because
no data are missing. Moreover, no duplicated data (i.e.,
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TABLE 11. Description of datasets.

TABLE 12. Feature selection by using a filter method (i.e., chi-squared) for the best datasets.

in any attribute or instance) or incorrect or corrupted data
exist. Thus, removing any data (i.e., attribute or instance),
is unnecessary. In addition, the input data are discrete and
contain two values (0, 1) for binary input datasets or four
values (0, 1, 2, 3) for decimal input datasets. Furthermore,
normalization does not affect the accuracy or performance of
the ML algorithm. We also believe that data transformation
will not achieve any reasonable improvement in ML model
performance. Lastly, feature reduction by using PCA also
does not help because the number of input features is small
and independent) [27], [28].

B. FEATURE SELECTION
Feature selection can be classified into two categories:
label information (i.e., supervised, unsupervised, and semi-
supervised) and search strategy. Filter selection based on
search strategy can be further classified into four techniques:
intrinsic method (e.g., decision trees), filter method (e.g., chi-
square, Pearson’s correlation, and ANOVA F-value), wrapper
method (i.e., forward selection, backward elimination, and
recursive feature elimination), and embedded method (e.g.,
lasso L1 regularization, and ridge L2 regularization). Filter
methods are extremely fast, and they select the most discrim-
inative features on the basis of data behavior. In general, filter
methods perform feature selection before classification (i.e.,
the first step in any feature selection pipeline) and are typi-
cally a two-step technique. First, all the features are ranked
in accordance with certain criteria. Then, the features with
the highest rankings are selected. Wrapper methods use the
intended learning algorithm itself (e.g., XGBoost classifier,
random forest, and recursive feature elimination) to evaluate
features [29], [30].

This step does not achieve any reasonable improvement in
ML model performance. Table (12) provides the chi-squared
rank order for Datasets 3 and 6, which are the best datasets

in terms of training phase accuracy. This table is arranged
in accordance with feature importance, and the eight best
features for the best datasets are Fr2, Fr4, Fr6, Fr8, Fr10,
Fr12, Fr14, and Fr16. In addition, our ML algorithms are
trained on these highest-ranking features (i.e., eight features)
and no reasonable improvement is achieved (i.e., best model
accuracy is 6.4% on Dataset 3 among the fast-training mod-
els).

For the slow-training models, the XGBoost classifier is
used to calculate the F-scores or feature importance scores of
all the member features in all the training datasets (e.g., DB5,
and DB6), as shown in Figure 4. Then, the model is fitted
using each feature as the threshold. The performance (i.e., test
set accuracy) of the XGBoost model generally declines with
the number of selected features, as indicated in Tables (13)
and (14). In this problem, a trade-off among features occurs
to test set accuracy. In general, feature selection performance
depends on the selected hyperparameters, and it is an open
problem [29].

In accordance with the preceding results, we train our
models with all the input features without performing any
data preprocessing on the input datasets (as discussed later).

C. SEARCH FOR THE BEST DATASET
The search for the best model and datasets involves training
15 ML classifiers by implementing 10-fold cross-validation
on all the training datasets. We start with the fast-training
classifiers and then proceed to the slow-training ones.
Notably, some ensemble methods (e.g., voting classifier and
histogram gradient boosting classifiers) are not tested here
either because of memory crashes or these methods require
an extremely long computational time to train. Table (15)
provides the training accuracy summary results of all the
datasets. This table also includes the average training time
for each model. Our best model is the MLP classifier, and it

VOLUME 9, 2021 109529



A. E. E.-D. Rashed et al.: Sequence Alignment Using ML-Based NW Algorithm

FIGURE 4. Trained XGBoost model calculates feature importance scores for all the member variables in our predictive modeling problem.

TABLE 13. Accuracy for all the datasets by using selected features (i.e., the wrapper method) for the XGBoost classifier.

TABLE 14. Accuracy for all the datasets by using selected features (i.e., the wrapper method) for the XGBoost classifier.

achieves the best performance on Datasets 3 and 6. The next
best model is XGBoost. The top three models for each dataset
are printed in bold. The top three models for the datasets

with decimal input are MLP, XGBoost, and AdaBoost. The
top three models for the datasets with binary input are MLP,
XGBoost, and SVM–radial basis function (RBF). In addition,
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TABLE 15. Training accuracy summary results on all the datasets.

TABLE 16. Summary of the experiment results of a neural network (i.e., MLP classifier with different optimizers) on dataset 3.

TABLE 17. Summary of the experiment results of a neural network (i.e., MLP classifier with different optimizers) on dataset 6.

the experimental summary results of using MLP with three
optimizers on Datasets 3 and 6 are presented in Tables (16)
and (17), respectively. The ADAM optimizer achieves the
best performance on the two datasets.

D. EVALUATION METRICS
We evaluate the classification results when searching for
the best model and dataset on the basis of overall accuracy
(all metrics are calculated but not presented in this paper).
Considering the imbalanced datasets and classification sen-
sitivity, precision, and F1 score indicators are calculated and
presented for our best model (MLP) because these indicators
focus on one class. These performance measures are defined
and computed as follows [31], [32]:

Accuracy = (TP+ TN)/(TP+ FP+ FN+ TN).

Recall = TP/(TP+ FN)

Precision = TP/(TP+ FP)

F1 score = 2∗(Recall∗Precision)/(Recall+ Precision)

E. BEST MODEL EVALUATION
For the testing phase, we use the same best datasets (Datasets
3 and 6) after randomizing or shuffling rows or classes by
10% and then testing the datasets by using our best model
(MLP with the ADAM optimizer). Table (18) provides the
evaluation results of MLP on the test datasets. We observe
a trade-off between test dataset accuracy and shuffling per-
centage, although the shuffle parameter is activated in the
MLP classifier, the batch size is automatic, and L2 penalty
regularization (alpha) = 0.0001. We simplify the model by
decreasing the number of hidden neurons from 200 to 100.

F. OVERFITTING PREVENTION
To prevent overfitting, increasing the amount of data
in datasets is an improbable technique because all the
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TABLE 18. Evaluation result summary of a neural network (i.e., MLP classifier (for datasets 3T and 6T (testing phase).

TABLE 19. Evaluation result summary of a neural network (i.e., MLP classifier) for datasets 3 and 6T (testing phase) when using overfitting prevention
technique.

TABLE 20. Proposed techniques for preventing overfitting.

TABLE 21. Evaluation of the best model’s prediction runtime.

possibilities are already presented in our current datasets
unless this process is performed on classes with fewer
instances, such as in the synthetic minority oversampling
technique (i.e., SMOTe for imbalanced datasets). Thus, any
increase in data will be a repetition. In addition, perform-
ing augmentation or randomizing features in a dataset is
impossible because the target depends on the order of the
input features. Therefore, we can use the automatic batch
size instead of large values. We can also adopt several reg-
ularization techniques, such as early stopping, dropout (not
supported in the scikit-learn MLP classifier), and adaptive
learning rates, instead of a constant value (i.e., default value)
and increasing the value of L2 penalty (alpha) regularization.
Increasing alpha may address high variance (a sign of overfit-
ting) by encouraging smaller weights, resulting in a decision
boundary plot with fewer curvatures. Moreover, increasing
L2 penalty (alpha) regularization does not improve the per-
formance (i.e., alpha = 90, Dataset 3, accuracy = 85.9%
and alpha = 0.04, Dataset 6, accuracy = 86.9%). In addi-
tion, enhancing accuracy is possible by using hyperparame-
ter tuning methods, such as a genetic algorithm (GA) [33],

grid search, random search [34], coordinate descent, and
SGD [35].

Table (19) presents the summary of the results on the
test datasets after using our proposed technique to prevent
overfitting [36]. This strategy is summarized in Table (20).

Figure 5 illustrates the strategy for testing new data on
our best model. First, the input sequence should be merged,
and then each letter is encoded into the binary data (as data
in Dataset 3 or 6). Subsequently, these data are applied to
our best model. The predicted label takes values from 1 to
254 (for the MLP model trained on Dataset 3) and from
1 to 221 (for the MLP model trained on Dataset 6). These
values must be decoded two times to obtain the real align-
ment output. After shuffling its classes by 10%, Dataset 3 is
referred to as Dataset 3T (the same technique is used for
Dataset 6T). In addition, we assign two real DNA sequences:
NC_000962.3 represents the Mycobacterium tuberculosis
H37Rv genome with a length of 4,411,532 NTs (referred
to as D4.4) and NC_000913.3 represents the Escherichia
coli K12 MG1655 genome with a length of 4,641,652 NTs
(referred to as D4.6). Query length is the number of NTs in
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TABLE 22. Performance comparison with other state-of-the-art implementations.

FIGURE 5. Strategy for testing new data.

each sequence [37]. We set a fixed length for both sequences
that is equal to 4.1 M NTs during our testing phase. We refer
to it as Dataset 4.1 in this study. Figure 6 illustrates that the
training and testing learning curves exhibit a good fit.

The evaluations of the DNA sequence databases show
that our MLP method achieves an overall performance
of 2912 GCUPS for the NW algorithm and runs at a speed
equivalent to 6.0417 s when aligning two sequences with a
length of 4.1 M NTs by using a single-core platform, as indi-
cated in Table (21). This table provides the prediction runtime

FIGURE 6. Training and testing learning curves exhibiting a good fit.

and GCUPS for global alignment when using our best model.
Notably, decoding time is not included in our calculations of
prediction runtime. Performance comparisonwith other state-
of-the-art techniques is provided in Table (22).

In [1], the authors used ML and a deep learning model to
implement DNA sequence alignment by applying the NW
algorithm with approximately the same technique used in
the current work. However, they adopted the 80/20 ratio
for the training and test datasets and applied 10 ML clas-
sifiers to 4 datasets. They achieved the highest accuracy of
82.59% with an SVM classifier and obtained an accuracy
of 98.37% when using a CNN model. However, the latter is
time-consuming because it takes 6.5 s to align two sequences
with a length of 5000NT onGPU. Themodel presented in the
current work uses 10-fold cross-validation for all the datasets
(six datasets) and achieves an accuracy of 99.27% for the
training dataset and 86% for the test dataset by using MLP
with the ADAM optimizer before implementing overfitting
prevention techniques. In addition, our model takes only 6 s
to align two real DNA sequences with a length of 4.1 M NTs,
achieving 99.7% accuracy after using overfitting prevention
techniques.
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VII. CONCLUSION
Most previous studies have focused on accelerating align-
ment algorithms by using different methods without provid-
ing any effective solution to sequential process problems.
Our proposed algorithm depends on the parallelization of
common alignment algorithms (i.e., NW for global align-
ment) for DNA or RNA sequences under certain constraints
or limitations to address the major problems of DP, memory
usage, computational time (i.e., O(N/4)), calculation steps
(i.e., O(N/4)), and large sequences (i.e., the big data problem).
The proposed method takes O(N/4) calculation steps, where
N is the length of each sequence with a minimum value of
four (i.e., N = 4, 8, 12, . . .).

It can also be applied to RNA by replacing the NT repre-
sented by T with another NT represented by U. This tech-
nique can be extended to any global alignment method and
extremely long sequences. Our proposed algorithm accel-
erates large-scale sequence alignment tasks with ML algo-
rithms and allows researchers to solve real-world problems
that biologists are currently confronting.

Our proposed algorithm (i.e., MLP with the ADAM opti-
mizer) achieves 99.70% accuracy after applying techniques
for preventing overfitting to real DNA sequences with a
length of 4.1 M NTs. Moreover, it takes approximately 6 s to
align two sequences with the same length with 2912 GCUPS.

VIII. FUTURE WORK
Feature optimization techniques and algorithms, such as GA,
the gray wolf algorithm, whale optimization, and the particle
swarm optimization (PSO) algorithm can be considered in the
future [39].

Moreover, testing other ensemble methods, such as a vot-
ing classifier (hard and soft) or stacking, can enhance model
accuracy. Training MLP by using PSO [40] or auto ML
libraries (e.g., TPOT, Auto-Keras, and H2O) can improve
model performance [41].

In addition, enhancing running time prediction is fea-
sible by using CPython; PyPy, which is an alternative to
CPython based on just-in-time compilation [42]; Microsoft’s
HummingBird-ML, which converts trained ML models into
tensor computations (e.g., PyTorch) [43]; and Numba, which
is a high-performance and open-source Python compiler that
can reach the speeds of C and Fortran when compiling numer-
ical algorithms [44]. Lastly, implementing MLP by using
hardware platforms, such as FPGA, GPU [45], and quantum
machine learning (e.g., Qiskit library) [4 6], can improve
prediction runtime.
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